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Abstract

Background: Atherosclerosis is the common pathological basis for many cardiovascu-
lar and cerebrovascular diseases. The purpose of this study is to identify the diagnostic
biomarkers related to atherosclerosis through machine learning algorithm.

Methods: Clinicopathological parameters and transcriptomics data were obtained
from 4 datasets (GSE21545, GSE20129, GSE43292, GSE100927). A nonnegative matrix
factorization algorithm was used to classify arteriosclerosis patients in GSE21545
dataset. Then, we identified prognosis-related differentially expressed genes (DEGs)
between the subtypes. Multiple machine learning methods to detect pivotal mark-
ers. Discrimination, calibration and clinical usefulness of the predicting model were
assessed using area under curve, calibration plot and decision curve analysis respec-
tively. The expression level of the feature genes was validated in GSE20129, GSE43292,
GSE100927.

Results: 2 molecular subtypes of atherosclerosis was identified, and 223 prognosis-
related DEGs between the 2 subtypes were identified. These genes are not only related
to epithelial cell proliferation, mitochondrial dysfunction, but also to immune related
pathways. Least absolute shrinkage and selection operator, random forest, support vec-
tor machine- recursive feature elimination show that IL17C and ACOXL were identified
as diagnostic markers of atherosclerosis. The prediction model displayed good dis-
crimination and good calibration. Decision curve analysis showed that this model was
clinically useful. Moreover, IL17C and ACOXL were verified in other 3 GEO datasets, and
also have good predictive performance.

Conclusion: IL.17C and ACOXL were diagnostic genes of atherosclerosis and associ-
ated with higher incidence of ischemic events.
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Background

Atherosclerosis (AS) is a chronic progressive inflammatory disease of blood vessels,
which involves physiological processes such as disorders of lipid metabolism, vascular
endothelial cell injury, inflammatory cell infiltration, and neo-capillary formation [1-3].
AS has no obvious symptoms in the early stage of the disease, and patients are mostly
aware of it because of other cardiovascular and cerebrovascular complications [4].
Although drugs are available to treat atherosclerosis, there are still many patients who
do not benefit from current drug therapy without significant effects or who are intoler-
ant to adverse effects [5]. The search for highly sensitive and specific biomarkers can
help reduce the morbidity and mortality of AS. However, current timely diagnostic bio-
markers for AS are very limited and not well suited for the early and accurate diagnosis
of AS. Therefore, it is important to find new diagnostic markers of AS for accurate diag-
nosis of AS.

Currently, the development of microarrays has led to extensive and in-depth analysis
of genome-wide mRNA expression profiles. With the rapid development of gene chips,
high-throughput sequencing, multi-omics analysis and other technologies, gene expres-
sion public databases are rapidly increasing. With the development and maturation of
bioinformatics, bioinformatics techniques are widely used to analyze large number of
expression profiling microarrays to find biomarkers related to disease diagnosis, treat-
ment and prognosis [6—8]. Machine learning has been widely used in finding markers
for disease diagnosis base on multi-omics analysis. Support vector machine (SVM), least
absolute shrinkage and selection operator (LASSO) regression and random forest (RF)
methods are 3 important techniques in machine learning [9-11]. Due to the three meth-
ods can identify the best classification feature factor and build a prediction model with
generalizability and high prediction accuracy. Xiong et al. screened 2 mRNAs as poten-
tial diagnostic biomarkers for abdominal aortic aneurysm using machine learning [12].

In this study, we used multiple machine learning methods analysis to analyze the
expression profile microarrays of AS, aiming to screen genes closely related to AS diag-
nosis and provide new genetic diagnostic markers for AS. We firstly identified 2 sub-
types of atherosclerosis by using nonnegative matrix factorization (NMF) algorithm in
GSE21545 dataset, and identified prognosis-related DEGs between the subtypes. After
that, we identified 2 potential diagnosis genes by using LASSO, RF, SVM-RFE methods
and developed a novel prediction model for AS diagnosis. We validated the model and
found that the novel prediction model achieved a high AUC in 3 validation AS cohort.

Materials and methods

Data collection and pre-processing

The gene expression profiles of human atherosclerosis samples and healthy control sam-
ples were obtained from array-based data available in the Gene Expression Omnibus
(GEO) database. The search strategy aimed to find published dataset which included a
three-step search strategy that was carried out from inception to July, 2022. An initial
limited search using the keywords: “Atherosclerosis’, “Atheromatosis’, “Homo sapiens’,
“Expression profiling by array” Dataset needs to meet the following points: (1) Homo

sapiens; (2) Atherosclerosis; (3) Sample size greater than 20 cases. Four microarray data
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sets (GSE21545 [13], GSE20129 [14], GSE43292 [15], GSE100927 [16]) were utilized in
our analysis (Additional file 1: Fig. S1). From the GSE21545 dataset, 126 AS samples were
included. From GSE20129, 71 control samples and 48 AS samples were included. From
GSE43292, the 32 control samples and 32 AS samples were included. From GSE100927,
35 control samples and 69 AS samples were included. The training set was obtained from
GSE21545, and the validation set was obtained from GSE20129, GSE43292, GSE100927.
The raw files from the four datasets were pre-processed and normalized using limma or
RMA-aftylmGUI in R Bioconductor.

Nonnegative matrix factorization (NMF) analysis in GSE21545

The R package “NMF” was performed to identify molecular subtypes based on the gene
expression profiles, and patients were classified for follow up studies. We used a NMF
algorithm to determine the number of clusters and their stability according to param-
eters such as cophenetic, dispersion, silhouette, and sparseness [17].

Identification of differentially expressed genes (DEGs) and prognosis genes

between subtypes

DEGs between subtypes were identified using the R package limma with screening crite-
ria of adjusted P value <0.05 [18]. Then, we performed univariate COX analysis to deter-
mine the prognostic value of each DEGs.

Functional and pathway enrichment analysis

To explore the biological functions mainly performed by DEGs and prognosis genes
between subtypes, we performed functional enrichment analysis using the "clusterPro-
filer" package, including GO and KEGG analysis. The screening criteria were P<0.05
and FDR <0.05 [19, 20].

Evaluation of immune infiltrating cells in AS

Based on the normalized gene expression data from the disease and control samples, the
web tool CIBERSORT (http://CIBERSORT.stanford.edu/) was used to calculate immune
cell infiltration and explore the disease immune microenvironment. The 22 immune cell
genes (LM22) were used as the reference set. The number of permutations set was 1000.
A Pvalue<0.05 in the CIBERSORT results was retained [21].

Machine learning methods

LASSO method, which is suitable for the reduction in high-dimensional data, was used
to select the optimal predictive features in risk factors from the patients with AS. Sup-
port vector machine-recursive feature elimination (SVM-RFE) approach is based on the
VC dimensional theory of statistical learning theory and the structural risk minimiza-
tion principle. Based on limited sample information, SVM-RFE seeks to find the best
compromise between the complexity of the model (the learning accuracy) and the learn-
ing ability. Random forest (RF) refers to a classifier that uses multiple trees to train and
predict samples. The three classifiable models’ overlapping genes were then figured out.


http://CIBERSORT.stanford.edu/
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Construction of AS diagnosis nomogram

We used the expression level of predictors by the R-package “rms” to construct the
nomogram and predict the risk of AS. Calibration curves were used to estimate the con-
sistency between predicted and actual diagnosis, and the performance of the model in
predicting diagnosis was evaluated by area under curve (AUC) [22].

Statistical methods

R software (4.1.2) was employed to carry out all statistical analysis and graph plotting.
Wilcoxon test was applied to analyze the differences between two groups. Kruskal—Wal-
lis test was used for comparison among more than two groups of samples. The Kaplan—
Meier method was used to plot survival curves for prognostic analysis, and the log-rank
test was used to determine the significance of differences. The correlation test was per-
formed using Spearman correlation analysis and distance correlation analysis. Com-
parisons of composition ratios among groups were performed by chi-square test. All
statistical P values were two-tailed, and P < 0.05 was used as the truncated value.

Results

Identification of molecular subtypes in AS

To explore the expression characteristics in AS, we qualitatively classified patients based
on the expression profiles. By NMF algorithm, a cluster number of 2 was the best choice
to classify the whole sample into C1 (n=46) and C2 (n=280) in GSE21545 dataset (Addi-
tional file 2: Fig. S2, Fig. 1A). Kaplan—Meier survival analysis indicated that patients with
RPMRs.cluster.A had a worse ischemic events ((HR 4.08, 95% CI 1.22-13.63, P=10.023,
Fig. 1B). To explore the potential biological change between distinct cluster, firstly, the
PCA demonstrated there is significant DEGs between the two clusters, and 223 prog-
nostic related DEGs were identified (Fig. 1C, Additional file 3: Table S1). Then, we
applied GO and KEGG enrichment analysis, which showed that C2 was significantly
enriched in immune-related pathways (mast cell activation, regulation of interferon-
gamma production, and IL-17 signaling pathway), epithelial cell proliferation (epithelial
cell proliferation, regulation of epithelial cell proliferation), mitochondrial dysfunction
(mitochondrial inner membrane), suggesting that C2 may play an important role in AS
development and immune regulation (Fig. 1D, E).

Immune infiltrating cell analysis between the two molecular subtypes

To further investigate the role of two cluster in immune infiltrating of AS, we used
CIBERSORT to explore the infiltration of various types of immune cells in AS sam-
ples. Figure 2A indicated the immune cell infiltration landscape and immune cell
score correlation results in different samples of the GSE21545 dataset, respectively.
Moreover, univariate Cox regression analysis was performed based on GSE21545
dataset, high immune cell score of eosinophils, mast cells activated, B cells memory
corelated with worse ischemic events in AS (Fig. 2B). In addition, we also evaluate
the association between molecular subtypes and immune cell subpopulations. The
results showed T cells CD8, T cells regulatory (Tregs), MO macrophages, and M1
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Fig. 1 The molecular subtypes categorization of AS base on expression profiles. (A) AS patients from
GSE21545 dataset were divided into sub-consensuses based on the gene transcriptional profiling using
NMF method. Consensus maps showed the correlation profiling of AS derived from two sub-consensuses.
(B) Kaplan-Meier curve showed a significant difference between the two clusters. (C) UMAP analysis for
the transcriptome profiles of C1 cluster and C2 cluster, showing a remarkable difference on transcriptome
between different group. (D) GO enrichment analysis, (E) KEGG enrichment analysis for prognostic related
DEGs

macrophages were more abundant in C2 cluster, while M2 macrophages was signifi-
cantly higher in C1 cluster (Fig. 2C). The above results suggest that C2 cluster had a
higher inflammatory environment, which leads to the progression of the disease.

Machine learning methods to detect diagnostic markers in AS

To further explore the risk gene features, we carried out the LASSO regression model
to screen out 33 potential predictors from 223 prognostic related DEGs (Fig. 3A, B,
Additional file 4: Table S2). To evaluate the discrimination of the prediction model,
the AUC of ROC was estimated. As shown in Fig. 3C, the prediction model achieved
a AUC of 0.930 (95% CI 0.887-0.973), which indicated good discrimination of the
model. Then, we carried out the SVM-RFE approach (k=10, halve.above =50) to
screen out 17 potential predictors from 223 prognostic related DEGs (Fig. 3D, E,
Additional file 5: Table S3). To evaluate the discrimination of the prediction model,
the AUC of ROC was estimated. As shown in Fig. 3F, the prediction model achieved
a AUC of 0.981 (95% CI 0.964-0.998), which indicated good discrimination of the
model. In addition, we carried out the RF approach (ntree =500) to screen out 3
potential predictors from 223 prognostic related DEGs (Fig. 3G, H, Additional file 6:
Table S4). To evaluate the discrimination of the prediction model, the AUC of ROC
was estimated. As shown in Fig. 31, the prediction model achieved a AUC of 0.997
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Fig. 2 Immune infiltrating cell analysis between the two molecular subtypes. (A) Correlation heat map

of immune infiltrating cell. The size of the colored squares represents the strength of the correlation; blue
represents a negative correlation, and red represents a positive correlation. The darker the color is, the
stronger correlation is. (B) Forest plots showing the results of the univariate Cox regression between immune
infiltrating cell and ischemic events in AS. (C) The abundance of each immune infiltrating cell in two clusters.
The upper and lower ends of the boxes represented the interquartile range of values. The lines in the boxes
represented median value, and black dots showed outliers. (*P <0.05; ** P<0.01; *** P<0.001; **** P<0.0001)

(95% CI 0.992-1.000), which indicated good discrimination of the model. The above
results show that the three machine learning methods have good performance in

identifying diagnostic markers.

IL17C and ACOXL were identified as diagnostic biomarkers for AS

To further explore the diagnostic biomarkers for AS, the three classifiable models’ over-
lapping genes were figured out (Fig. 4A). These genes included IL17C and ACOXL. Next,
we compared the expression of IL17C and ACOXL in two molecular subtypes, of which
the expression level of IL17C and ACOXL were significantly higher in C2 cluster than in
C1 cluster (Fig. 4B, E). To evaluate the discrimination of the diagnostic biomarkers, the
AUC of ROC was estimated. The IL17C achieved a AUC of 0.917 (95% CI 0.865-0.968)
(Fig. 4C) and the ACOXL achieved a AUC of 0.899 (95% CI 0.842-0.955) (Fig. 4F),
which indicated good discrimination of the diagnostic biomarkers. Next, Kaplan—
Meier survival analysis was performed based on GSE21545 dataset, high expression of
IL17C coorelated with worse ischemic events ((HR 2.43, 95% CI 1.05-5.64, P=0.039,
Fig. 4D), high expression of ACOXL coorelated with worse ischemic events (HR 2.68,
95% CI 1.12-6.43, P=0.027, Fig. 4G). Then, we applied KEGG enrichment analysis,
which showed that high expression IL17C was significantly enriched in immune-related
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Fig. 3 Machine learning methods to detect diagnostic markers in AS. (A) Fine-tuning the least absolute
shrinkage and selection operator (LASSO) model’s feature selection. (B) LASSO regression was used to
narrow down the prognostic related DEGs, resulting in the discovery of 33 variables as potential markers

for AS. The ordinate represents the value of the coefficient, the lower abscissa represents log (A), and the
upper abscissa represents the current number of non-zero coefficients in the model. (C) ROC curves were
constructed to assess the diagnostic accuracy of the LASSO model. (D, E) A plot illustrating the process of
selecting biomarkers using the SYM-RFE technique. The SVM-RFE technique was used to identify a subset of
17 characteristics from the prognostic related DEGs. (F) ROC curves were constructed to assess the diagnostic
accuracy of the SYM-RFE model. (G) The Gini coefficient method's results in a random forest classifier. The
x-axis displays the genetic variable, and the y-axis the significance index. (H) The effect of the decision tree
number on the error rate. The x-axis denotes the number of decision trees, while the y-axis shows the error
rate. (I) ROC curves were constructed to assess the diagnostic accuracy of the RF model

pathways (B cell receptor signaling pathway, T cell receptor signaling pathway), meta-
bolic pathways (citrate cycle TCA cycle, gylcosylphosphatidylinositol GPI anchor bio-
synthsis, sphingolipid metabolism), high expression ACOXL was significantly enriched
in metabolic pathways (linoleic acid metabolism, alpha linolenic acid metabolism)

(Fig. 4H, I).

Relationship between diagnostic biomarkers and immune cells
Next, we investigate the role of diagnostic biomarkers in immune infiltrating of AS

(Fig. 5A, G). The results showed the expression of ACOXL was positively correlated

Page 7 of 14



Rao et al. BMC Bioinformatics 2023, 24(1):196

D
10
5 7 10 - Low
H 08 o
1 _ Zos
5 z H
g £ 5
3 Eos
2 © z .g 08
H H s
® G 04 T o4
s @ g
2 oz e @ 02
e HR =243 (1.05-5.64)
CI: 0.865-0.968. 0.04_P=00%
c1 c2 00 02 04 06 08 10 0 1000 2000 3000
Group 1-Specifcity (FPR) Time (days)
Low 68 40 12 [
High 58 45 10 0
E
10
s 10 —+ Low
@ High
14 os Zos
- z £
x 3 o
H £ o 2
z goe
5 : 5
:
= 3 s
o
< 02 @ 02
] HR =268 (1.12-6.43)
CI: 0.842-0.955 | 027
ci ¢ 00 02 04 06 08 10 o 1000 2000 3000
Group 1-Specificity (FPR) Time (days)
Low 66 40 12 0
High 60 45 10 0
H w17e, 1 ACOXL
KEGG LNOLEIC ACID METABOLISH

o
G_PS3 SIGNALING PATHWAY- xece PR ONSEENC AR IERBSLSH

RS METABGLISM, O P30
KEGG_GLYCOSYLPHOSPRATIRLNOGTOL CoL AMCHOR, SIOSNTRESI:

ke
KEGS BASA TRANSCRIPTION FACTORS
e

TR TRARaLCHON
AN

KEGE,NON. HOMOLOGOUS_ END JONING:
KESS ApoP

e
SEve s
oAy, oy o KEGG_ARRHYTHMOGENIC_RIGHT AR CARDONYORRTY

ese m}emz&w FrroUae el
S PENTOSE PHoswAvrmnwAv

o =
xeoo e S B R = g o, SO
e SR L
R e Ao A B = Teliet
o = e sumo s e g SR B
e oy o S ST = o St
Rl = oo R
e A B R = e e
€ — W oo 3 KEGS GRAFT VERSUS HOST DSEASE o
5 O3 = = E RS
e pia = PR .
o e A al o orclEis
R e v
SR AT veso 7 ool BECE I P B
oo s, ool SR B

K OTEASOME
KEGG_B_CELL RECEPTOR s:stNG B
KEGG SPHNGOLIPID 1
g aRs
KEG0_TouL e REcesToR S BTsAY
R OPOIET e G L AL
KEGe NoOTNATE S KIS AAIDE METABGL
KEGG_GLYCOSPHNGOLIPB BIOSVATHESTS LACIE RO NEOLACTD SERIES
IGNAL Y

- G
KEGG DRUG METABOLISM CYTOCHROVE
Keae_clveosercoLpi SOEVAIRESE TICTE R REGUETS ssmss
e ROy Gy Brlcret 6 e
S8 AHA LIsOTENC et AR
TGRY. TRANSOUCTION
eSS OB MERESTM

KEGG_OTHER GLYCAN, DEGHADATION-

tvalve of GSVA score

tvaloe of GSVA score

Fig. 4 Diagnostic indicators for AS screening. (A) Venn diagram showing overlapping markers. (B) The
illustration shows the expression distribution of IL17C between C2 cluster (red) and C1 cluster (blue). (C) ROC
curves were constructed to assess the diagnostic accuracy of the IL17C. (D) Kaplan-Meier curve showed a
significant difference between the high and low IL17C exprseeion. (E) The illustration shows the expression
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to assess the diagnostic accuracy of the ACOXL. (G) Kaplan—Meier curve showed a significant difference
between the high and low ACOXL exprseeion. (H) KEGG enrichment analysis for IL17C. (1) KEGG enrichment

analysis for ACOXL

with macrophages M1 (r=0.27, P=0.002), monocytes (r=0.20, P=0.027), T cells CD8
(r=0.40, P<0.001), T cells regulatory (Tregs) (r=0.22, P=0.012), and negatively cor-
related with T cells CD4 naive (r=-0.25, P=0.004) (Fig. 5B—F). The expression of IL17C
was positively correlated with dendritic cells resting (r=0.19, P=0.031), macrophages
M1 (r=0.24, P=0.008), T cells CD8 (r=0.57, P<0.001), and T cells regulatory (Tregs)

(r=0.31, P<0.001) (Fig. 5H-K).

Construction of AS diagnosis nomogram

Next, we developed a diagnosis model of AS. The model that incorporated the above
independent predictors was developed and presented as the nomogram (Fig. 6A). The
calibration curve of the AS diagnosis nomogram for the prediction of AS risk dem-
onstrated good agreement in this cohort (Fig. 6B). The decision curve analysis for the
nomogram was presented in Fig. 6C, D. The decision curve showed that if the threshold
probability of a patient and a doctor is>1 and < 96%, respectively, using this nomogram
to predict AS risk adds more benefit than the scheme.
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Fig. 5 Relationship between diagnostic biomarkers and immune cells. (A) Correlation between 22 kinds

of immune cells and ACOXL. The size of the colored squares indicates the connection’s strength. (B-F)
Correlation between macrophages M1, monocytes, T cells CD8, T cells regulatory, T cells CD4 naive and
ACOXL. (G) Correlation between 22 kinds of immune cells and IL17C. The size of the colored squares indicates
the connection’s strength. (H-K) Correlation between dendritic cells resting, macrophages M1, T cells CD8, T
cells regulatory (Tregs) and IL17C

IL17C and ACOXL were a robust diagnostic biomarkers for AS in GSE20129, GSE43292,

and GSE100927 datasets

Consistent with this finding, increased mRNA expression of IL17C and ACOXL
were observed in atherosclerosis compared with that in normal in GSE20129 data-
sets (Fig. 7A, C). The IL17C achieved a AUC of 0.892 (95% CI 0.833-0.950) (Fig. 7B)
and the ACOXL achieved a AUC of 0.750 (95% CI 0.661-0.838) (Fig. 7D), which indi-
cated good discrimination of the diagnostic biomarkers. Moreover, we compared
the expression of IL17C and ACOXL in GSE43292 dataset, of which the expression
level of IL17C and ACOXL were significantly higher in AS than in the normal tis-
sues (Fig. 7E, G). ROC curves with AUC values was 0.852 (95% CI 0.759-0.944) for
IL17C, 0.925 (95% CI 0.865-0.984) for ACOXL (Fig. 7F, H). In addition, we compared
the expression of IL17C and ACOXL in GSE100927 dataset, of which the expression
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level of IL17C and ACOXL were significantly higher in AS than in the normal tissues
(Fig. 71, K). ROC curves with AUC values was 0.818 (95% CI 0.736-0.899) for IL17C,
0.803 (95% CI 0.719-0.887) for ACOXL (Fig. 7], L). The above results suggest that
IL17C and ACOXL were a robust diagnostic biomarkers for AS.

Discussion

In this study, we identified two molecular subtypes based on the expression profiles, with
C2 cluster showing a worse ischemic events. In addition, mRNA transcriptome differen-
tial expression genes between distinct cluster were closely related to biological processes
such as immune-related pathways, epithelial cell proliferation pathways, and mitochon-
drial dysfunction pathways. In addition, C2 cluster had a higher T cells CD8, T cells reg-
ulatory (Tregs), MO macrophages, and M1 macrophages, and lower M2 macrophages.

The immune system is one of the major regulatory systems in the development and
progression of atherosclerosis [23]. In the early stages of atherosclerosis, low-den-
sity lipoprotein (LDL) is retained in the intima and is modified by oxidases, lipolytic
enzymes, protein hydrolases and reactive oxygen species to form a variety of risk-related
molecular patterns, thereby acquiring immunogenicity [24]. Inmunogenic LDL activates
vascular endothelial cells, which chemotacticize various immune cells into the vessel
wall, mainly monocytes and T cells [25]. Histological analysis of human atherosclerotic
plaques showed that M1 macrophages were mainly distributed in the lipid core, whereas
M2 macrophages were mainly distributed in the plaque region away from the lipid core
[26]. In vitro mouse experiments showed that M1 macrophages promote plaque inflam-
mation, while M2 macrophages promote plaque inflammation regression [27]. We found
C2 cluster had a higher MO macrophages, and M1 macrophages, and loewer M2 mac-
rophages, suggesting C2 cluster had a higher inflammatory environment, which leads to
the progression of the disease.

CD4+T cells receive antigens presented by antigen-presenting cells and differentiate
into different Th cells (Th1, Th2, Th9, Th17, Th22, Tth) and Treg cells through immune
responses, whose role in atherosclerosis is multifaceted. Secretion of IFN-y by Th1 cells
affects macrophage polarization by inhibiting VSMC proliferation, thereby inhibiting
plaque stability [28]. In addition to IFN-y, Thl cells secrete IL-2, IL-3, tumor necro-
sis factor, and lymphotoxin, all of which activate macrophages, T cells, and other cells
within the plaque, thereby accelerating the inflammatory response [29]. At the same
time, CD8+ T cells act on VSMC and release some inflammatory factors that make the
atherosclerotic plaque unstable as well as aggravate the inflammatory response [30].

Wang et al. showed that CD68 (AUC=0.80), PAM (AUC=0.79), and IGFBP6
(AUC=0.81) could be used as diagnostic markers to identify unstable plaques effectively
by using LASSO and RF [31]. Xu et al. showed that CIQA (AUC=0.83) and ITGB2
(AUC=0.83) could be used as diagnostic markers to identify unstable plaques effectively
by using LASSO [32]. In this study, multiple machine learning methods (LASSO, RE,
SVM-RFE) identified IL17C (AUC =0.92) and ACOXL (AUC =0.90) as novel diagnostic
biomarkers for atherosclerosis, and verified in other datasets.

Interleukin-17C (IL-17C) is one of the important members of the IL-17 cytokine fam-
ily, which can be secreted by many types of cells or produced by the stimulation of path-
ogenic factors. IL-17C is mainly expressed in the mucosal surface of the gastrointestinal
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and respiratory tracts as well as the skin barrier. In the gastrointestinal tract, IL-17C is
secreted by enteroendocrine cells and cupped cells. In the skin, it is mainly expressed by
keratinocytes, monocytes and endothelial cells [33, 34]. In this present study, the expres-
sion level of IL17C was significantly higher in AS than in the normal tissues, which was
consistent with previous findings. IL-17C exerts a proatherogenic effect by recruiting
Th17 cells to atherosclerotic plaques [35].

Acyl coenzyme A oxidase like gene is a member of the acyl coenzyme A oxidase fam-
ily. Paul et al. found that in mammals ACOXL is actively expressed at the transcriptome
level, and that ACOXL is specifically expressed in the lung. ACOXL has a dehydroge-
nase activity of acyl coenzyme A and also catalyzes an important step in the p-oxidation
pathway involving the oxidation of long-chain fatty acids [36]. Gillian et al. identified
ACOXL as a biomarker for the diagnosis of prostate cancer through transcriptomics and
antibody analysis of the human prostate-specific proteome [37]. In this study, we found
ACOXL can be used a diagnostic biomarkers for AS, and metabolic pathways play an
important role in AS disease progression. Metabolic intermediates or oxidation products
produced during metabolism, such as oxidized LDL, ceramide, TMAO, and cholesterol
crystals, can also be recognized by macrophages and cause activation of inflammatory
pathways in the body, thus further aggravating the inflammatory response of the vascu-
lature [38].

There are some limitations of our study. Although our analysis was based on a large
sample, these cases were obtained retrospectively, and selection bias in the dataset
may also affect the accuracy of the results. Large-scale prospective studies and in vivo,
in vitro mechanistic studies are still needed to further confirm our results. In addition,
some important clinical variables such as age, gender, and therapy information are miss-
ing in most of the datasets, we also need to combine more clinical characteristics to
improve the prediction accuracy.

Conclusions

In conclusion, we identified IL17C and ACOXL were diagnostic genes of atherosclerosis
and associated with higher incidence of ischemic events. These findings may provide a
new strong scientific basis for the diagnosis and treatment of atherosclerotic.
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