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Abstract 

Accurate somatic variant calling from next-generation sequencing data is one most 
important tasks in personalised cancer therapy. The sophistication of the available 
technologies is ever-increasing, yet, manual candidate refinement is still a necessary 
step in state-of-the-art processing pipelines. This limits reproducibility and introduces 
a bottleneck with respect to scalability. We demonstrate that the validation of genetic 
variants can be improved using a machine learning approach resting on a Convolu-
tional Neural Network, trained using existing human annotation. In contrast to exist-
ing approaches, we introduce a way in which contextual data from sequencing tracks 
can be included into the automated assessment. A rigorous evaluation shows that 
the resulting model is robust and performs on par with trained researchers following 
published standard operating procedure.
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Content
In Section  “Introduction”, we introduce the reader to the problem of somatic variant 
refinement, why it is pertinent, and summarise the state of the art. Section “Methods” 
serves to detail the proposed method of performing refinement using a convolutional 
neural network. Its implementation is discussed in Section  “Implementation”. In Sec-
tion “Results”, we show its evaluation on two large datasets. Finally, section 5 contains a 
discussion of the results of this study.

Introduction
Over the last decades, extensive research has been conducted to unravel the molecular, 
cellular and immunological mechanisms involved in cancer development. Especially the 
extensive use of next-generation sequencing (NGS) technologies enabled a progressively 
more cost-effective approach for the discovery of genetic variants within the genome 
that are inherited (germline mutations) or acquired (somatic mutations) and thereby 
predispose for or contribute to cancer development. So far, a huge amount of NGS data 
has been systematically analysed to determine meaningful information on potential 

*Correspondence:   
vaisband@uni-bonn.de

1 Department of Internal 
Medicine III with Haematology, 
Medical Oncology, 
Haemostaseology, Infectiology 
and Rheumatology, Oncologic 
Center; Salzburg Cancer 
Research Institute ‑ Laboratory 
for Immunological and Molecular 
Cancer Research (SCRI‑LIMCR); 
Cancer Cluster Salzburg, 
Paracelsus Medical University, 
Salzburg, Austria
2 Life and Medical Sciences 
Institute, University of Bonn, 
Bonn, Germany

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-023-05255-7&domain=pdf


Page 2 of 19Vaisband et al. BMC Bioinformatics          (2023) 24:158 

drivers of tumourigenesis, dynamics of tumour evolution and differences between 
tumour entities regarding average mutational burden, tumour-specific mutational signa-
tures or genetic diversification contributing to drug resistance and disease relapse [1–4].

In personalised cancer therapy, a common task is to identify somatic mutations from 
paired samples of tumour and normal tissue of individual patients to select appropri-
ate treatment options. In a typical processing pipeline for tumour-normal pairs, the 
sequenced reads for each sample are aligned to a reference genome, before undergoing 
removal of duplicate fragments and base quality score recalibration (BQSR). This pro-
cess yields NGS data ready for further analysis (most commonly stored in the binary 
“BAM” file format), and the normal (“germline”) can be compared to the tumour sample 
to obtain somatic mutations in a process known as variant calling.

Due to the importance of variant analysis in modern biomedical research, the field has 
seen the emergence of a number of variant calling algorithms. Their diversity in meth-
odology can be observed in Table 1 (which distinguishes variant callers based on the cat-
egories proposed in [5]), and there has been very little consolidation in the field. Despite 
comprehensive large-scale benchmarking, no single configuration of tools has emerged 
as the approach of choice for all settings, with them all having respective advantages and 
drawbacks (see e.g. [5–7]). It is currently common practice to cross-reference predic-
tions made by several different variant callers [7, 8].

The brief structure of a variant calling workflow is as follows (for an overview, see 
Fig.  1): The genomic samples from both germline and tumour are converted into a 

Table 1  Variant calling tools

Strategy Representatives

Heuristic thresholds with 
statistical testing

VarScan [9], VarScan2 [10], qSNP [11], Shimmer [12], RADIA [13], SOAPsnv [14], VarDict 
[15], and UVC [16]

Joint genotype analysis SAMtools [17], SomaticSniper [18], JointSNVMix2 [19], Virmid [20], Seurat [21], FaSD-
somatic [22], SNVSniffer [23], and CaVEMan [24]

Allele frequency analysis Strelka [25], LoFreq [26], deepSNV [27], MuTect [28], EBCall [29], MuSE [30], LoLoPicker 
[31], and Strelka2 [32],

Haplotype-based strategy FreeBayes [33], Platypus [34], HapMuC [35], LocHap [36], Longshot [37], and MuTect2 
[38]

Machine learning MutationSeq [39], BAYSIC [40], SomaticSeq [41], SNooPer [42], DeepVariant [43], 
Clairvoyante [44], NeuSomatic [45], and DNN-Boost [46]

Fig. 1  A typical processing pipeline from blood sample to somatic variant list
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library of fragments, which can then be sequenced yielding raw reads collected in the 
FASTQ format. The resulting files undergo a number of processing steps, including the 
trimming of low-quality sections from reads, base quality score recalibration (BQSR), 
and deduplication, followed by alignment against a reference genome and storage in the 
binary alignment map (BAM) format.

From this format, in turn, the sequencing results can be compared by a variant call-
ing tool to generate a list of candidate variants, typically stored in a variant call format 
(VCF) file. Any modern variant calling workflow, however, must still incorporate a stage 
where these candidate variants are manually refined following published standard oper-
ating procedure by trained researchers [47–49].

Besides being immensely time-consuming, this is intrinsically at odds with the prin-
ciples of reproducible research, as there is by necessity a grey area where different 
researchers may come to different conclusions when examining a candidate variant, 
despite following the same guidelines (Barnell et al. [48] give a figure of 94.1% for the 
accuracy of reviewers following the proposed procedure). Coupled with the fact that 
different pipelines may yield very different results, this points to a great need for uni-
formisation, something which has been clear since the advent of NGS [50]. Very recent 
studies, too, point to the immense need for automation in the field, as the huge diversity 
in variants makes manual curation infeasible [51].

One of the reasons for the need for manual refinement is that available pipelines still 
struggle with sequencing artefacts. The vast improvement in sequencing throughput 
capacity and cost-efficiency brought about by NGS has had a principal trade-off in reli-
ability and accuracy (see e.g. [17, 52]). This bargain has been whole-heartedly embraced 
by the majority of the research community; it means, however, that sequencing artefacts 
are a common occurrence and must be accounted for when designing analysis pipelines.

To accurately assess whether a candidate variant is genuine or falsely called as the 
result of an artefact, it has to be carefully examined in specialised software. Most com-
monly, the Integrative Genomics Viewer (IGV) [53] is used (Fig.  2 provides a typical 
example of an artefact inspected using this tool). Researchers have to take into account 
both the quantity and quality of variant evidence, while considering factors such as low 
sequencing coverage, misaligned reads, strand bias, low base and alignment qualities 
and sequencing errors around the locus, which are especially common in regions of low 
complexity [48].

Artefacts can have many different sources and errors can be introduced at any step of 
the sequencing process, including library preparation. They may arise from sequencing 
during cluster amplification, cycle sequencing or image analysis. During library prepa-
ration, factors such as differential amplification, polymerase errors or the method and 
chemistry of DNA fragmentation can contribute to the generation of artefacts [54–58].

If the library preparation is done at the same time for both germline and tumour, 
this poses no problem, as the incorrectly called base will be present in both samples 
and no artefactual candidate variant is generated. If, however, the library preparations 
of germline and tumour sample differ, this can result in calls which appear highly 
credible at first glance. They can only be identified by consulting other, otherwise 
unrelated, samples which have been sequenced using the same library preparation. 
Coming across these artefacts is quotidian in research practice and manual variant 
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refinement (see Additional file 1: Figures S1 and S2 in appendix B for two examples), 
but was until now, to our knowledge, not implemented in any refinement tool. To 
exclude this error source entirely, germline and tumour samples would always have to 
be sequenced with the same library preparation. In longitudinal studies or transplan-
tation experiments in particular, this would necessitate a new library preparation and 
full re-analysis of germline samples for each transplantation. In most applications, 
this is infeasible and prohibitively costly.

As evidenced by the multitude of error sources, the standardisation of variant 
refinement is one of the most important challenges in the field today. The field of 
tools to automate this task remains very narrow to this day, however, especially in 
contrast with the large number of available variant callers. For germline variants, Li 
et al. [59] have proposed a Random Forest Classifier model operating on hand-crafted 
summary statistics. In the setting of detecting structural variants, i.e. large genomic 
alterations encompassing 100 or more base pairs, Liu et  al. [60] have presented an 

Fig. 2  Examples of sequencing artefacts. Screen captures from the Integrative Genomics Viewer (IGV) [53]; in 
each case the germline track is shown in the upper half, and the tumour track in the lower. Shown are typical 
examples of (a), a genuine mutation, and (b), a sequencing artefact flagged as a candidate variant. The colour 
of the reads indicates their direction, unless they disagree with the reference genome, in which case the 
disagreeing base is coloured in. The artefact can be recognised by the low complexity of the DNA sequence 
and the subsequently misaligned abruptly ending reads, as well as general sequencing “noise”
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approach resting on deep learning and thus data-driven features, where read align-
ments are converted to images for classification.

For somatic variants, however, no computational state-of-the-art exists at the time 
of writing. The idea to automate variant refinement using machine learning was pio-
neered in a seminal publication by Ainscough et al. [61]. In it, the authors presented the 
application of a one-layer perceptron network, as well as a Random Forest Classifier, to 
hand-crafted summary statistics extracted from sequencing data. This approach made 
it possible to incorporate a high degree of expert knowledge into their method. How-
ever, it also limits their models’ applicability to new data, as the input features included 
elements specific to their study (notably, one of the most significant features was the 
identity of the human reviewer annotating a variant). Wardell et al. [62] have published 
software to facilitate the application of user-defined filtering criteria to candidate vari-
ants, providing a valuable tool to streamline the manual review process. The necessity 
itself for a manual refinement, however, has stayed unchanged so far (see also Table 2).

In this study, we propose a deep learning method, which we will for brevity refer to as 
deepCNNvalid, for the automatic refinement of somatic variant lists provided by variant 
calls, which relies on learned features and can incorporate additional context sequenc-
ing tracks. It employs convolutional neural networks, a class of artificial neural networks 
that rely on “learning” (i.e. optimising with respect to a loss function) convolutional fil-
ters, which are applied across spatially arranged data. This makes them excel at tasks 
which are informed by local structure. They were brought into the spotlight of machine 
learning research by the immensely influential work of Krizhevsky, Sutskever and Hin-
ton in [63] in the field of image classification. Since this renewal of interest, they have 
been used to great success in many fields, among them image processing, biomedical 
applications, and intersections between the two (see for example [64–68] and the cita-
tions contained therein). We demonstrate that the proposed method achieves a high 
degree of accuracy on different datasets.

Methods
In this section, we introduce the deep learning method for variant refinement. Its inputs 
are BAM files obtained by sequence alignment, VCF files obtained by variant calling, 
and metainformation (e.g. on library preparation). The output is a list of refined variants 

Table 2  Variant refinement approaches

Name Target setting Features Underlying 
method

Reusable 
model

Includes 
sequencing 
context 
information

Ainscough et al. [61] Somatic Hand-crafted, sum-
mary statistics

Random forest, one-
layer perceptron

No No

FiNGS [62] Somatic Hand-crafted User-defined filter-
ing criteria

N/A No

deepCNNvalid (pro-
posed method)

Somatic Learned CNN on reads Yes Yes

DeepSVFilter [60] Structural Learned CNN on images Yes No

ForestQC [59] Germline Hand-crafted, sum-
mary statistics

Random Forest Yes No
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from which sequencing artefacts have been removed. Below, we discuss the considered 
dataset and the evaluation of the method.

Input data representation

The application of deep learning methods for variant refinement requires a numerical 
representation of the sequencing data. In this study, we encode the input data as a three-
dimensional tensor, with the dimensions corresponding to

•	 Position of the base on the reference genome,
•	 Index of the read, and
•	 Base-wise information (nucleotide type, quality scores, and read direction).

We consider a fixed symmetrical window of dwindow bases around the potential vari-
ants listed in the VCF files provided by variant callers and a maximum of dreads reads. 
Base-wise information are the nucleotide type, base-wise quality, read alignment quality, 
as well as a binary flag showing whether a read was reversed. For the nucleotide type, 
a one-hot encoding is employed, resulting in four entries (one for each nucleotide), as 
is typically the case in Deep Learning with sequencing data [69–71]. Overall, we have 
seven entries per base—but this can be extended by further input features if desired. 
Whenever a read did not cover a position in the base window, or there were fewer than 
dreads reads available, the corresponding positions in the tensor were zero-padded. Over-
all, this process yields tensors in Rdwindow×dreads×7.

To assess the presence or absence of a variant at a specific locus, we apply this encod-
ing scheme to the sequencing data from the tumour and the normal tracks, as well as 
randomly chosen sequencing tracks with no biological relation to the variant (i.e. a dif-
ferent transplantation line), but the same library preparation. The additional tracks are 
used to provide context information, e.g. on library preparation, etc.

The tensors representing the information of the different sequencing tracks are con-
catenated along the third (i.e. “depth”) dimension. The resulting structure can be thought 
of as similar to the visualization researchers would see when inspecting a candidate with 
a genome viewer with different sequencing tracks aligned alongside each other, except 
that our data encoding forms a three-dimensional tensor where identical positions in the 
genome are aligned, cf. Figure 3.

Model topology and training

For the variant refinement, we employed a feedforward neural network incorporating 
convolutional layers. This type of topology has proven valuable for various sequence 
analysis tasks [72]. We evaluated different structures and observed a high degree of 
robustness of the results. A brief discussion of different evaluated architecture features 
is provided in appendix D. For the subsequently presented results, the precise structure 
is as follows:

•	 Three convolutional blocks with filters of size 3× 3 each (and ReLU activation). 
Using 32, 16 and 32 filters, respectively, each followed by Max-Pooling with the same 
filter size.
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•	 One layer of 1× 1 convolutions with 32 filters and ReLU activation
•	 A batch normalization layer with a momentum parameter of 0.8 followed by flat-

tening
•	 A dense layer with 10 neurons and ReLU activation, and dropout of probability 

0.2 applied on the out-edges for training
•	 A classification layer with two neurons and softmax activation

A visual summary is provided in Fig. 4.
Notable features of the selected architecture are the relatively small numbers of 

filters, and the lack of a large dense classification head which has been replaced by 
a 1× 1 convolutional layer, “forcing” complexity into the filter structure. The overall 
number of trainable parameters, 27, 312, is low by neural network standards, which 
helps avoid excessive overfitting.

For training, we chose the binary cross-entropy loss function, as is most fre-
quently done in binary classification. For further regularization, the training labels 
were subjected to label smoothing with smoothing parameter 0.1, meaning that the 
categorical (1,  0) and (0,  1) labels were converted into (0.95,  0.05) and (0.05,  0.95) 
respectively. Finally, training was done with the Adam optimiser [73].

Fig. 3  Process for obtaining composite data points from several sequencing tracks. Additional context tracks 
are added by the same principle
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Datasets

For the evaluation of the method we considered different datasets, focusing exclu-
sively on candidates for single nucleotide variants (SNVs). The first dataset, generated 
in-house, contains 2085 candidate variants and is used for training and cross-valida-
tion. The second encompasses 1652 candidate variants and was obtained from data 
published in [74]. Only in-house data was used for training, with the entire out-of-
facility dataset reserved for validation.
In-facility The in-house sequencing data came from blood samples from mice main-

tained at the mouse facilities of the Paris Lodron University Salzburg. To generate a 
first data set, we performed WES sequencing for murine samples of TCL1 and TCL1-
AIDKO primary and transplanted tumours generated with the Agilent SureSelect XT 
Mouse All Exon Kit [75, 76]. This experimental system is a well-established widely for 
studying chronic lymphocytic leukemia (CLL) [77] and provided us with a highly con-
trolled data set. The dataset includes 11 germline (GL) and 40 CLL samples (11 pri-
mary and 29 serially transplanted), based on which 40 comparisons were performed 
using VarScan2 [10], in order to identify somatic mutations occurring between ger-
mline and primary tumour, or transplanted tumour sample. WES data are accessible 
on Sequence Read Archive, NCBI, NIH (BioProject: PRJNA475208 [75], BioProject: 
PRJNA725403 [76] and BioProject: PRJNA789482. The variant candidates provided 
by VarScan2 were evaluated by three experienced researchers following published 
Standard Operating Procedure [48] to provide a ground-truth.
Out-of-facility As a second data set, the results of a mutational analysis by Kotani 

et  al. investigating WES data from murine progenitor cells transduced with human 
MLL/AF9 and differentiated into bone marrow cells as a model for MLL-rearranged 
acute myeloid leukemia (AML) were used. Similar to the in-facility samples, primary 
and serially transplanted tumour samples were prepared and sequenced with the Agi-
lent SureSelect XT Mouse All Exon V2 Kit [74]. The dataset encompasses 42 paired 
GL and AML samples (8 primary and 34 transplanted). Candidate variants were gen-
erated and manually annotated while cross-referencing with the list of mutations 
published with the data.

Fig. 4  Architecture of neural network for classification. Input data runs through blocks of 3 × 3 convolutions 
with ReLU activation and max-pooling, before weighted averages over the filters are taken using 1× 1 
convolutions with ReLU. The results are flattened, normalised and passed to a dense classification head, 
where dropout is applied for regularisation
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Details on the exact bioinformatics processing pipelines for both datasets are given in 
Additional file 1: Tables S1 and S2 in appendix A.

Evaluation

In the course of the overall evaluation pipeline (presented in Fig. 5), the aligned sequenc-
ing data, detected candidate variants (functionally annotated by ANNOVAR [78]), and 
the existing ground truth annotation were processed to numerical form and saved in the 
binary NPY format native to NumPy [79]. We then employed several strategies to assess 
the proposed method’s generalisation performance. On the in-house dataset, we used 
stratified 5-fold cross-validation, as well as repeated random stratified train-test splits. 
Additionally, the out-of-facility dataset was used as a hold-out validation set.

To contextualise the model’s performance, we compared it with the results of rule-
based filtering using FiNGS [62], using both the default parameter set suggested by the 
authors and a more permissive one for reference (the criteria sets used are shown in 
Additional file 1: Appendix E).

In all cases, the model’s aptitude was assessed using the standard metrics for binary 
classification tasks: accuracy, recall (also known as sensitivity), precision, and F1 score. 
If we let TP, FP, TN, FN denote true positives, false positives, true negatives, and false 
negatives, respectively, we define

To gain further insights, we examined whether its accuracy on subcategories of the data-
set differed significantly from the overall accuracy. In particular, we investigated possible 
differences in performance by reference base, alternative base, reference-alternative-pair, 
mutation class, and variant allele frequency (VAF). In each case, we used a binomial test 
to assess whether the null hypothesis that all results on subsets of the data have been 

Accuracy =
TP + TN

TP + FP + TN + FN

Recall =
TP

TP + FN

Precision =
TP

TP + FP

F1 = 2 ·
Precision · Recall
Precision+ Recall

Fig. 5  Overall model training and evaluation pipeline. The sequencing data is tensorised at candidate loci, 
while previous expert annotation provides labels. This dataset is then used to estimate the proposed neural 
network’s generalisation ability using two evaluation approaches
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obtained using the same accuracy can be rejected. The results were corrected for multi-
ple testing using the Bonferroni method.

Implementation
We performed the mutational analysis using the pipeline described by Schubert et al. 
[76]. Somatic variant calling using VarScan2 was performed using relatively per-
missive parameters, i.e. min-coverage-normal 5, min-coverage-tumour 5, min-var-
freq 0.05, somatic-p-value 0.05 and strand-filter 1, and filtering of high confidence 
calls was performed according to Basic Protocol 2 published by Koboldt et  al. [80], 
to reduce the false negative rate. The precise setting of VarScan2 dependent on 
the dataset, using internal standards of the clinical groups in Salzburg for the in-
facility dataset and published parameters for the out-of-facility dataset (see Addi-
tional file  1: Table  S2 in Appendix A). The resulting variant lists were filtered for 
the following mutation classes (coming from ANNOVAR analysis “Func.RefGene”): 
“exonic”, “ncRNA_exonic”, “splicing”, “UTR3”, “UTR5”, “UTR5;UTR3”, “downstream”, 
“upstream”, “upstream;downstream”].

We implemented the proposed variant list refinement method using the Keras [81] 
interface to the TensorFlow [82] framework in Python. For training, we chose the 
canonical binary cross-entropy loss function, and performed optimization with Adam 
[73] using a constant learning rate of 10−3 . Optimization steps were done in batches 
of 256, for 50 epochs. The evaluation was done using the implementation of strati-
fied cross-validation and train-test-splits provided by the scikit-learn [83] toolkit for 
Python. For the binomial test between data subsets, we chose the implementation in 
the statsmodels package for Python [84].

For the tensor representation of the data, we chose a window size of dwindow = 101 
bases around the examined locus. Reads were considered up to a maximum number 
of dreads = 200 reads from each track.

To handle potential homologies distorting the reported classification performance, 
we base-scrambled all input data, independently uniformly at random swapping A-T, 
C-G, neither pair, or both. This was done only within purine and pyrimidine bases, 
respectively, since otherwise biological information contained in the difference 
between transitional and transversional mutations would be lost [85]. Since the bases 
are represented in one-hot encoding, this transformation corresponded to permuting 
the relevant slices of each datapoint tensor.

The complete implementation is available on GitHub (https://​github.​com/​marc-​
vaisb​and/​deepC​NNval​id).

The final version used for the study is archived at Zenodo (https://​zenodo.​org/​
record/​64093​66).

Results
In the following, we illustrate and evaluate the accuracy of the proposed variant filter-
ing approach. For this purpose, we consider the afore-described in- and out-of-facility 
datasets.

https://github.com/marc-vaisband/deepCNNvalid
https://github.com/marc-vaisband/deepCNNvalid
https://zenodo.org/record/6409366
https://zenodo.org/record/6409366
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Information on sequencing context improves classification efficiency

To evaluate the proposed method and to understand the dependence of its performance 
on different factors, we first studied the in-house dataset. For this the precise experimen-
tal setup is well known and the use of mouse data from several transplantation rounds 
provides us with additional controls (e.g. an the plausibility of the absence and presence 
of mutations). We processed the data as described in the Implementation section. This 
yielded 2085 data points (of them 703 mutations and 1382 artefacts), each correspond-
ing to a particular tumour-normal sample pair and a position in the genome. To generate 
a ground truth datasets, the list of variant candidates was screened by three experienced 
researchers following the guidelines by Barnell et al. [48]. The consensus annotation by 
these researchers provided the corresponding labels, dividing the candidates into true 
mutations and artefacts.

In a first step, we performed stratified 5-fold cross-validation, using the scikit-learn 
[83] implementation, with a fixed random seed, splitting the in-house dataset into five 
folds. We find that the proposed method, which accounts for context, achieves a good 
performance as measured in validation accuracy, validation precision, validation recall 
and validation F1 score, averaged over the five stratified folds. To assess whether the 
method can be simplified by removing context information, we reran the evaluation 
with reduced input tensors and neural network. This revealed that context informa-
tion indeed improves the validation performance, by 0.02 points compared to the con-
text-free case. Most likely, this is due to added information on the overall quality of a 
sequencing run and sequencing artefacts. The fold-averaged scores are found in the fol-
lowing Table 3:

As a baseline comparison, the performance of rule-based filtering is shown in the fol-
lowing Table 4:

As the training time of the model is moderate (408 s on a node with 56 CPUs and no 
GPU acceleration), we assessed the reliability of the results by considering 100 random 
stratified train-test-splits of our data. We again observe that including context tracks 
improves the performance metrics, by 0.01 to 0.02 points. The averaged scores over all 
training runs are found in the following Table 5:

A visual summary of both evaluation results can be found in Fig.  7; the detailed 
cross-validation scores per fold are included in Additional file  1: Tables S3 and S4 in 
appendix C.

Table 3  Average validation performance in 5-fold cross-validation

Dataset Accuracy Precision Recall F1

With context tracks, average 0.968 0.953 0.954 0.953

Without context tracks, average 0.952 0.936 0.92 0.927

Table 4  Classification performance of rule-based filtering

Accuracy Precision Recall F1

Default criteria 0.899 0.986 0.711 0.826

Permissive criteria 0.941 0.939 0.882 0.910
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Variant candidate refinement performs well even for limited training set sizes

As the proposed method performed rather well despite the relatively limited number 
of training examples provided by the in-house dataset, we assessed the dependence of 
the validation performance on sample availability. Therefore, we progressively sub-sam-
pled the training set, repeatedly reducing its size by a factor of 

√
2 , and performed 5-fold 

cross-validation on each subset. We observed that as expected, overall performance 
declines as the number of datapoints becomes smaller. Reducing it to roughly 500 leads 
to worse, but still reasonable model performance; a further reduction however leads to a 
severe decline in classification quality (cf. Figure 6). This supports the conventional wis-
dom that deep learning methods often need sample sizes well into the hundreds in order 
to perform well.

Classification performance does not depend on bases or mutation class

For the potential use of the proposed method in clinical practice, it is crucial to gain a 
precise understanding of the model’s behaviour with respect to different kinds of can-
didate variants. In particular unbiasedness is an important feature. To analyse this, we 

Table 5  Average validation performance across 100 random train-test-splits

Dataset Accuracy Precision Recall F1

With context tracks, average 0.958 0.934 0.945 0.937

Without context tracks, average 0.946 0.921 0.923 0.920

Fig. 6  Results of data subsampling. The scores of successive cross-validation runs after repeatedly 
sub-sampling the data with a factor of 

√
2 . As expected, model performance worsens with fewer data points. 

This initially happens gradually, but becomes precipitous once the sample size falls below 500 (indicated by 
the dashed line)
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subdivided the in-house data based on reference base, alternative base, and mutation 
category. Using the validation predictions from the cross-validation, we investigated 
whether the validation accuracy on any one group based on these distinctions differed 
significantly from the overall accuracy, using a binomial test. No significant differ-
ences were found. This suggests that the model performs equally well in all cases - 
irrespective of the reference and alternative bases, as well as mutation category.

The model generalises to independent out‑of‑facility data

As the model perform well on the in-facility data, we performed the arguably most 
rigorous, assessment of generalisation ability for any machine learning model is 
of course its application, and tested it on data which was generated completely 

Fig. 7  Results of model evaluation. Modelling with context tracks shown in red; without in grey. In the top 
figure, the results of 5-fold cross-validation are shown, with arrows to indicate the improvement achieved by 
including context. In the bottom figure, the results of 2× 100 optimization runs with random train-test splits 
are presented
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independently of the data used for training or even in-facility validation. For this pur-
pose, we utilised the data published in [74] and processed as outlined in the Imple-
mentation section.

We trained a model on all 2085 of our in-facility data points, and evaluated it on the 
1652 candidate variants from the out-of-facility data.

The final evaluation of the out-of-facility dataset for independent validation yielded an 
accuracy of 0.949, a precision of 0.948, a recall of 0.995, and an F1 score of 0.971. These 
levels are similar to the in-facility data used for training, showing that the method gener-
alizes to different sequencing methods and experts.

Discussion
In this manuscript, we considered the identification of somatic variants from NGS data, 
which is one of the key challenges in modern cancer research. It is aided by ever-improv-
ing sequencing and variant calling technology, but currently still dependent on manual 
candidate refinement, which presents a huge opportunity for improvement in terms of 
scalability and reproducibility. Here, we demonstrate that Convolutional Neural Net-
works can provide accurate classifiers and proposed a concrete network topology.

Our results demonstrate that the proposed method is indeed well-suited for the task. 
It features low validation error rates in cross-validation and generalises equally well to 
independent data from a completely different facility. The achieved performance is in 
both cases on par with specifically trained human researchers following standard oper-
ating procedure, and achieves a better refinement than rule-based filtering. Moreover, 
our analysis shows that the inclusion of additional sequencing tracks for added context 
improves classification results by a considerable margin - while the improvement in per-
centage points is small due to the high overall accuracies in both cases, the error rate is 
cut by roughly a third.

A similar approach would likely be equally successful for the refinement of germline 
variants, which have recently been the subject of particularly active research in cancer 
biology ([86, 87]). Here, too, the recognition of technical artefacts presents a formi-
dable challenge [88]. The same methodology as presented in this work would allow a 
sequenced germline sample to be tensorised and evaluated by a neural network. In par-
ticular, it should be noted that the idea of including additional context tracks to handle 
library-specific artefacts translates analogously to this case, so that sequencing data of 
unrelated samples with the same library preparation would be added along the depth 
dimension.

The presented results demonstrate that the suggested method is well-suited for the 
problem and provides the functionality of reproducing results; this does not mean, how-
ever, that the concrete model we trained should be immediately applied in other settings. 
Instead, further research is urgently needed on how to proceed towards a unified auto-
mated system for variant refinement which can be reliably used by researchers across 
different facilities and disciplines.

The pipeline presented in this manuscript was evaluated only on data from leukae-
mia samples, for which we had access to the necessary information, such as ground 
truth about sequencing artefacts, library preparation etc. As such, a confirmation of our 
results on different cancer entities would be highly desirable. However, this lies outside 
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the scope of this manuscript, as the necessary metadata outlined above are typically 
missing from public datasets.

One important factor is that sequencing artefacts can be strongly affected by sample 
preparation, which differs between leukaemias and solid tumours. It is well-known that 
formalin fixation can cause a specific class of artefacts to arise [?,?,?], so that we firmly 
believe that it is an imperative to establish community standards for providing more 
comprehensive information about published sequencing data. This would greatly benefit 
not just the application of machine learning methods to sequencing data, but also trans-
parency and reproducibility in the field as a whole.

There are also other directions which warrant further investigation. One natural ave-
nue for extension would be the inclusion of indels, where repetitive sequences play a 
large role, so that we would once again expect a convolutional approach to do well. From 
a biological point of view, the most relevant follow-up would be a thorough investiga-
tion of the possible causes for library-specific sequencing artefacts; while they are rou-
tinely observed in practice, the authors are not aware of any comprehensive analysis of 
the underlying mechanisms.

To conclude, we have presented a method which can contribute to the standardisa-
tion of somatic variant calling and will benefit the research community by improving 
efficiency, reproducibility and interoperability. We hope that given time and data avail-
ability, tools such as this may become widely accepted in everyday research and clinical 
practice.
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