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Abstract 

Despite the availability of batch effect correcting algorithms (BECA), no comprehensive 
tool that combines batch correction and evaluation of the results exists for microbiome 
datasets. This work outlines the Microbiome Batch Effects Correction Suite develop-
ment that integrates several BECAs and evaluation metrics into a software package for 
the statistical computation framework R.
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Introduction
The emergence of unwanted variation in next-generation sequencing applications is a 
well-researched challenge. A particular form of unwanted technical variation are batch 
effects (BE) that potentially result from any distinct grouping of samples during the pro-
cessing steps. Hence, the introduced variability reflects the differences in, for example, 
the environmental conditions, batches of reagents, sequencing machines, or sample 
handling for corresponding batches [1, 2]. Consequently, unwanted variation can neg-
atively affect the downstream statistical analyses as it represents a confounding factor 
that can obscure or exacerbate the biological truth in a dataset [3]. The comprehensive 
scientific research into causes and strategies for preventing and correcting batch effects 
indicates this topic’s importance [4, 5]. While appropriate measures during the planning 
and execution of an experiment can limit the emergence and magnitude of batch effects, 
they are not entirely preventable and thus need to be accounted for before statistical 
analyses [6]. Despite the availability of batch effect correcting algorithms (BECA) and 
instructive guides on mitigating of BEs [4], no comprehensive tool that combines batch 
correction and evaluation of the results exists for microbiome datasets. This work intro-
duces the Microbiome Batch Effects Correction Suite (MBECS), which integrates several 
established BECAs and evaluation metrics into a software package for the R statistical 
computation framework.
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Features
The Microbiome Batch Effect Correction Suite is designed as a software toolbox that 
enables users to estimate the severity of batch effects, facilitates the utilization of dif-
ferent BECAs, and finally provides comparative metrics to evaluate the success of each 
method. To that end, the package offers a convenient 5-step workflow that produces a 
report to guide the user in selecting the optimal results for downstream analyses.

The software builds upon the phyloseq [7] package, which facilitates the intuitive 
import and export of existing microbiome datasets and enables the use of other count-
based datasets. The packages’ data object extends the phyloseq class with additional 
fields that store normalized and batch-corrected feature abundance tables. All opera-
tions are performed on this single data object that keeps track of the results, promoting 
tidy scripts and enabling MBECS comparative reporting.

The normalization methods implemented in MBECS are total-sum scaling (TSS) and 
centered log-ratio transformation (CLR) [8]. Available BECAs include established cor-
rection algorithms such as ComBat and Remove Batch Effects from the SVA package [9] 
and Remove Unwanted Variation 3 implemented in the RUV package [10]. Additionally, 
the package implements batch mean centering, Percentile Normalization, and Singular 
Value Decomposition as correction approaches [11].

Quantifying the variability in a dataset that can be attributed to batch effects is not 
trivial. A relative log expression (RLE) plot, for example, can indicate the presence of 
batch effects, yet it is not a suitable approach to determining whether or not they have 
been removed successfully by a correction algorithm [12]. Thus, the suite implements 
several distinct metrics to provide the user with comprehensive information to assess the 
severity of BEs before and after batch-correction procedures. Available methods include 
constructing linear models from recorded biological and batch factors to estimate the 
variability attributed to batch effects before and after the correction procedures. Further 
approaches implemented are partial redundancy analysis and principal variance compo-
nents analysis [13, 14]. Finally, the silhouette coefficient is a qualitative measure of the 
goodness of fit of samples to their respective biological groupings [15].

The packages’ native workflow depicted in Fig. 1 will create a preliminary report upon 
importing the dataset. This report summarizes the data concerning covariate informa-
tion, distribution of samples into biological groups and known batches, heatmaps, and 
box plots of the most variable features concerning the batch factor and relative log-
expression plots. The preliminary report also provides the metrics mentioned above to 
assess variability for the uncorrected data. The user can decide whether or not batch 
correction is required based on that account. The subsequent processing step allows 
the application of selected correction methods depending on the experimental design. 
Methods like RUV-3 specifically require technical replicates in different batches to work; 
Batch mean centering is only applicable to datasets that comprise two-factor biological 
groupings, i.e., case–control studies [10]. Therefore, it is up to the user which methods 
to use, and all the correction results are stored within the data object.

The third step constructs the post-correction report. This report provides compara-
tive analyses between uncorrected data and all the employed correction algorithms. 
The user can use these to evaluate the correction algorithms in terms of reduced 
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unwanted variability while preserving the biological variation that is investigated with 
the experimental design. An instructive manual for the package and examples of pre-
liminary and post-corrections reports are available as supplemental material accom-
panying the online article (Additional file 1, Additional file 2, Additional file 3).

Fig. 1  The MBECS processing pipeline comprises five main steps that provide users with the means 
to investigate potential batch effects and mitigate them before downstream statistical analyses: The 
preliminary report provides an overview of a data set to assess the presence and gravity of batch effects. 
The correction step can apply and store the output of various BECAs. The available correction methods are 
Remove Unwanted Variation 3 (ruv3), Batch Mean Centering (bmc), ComBat (bat), RemoveBatchEffects (rbe), 
Percentile Normalization (pn), and Singular Value Decomposition (svd). Several variance assessment methods, 
e.g., linear modeling, principal variance component analysis, and redundancy analysis are employed in the 
post-processing reports to produce a comparative qualitative analysis between the uncorrected data set 
and the selected BECAs. The export functionality allows extraction of the transformed or corrected counts in 
tabular or phyloseq formats to facilitate downstream statistical analyses



Page 4 of 5Olbrich et al. BMC Bioinformatics          (2023) 24:182 

Implementation
The Microbiome Batch Effect Correction Suite is available as a software package for 
the R programming framework at Bioconductor. The latest development version can 
be obtained from the GitHub repository.

Availability and requirements

Project name: MBECS Microbiome Batch Effect Correction Suite
Project home page: http://​www.​bioco​nduct​or.​org/​packa​ges/​relea​se/​bioc/​html/​MBECS.​
html
Operating system(s): Platform independent
Programming language: R (> = 4.1)
Other requirements: CRAN and Bioconductor packages (methods, magrittr, phyloseq, 
limma, lme4, lmerTest, pheatmap, rmarkdown, cluster, dplyr, ggplot2, gridExtra, ruv, 
sva, tibble, tidyr, vegan, stats, utils, Matrix)
License: Artistic-2.0
Any restrictions to use by non-academics: None

Supplementary Information
The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s12859-​023-​05252-w.

Additional file 1. Vignette.

Additional file 2. Preliminary report.

Additional file 3. Post-correction report.
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