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Introduction
Cardiovascular disease (CVD) is characterized by high morbidity and high mortal-
ity, which continues to plague human beings [1–3]. Data released by the World Health 
Organization shows that CVD causes more deaths each year than any other cause of 
death. Around 17.9 million people worldwide died of CVD in 2016, accounting for 31% 
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by utilizing CVD risk factors and general EMRs text, which adopts the attention mecha-
nism of a deep neural network to fuse the character sequence and CVD risk factors 
contained in EMRs text. The experimental results show that the proposed method 
can significantly improve the prediction performance of CVD, and the F-score reaches 
0.9586, which outperforms the existing related methods.

Conclusions:  RFAB focuses on the key information in EMR that leads to CVD, that 
is, 12 risk factors. In the stage of risk factor identification and extraction, risk factors 
are labeled with category information and time attribute information by BiLSTM-CRF 
model. In the stage of CVD prediction, the information contained in risk factors and 
their labels is fused with the information of character sequence in EMR to predict CVD. 
RFAB makes well use of the fine-grained information contained in EMR, and also pro-
vides a reliable idea for predicting CVD.

Keywords:  Chinese electronic medical record, CVD risk factors extraction, CVD 
prediction, Attention mechanism, Information fusion

Open Access

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third 
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​
creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​mmons.​org/​publi​
cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

RESEARCH

Qiu et al. BMC Bioinformatics          (2022) 23:425  
https://doi.org/10.1186/s12859-022-04963-w

BMC Bioinformatics

*Correspondence:   
chengkun_wu@nudt.edu.cn; 
zzc@nwnu.edu.cn

1 Institute for Quantum 
Information and State Key 
Laboratory of High Performance 
Computing, College of Computer 
Science and Technology, 
National University of Defense 
Technology, 109 Deya Road, 
Changsha 410073, People’s 
Republic of China
2 College of Computer Science 
and Engineering, Northwest 
Normal University, 967 Anning 
East Road, Lanzhou 730070, 
People’s Republic of China
3 College of Computer, 
National University of Defense 
Technology, 109 Deya Road, 
Changsha 410073, People’s 
Republic of China
4 National Supercomputer Center 
in Tianjin, 10 Xinhuan West Road, 
Tianjin 300457, People’s Republic 
of China

http://orcid.org/0000-0002-9688-5311
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-022-04963-w&domain=pdf


Page 2 of 15Qiu et al. BMC Bioinformatics          (2022) 23:425 

of all deaths. According to the report of the China National CVD Research Center in 
2018, the mortality rate caused by CVD ranked first in 2016, higher than cancer and 
other diseases, and the number of patients reached 290 million. CVD, as a chronic dis-
ease, does not obviously show corresponding characteristics in its hidden period of daily 
life. What worries us is that once its symptoms are manifested, the life safety of patients 
will be affected. Therefore, we hope to help clinicians achieve timely and rapid diagno-
ses by analyzing the electronic medical records (EMRs) of patients during daily physical 
examinations.

CVD has become an important public health problem in China, and the need for cop-
ing strategies is imminent. From a realistic point of view, the effective information we 
can get about CVD in our daily life is limited. Fortunately, more and more hospitals 
in China have established standard EMR systems in recent years, which makes a large 
number of patients’ cases systematically recorded. With the rise of deep learning, the 
application based on the increasing EMRs has been continuously explored in the medi-
cal field [4, 5]. In particular, several studies have been conducted to predict the risk of 
CVD with the aim of targeting the attribute of high mortality due to CVD [6].

EMR can proactively make judgments based on the information and knowledge they 
have mastered, make timely and accurate prompts when individual health status needs 
to be adjusted, and provide optimal solutions and implementation plans. The EMR of 
patients with CVD contains accurate pathogenesis information. However, when we 
focused on the specific content of the EMR, it was found that it contained more infor-
mation that was not very relevant to CVD. The information mainly involves the basic 
condition of the patient’s body or the declarative dialogue between the doctor and the 
patient. Moreover, when the information about possible CVD in a medical record text 
accounts for a small proportion, it will become difficult to effectively discover and utilize 
this information.

For the deep learning-based neural network model, these complicated sequential 
information not only reduces its attention to the information that may induce CVD, but 
also has a high possibility to reverse its prediction results. Huang et al. [7] have proposed 
to avoid redundant information in the text by allowing the model to have skip learning 
sequence information. Therefore, we intend to extract the necessary information from 
the EMR text by using the well-developed named entity recognition model. The key 
information considered, including 12 risk factors, is shown in Table 1. We can extract 
the risk factors and their attribute labels that may lead to CVD in the text of EMRs as 
the research objects of the experiment. However, although the training efficiency of 
the model can be improved based on the risk factor, the performance of the model is 
degraded. From the experimental analysis, we have realized that simply using relatively 
independent risk factors as a model to obtain knowledge sources is too single, which 
means that the contextual information of EMR texts is also indispensable. In response 
to this situation, we propose the risk factor attention-based (RFAB) Model, a two-layer 
architecture to model risk factors and the context of EMRs and fuse the information. We 
use the bi-directional long short-term memory (BiLSTM) as the encoder and decoder in 
the attention mechanism. BiLSTM can extract the information from the original EMRs 
so that our model can fully consider the global information in the EMRs of patients. 
For example, enhancing the information correlation between “hypertension” above and 
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“controlling blood pressure” below is beneficial to the predictive performance of the 
model. At the same time, in the prediction model, we take the risk factors as the input 
of the attention mechanism decoder. In this way, the attention of the neural network can 
be focused on the vital information of risk factors leading to CVD. Experimental results 
show that the F-score reaches 0.9586, which fully demonstrates the effectiveness of our 
proposed method and network architecture. In summary, our contribution is four-fold, 
leading to the following conclusions:

•	 We no longer simply utilize the entire EMR as in previous related works, but use the 
12 risk factors proposed by Su et al. [8] instead. This can well avoid the interference 
of a large amount of redundant information in EMRs on CVD prediction.

•	 The RFAB we propose contains two phases, first identifying risk factors, then pre-
dicting CVD based on the original EMR and risk factors, providing a meaningful and 
referential method for related predictive tasks.

•	 Our method does not simply predict CVD through risk factors. Through BiLSTM-
CRF identification, not only the risk factors themselves are extracted, but also their 
corresponding tags with category information and time attribute information, which 
can consider more comprehensive information for prediction tasks.

•	 We use the character information of the original EMR text as the input of the 
encoder in the RFAB, the risk factor and its label as the decoder. The above two types 
of information are fused by the attention mechanism. This makes the predictive task 
focus on risk factors, and it can also take into account context information in the 
original EMR.

Methodology
The purpose of this paper is to focus on the risk factors in EMRs and to predict whether 
an individual suffers from CVD by machine learning methods. And the experiment is 
mainly divided into three stages: preprocessing the dataset, identification and extraction 

Table 1  Attributes of CVD

No. Attributes Description

1. Overweight/Obesity (O2) A diagnosis of patient overweight or obesity

2. Hypertension A diagnosis or history of hypertension

3. Diabetes A diagnosis or a history of diabetes

4. Dyslipidemia A diagnosis of dyslipidemia, hyperlipidemia or a history of 
hyperlipidemia

5. Chronic kidney disease (CKD) A diagnosis of CKD

6. Atherosis A diagnosis of atherosclerosis or atherosclerotic plaque

7. Obstructive sleep apnea syndrome (OSAS) A diagnosis of OSAS

8. Smoking Smoking or a patient history of smoking

9. Alcohol abuse (A2) Alcohol abuse

10. Family history of CVD (FHCVD) Patient has a family history of CVD or has a first-degree relative 
(parents, siblings, or children) who has a history of CVD

11. Age The age of the patient

12. Gender The gender of patient
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of risk factors, and prediction of CVD. In the data preprocessing stage, there are some 
missing and duplicate data in a few EMR texts, so we have carried out data cleaning and 
interpolation. In the stage of identifying risk factors, we use named entity recognition 
technology that has been widely used in industry or scientific research. The purpose is 
to accurately and effectively identify and extract the risk factors and their categories and 
time attributes in the EMRs. When we compare the recognition performance of CRF 
and BiLSTM-CRF, both perform well, but the latter performs better in experiments. We 
have analyzed the reasons in the following two aspects: On the one hand, there are many 
repetitions of the 12 risk factors in the EMR. On the other hand, BiLSTM is good at cap-
turing the contextual information of text sequences, which is beneficial to identify the 
boundaries of entities. In the CVD prediction stage, we used the neural network model 
(RFAB) proposed in this paper. We present the main flow described above in Fig. 1.

Technical details of BiLSTM‑CRF model

As shown in Fig. 2, BiLSTM-CRF identifies risk factors from EMRs with the BIO (Begin, 
Inside, Outside) annotation scheme [9]. The labels “HyC” and “HyD” in the figure both rep-
resent risk factors for hypertension. Their temporal attributes are, respectively, that they 
have been with the patient (Continue) and during the patient’s medical treatment (During). 
In the input layer, we determine the embedding of each input character by looking up the 

Fig. 1  The main process of CVD prediction
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dictionary, expressed as Q = (q1, . . . , qk−3, . . . , qk) . The character embeddings we pre-
trained by the Skip-gram model [10] contain information about the words before and after 
it, that is, contextual information.

The model identifies risk factors by predicting the label corresponding to each char-
acter. A sequence of length n is inputted to the model, and the embedding layer maps 
characters one by one to a vector, i.e., X = (x1, . . . , xt , . . . , xn) . Then, it is fed to the BiL-
STM layer to continue encoding, and the forward and backward LSTM respectively 
calculate the corresponding sequence representation 

→

ht and 
←

ht for each character t. As 
in the LSTM memory cell implemented by Lample et al. [11], the representation of the 
character t has left and right contextual information, i.e., ht = [

→

ht;
←

ht ].
Then, the eigenvalues are zero-averaged by the activation function tanh, which to cal-

culate the confidence score of the labels that each character t may correspond to.

where the weight matrix We is the parameter to be learned in training.
Finally, the feature information is decoded at the CRF layer, and the best labels for 

characters are predicted. The tth column of score matrix P is outputted by the network 
correspond to the vector et calculated by Eq. (1), where the element Pi,j is the score of 
the jth tag of ith character in the sequence. We introduce a transition probability matrix 
T that can utilize previous annotation information when tagging the current position. 
Tyi ,yi+1 represents the probability when tag yi moves to tag yi+1 . The optimal tags of the 
sequence y = (y1, . . . , yt , . . . , yn) are obtained by solving the maximum value of Eq. (2):

where the transition probability matrix will be used as a parameter of the model for 
training. Then, we use the softmax function to generate the conditional probability of 
path y by normalizing the scores above over all possible tag paths ỹ:

(1)et = tanh(Weht),

(2)s(X , y) =

N

i=0

(Tyi ,yi+1 + Pi,yi),

(3)p(y|X) =
es(X ,y)∑
ỹ e

s(X , ỹ)
,

Fig. 2  The architecture of BiLSTM-CRF model
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In the training process, the model predicts the best label path to obtain the highest score 
by computing the log probability of maximizing the correct label sequence from Eq. (4):

The Viterbi algorithm [12] is utilized as the dynamic programming algorithm to obtain 
the optimal tagging path.

Technical details of RFAB model

As shown in Fig. 3, the purpose of our work is to comprehensively model EMRs text by 
using the characteristics of text content and risk factors in EMRs text, thus further real-
izing CVD prediction task. Generally speaking, RFAB consists of four parts: input layer, 
embedding layer, presentation layer, and prediction layer. The details are as follows.

Input Layer mainly tackles the problem of Feature Acquisition of the input EMR 
text and the input risk factors. For a Chinese raw text T, it contains m characters, i.e., 
C = {c1, c2, . . . , cm} , where each character ci(1 ≤ i ≤ m) is an independent item. Mean-
while, T contains n risk factor words W = {w1,w2, . . . ,wn} , this is T ′ . Since a word can 
often be divided into several characters, it is obvious that n ≤ m . Thus, the length of C is 
equal to EC , and the length of W is equal to EF , i.e., |C| =

∣∣EC
∣∣ , |W | =

∣∣EF
∣∣.

Embedding Layer aims to represent each item from Input Layer in a continuous 
space. It accepts the characteristics of two parts of content (i.e., EC , EF ) and outputs 
two embedding matrices by looking up embedding dictionary. For risk factors, we add 
each character-level embedding vector matched by the word correspondence, and then 
average to obtain the embedding vector corresponding to risk factors. As mentioned 
before, the lengths of the two-item features satisfy |C| =

∣∣EC
∣∣ and |W | =

∣∣EF
∣∣ . To sim-

plify the problem, we set the vector dimension of each of them to the same size D. Thus, 
a EMR text can be represented by two vector sequences, i.e., EC = {ec1, e

c
2, . . . , e

c
m} , 

EF = {e
f
1, e

f
2, . . . , e

f
n} . Exactly, these two vector sequences are also four embedding matri-

ces, i.e., EC ∈ Rm×D and EF ∈ Rn×D.
Representation Layer aims to generate a comprehensive representation of input 

EMR text by combining the context and risk factors information together. Corre-
sponding to the property of character sharing, the recurrent structure of LSTM nat-
urally processes words and characters one by one, which memorizes the characters 
or words that have already appeared [13]. In view of this advantage, we utilize an 

(4)argỹmax s(X , ỹ).

Fig. 3  The architecture of RFAB model
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implementation of LSTM proposed by [14] and apply the bidirectional setting (i.e., 
BiLSTM) to capture both the forward and backward context information. Formally, 
given a specific feature embedding sequence of a sentence s = {x1, x2, . . . , xN } , the 
hidden vector of a BLSTM is calculated as follows:

where 
−→
ht  and 

←−
ht  is the forward hidden vector and backward hidden vector respectively 

at the tth step in the BiLSTM. And yt is the hidden output of each BiLSTM at the tth 
step, which is the concatenation of 

−→
ht  and 

←−
ht .

As shown in Fig.  3, there are two serialized BiLSTMs in the representation layer 
(i.e., BiLSTMc + BiLSTMf  ). In BiLSTMc , the values of their initial hidden states are 
set to zero. Meanwhile, BiLSTMf  receives the last hidden states of BiLSTMc as input, 
which allows the context information of characters can be further combined with the 
information of risk factors.

Additionally, to assign important weights to certain risk factors thus model the risk 
factor sharing property when integrating information, we design an attention mecha-
nism which can capture the interrelations between risk factors and their correspond-
ing Specific EMRs content. Everytime BiLSTMf  receives a vector embedding of a risk 
factor (i.e., efi  ), each ycǫ ∈ Y c = {yc1, y

c
2, . . . , y

c
m} will conduct the dot product operation 

with efi  . Thus, the attention vector α′ for efi  is obtained as follows:

where α′
ǫ denote the ǫ th weight of a risk factor, and f (a, b) denotes the dot product func-

tion. But before the weighted sum operation, we need to normalize these weights using 
the softmax function, i.e., αi is obtained as follows:

then the vector embedding of rfi  will be modified as:

where ycǫ denotes the ǫ th item of Y c . After the attention operation (i.e., atti in Fig. 3), ẽf  
have fused the weight information of risk factors. Then, BiLSTMf  will further learn the 
contextual information of ẽf  through the calculations described in Eq. (5).

Prediction Layer As a result, we take the final hidden layer states of BiLSTMf  (i.e., 
yo ) as the final output, and redefine it as Z ∈ RD . Here, Z is exactly the ultimate rep-
resentation of input EMR text T. After that, we feed Z into a fully-connected neural 
network to get an output vector O ∈ RK  (K is the number of classes, i.e., K = |U |):

(5)

−→
ht = LSTM

(−−→
ht−1, xt

)
,

←−
ht = LSTM

(←−−
ht−1, xt

)
,

yt =

[−→
ht ,

←−
ht

]
,

(6)α′ =
[
α′
1, ..,α

′
i , . . . ,α

′
n

]
,α′

i = f
(
ycǫ , e

f
i

)
, 1 ≤ ǫ ≤ m, 1 ≤ i ≤ n,

(7)αi =
exp

(
α′
n

)
∑n

i=1 exp
(
α′
i

) ,where
n∑

1

αi = 1,

(8)ẽf =

n∑

i=1

αiy
c
ǫ ,
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where W ∈ RD×K  is the weight matrix for dimension transformation, and sigmoid(·) is a 
non-linear activation function. Finally, we apply a softmax layer to map each value in O 
to conditional probability and realize the prediction as follows:

Model Training Since what we are trying to solve is a prediction task, we follow the work 
in [15] to apply the cross-entropy loss function to train our model, and the goal is to 
minimize the following Loss:

where T is the input EMR text, Corpus denotes the training corpus and K is the number 
of classes. In the training process, we apply Adagrad as optimizer to update the param-
eters of RFAB, including W and all parameters (weights and biases) in each BiLSTM. 
To avoid the overfitting problem, we apply the dropout mechanism at the end of the 
embedding layer.

Results
Dataset and evaluation metrics

The corpus involved in the experiment mainly consists of two parts: about 800,000 
unlabeled EMRs and 1186 systematically labeled EMRs. The unlabeled corpus comes 
from the internal medicine department of a hospital in Gansu Province, and is mainly 
used for training and generating character-level embeddings required in the experi-
ment process. As shown in Fig. 4, we add a risk factor dictionary during character-
level embedding training. This can make the character-level embeddings trained by 
the skip-gram model in word2vec more relevant. Another corpus comes from the 
Network Intelligence Research Laboratory of Language Technology Research Center, 
School of Computer Science, Harbin Institute of Technology, which is mainly used 
to train the CVD prediction models. This corpus intends to be used to develop a risk 

(9)O = sigmoid(Z ×W ),

(10)P = argmax
(
softmax(O)

)
,

(11)Loss = −
∑

T∈Corpus

K∑

i=1

pi(T )logpi(T ).

Fig. 4  Generate the character embedding for experiments
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factor information extraction system that, in turn, can be applied as a foundation for 
the further study of the progress of risk factors and CVD [8].

For EMRs used for CVD prediction, we need to label them as whether CVD is con-
firmed or not. The basis used comes from the following three parts: the first part, 
mainly based on the diagnosis results of clinicians in the EMR; the second part, based 
on the specific definition of CVD by the World Health Organization [16]; the third 
part, according to the first (Symptoms) and the third (Diseases) chapters of “Clinical 
Practical Cardiology”, an authoritative textbook for training clinicians in China, the 
exposition of CVD [17]. In the above three parts, the second and third parts are sup-
plementary confirmations to the first part.

It is based on the 12 risk factors included in EMRs and their labels with category 
and time attributes to predict CVD, rather than directly based on the sequence infor-
mation of the text of EMRs. As well as the statistics of the number of risk factors as 
shown in Table 2, each EMR contains multiple risk factors. From this perspective, as 
long as the ratio of positive and negative datasets is not seriously out of balance, we 
no longer suffer from the relatively small number of datasets due to the inaccessibil-
ity and legal utilization of EMRs. For the time attribute, four main types are consid-
ered in the dataset: always accompanying the patient (Continue); during the patient’s 
medical treatment (During); after the patient’s medical treatment (After); before the 
patient’s medical treatment (After). Since the Age and Gender of the risk factors do 
not have a time attribute, we added a time attribute as: None.

The experiment consists of two stages: the risk factor identification stage and the 
CVD prediction stage. In the first stage, we utilized all the labeled EMRs, including 
830 in the training set, 119 in the development set, and 237 in the test set. In the sec-
ond stage, we will extract the risk factors from the EMRs that need to be used to train 
the prediction model through the recognition model trained in the first stage. Among 
the EMRs utilized to train CVD prediction models, there are 461 training sets, 66 
development sets, and 132 test sets. In the experiments, we used Accuracy (A), Preci-
sion (P), Recall (R), and F-score (F) as metrics for evaluating performance [18, 19]:

Table 2  Distribution of CVD risk factors and their occurrence times

DHS duration of hospital stay, “–” denotes not considered

Risk factors Before DHS During DHS After DHS Continuing DHS Total

O2 0 0 0 18 18

Hypertension 405 1909 10 1405 3729

Diabetes 60 57 13 877 1007

Dyslipidemia 4 287 6 75 372

CKD 0 0 0 26 26

Atherosis 3 4 0 137 144

OSAS 0 0 0 1 1

Smoking 8 0 0 500 508

A2 9 0 0 86 95

FHCVD 0 0 0 10 10

Age – – – – 1859

Gender – – – – 1909



Page 10 of 15Qiu et al. BMC Bioinformatics          (2022) 23:425 

Models and parameters

As a comparison, we use different or in the case of ablation models for both stages 
of the experiment. In the models described next, the first two models are used in the 
risk factor identification stage, and the latter models are utilized for the CVD predic-
tion stage.

CRF As a widely used traditional machine learning method, this model has been 
applied by Mao et al. [20] to the research of named entity recognition based on elec-
tronic medical records.

BiLSTM-CRF This model is a good example of combining deep learning with tra-
ditional machine learning methods. In the research on the automatic recognition of 
named entities in an extracted medical text, Li et  al. [21] applied a model architec-
ture that combines a bi-directional long short-term memory network (BiLSTM) and 
a conditional random field algorithm (CRF). The contextual information of sequences 
in the text is well encoded by BiLSTM and decoded using CRF.

SVM As one of the data mining techniques, support vector machine (SVM) is used 
by Menaria et al. [22] to support the research of medical decisions for correct diagno-
sis and treatment of diseases, and then explore to minimize the workload of experts.

ConvNets This model has a great influence in the field of text classification. Xiang 
et al. [23] proposed to represent each character with one-hot encoding and use a six-
layer convolutional neural network to capture sequence information.

LSTM/RFAB (no att) As a special kind of recurrent neural network, Xin et al. [24] 
believes that it may be able to connect previous information with the current task and 
apply it in Alzheimer’s disease prediction research. On this basis, we construct a BiL-
STM network model with one activation layer and one fully connected layer for CVD 
prediction. In fact, this is the RFAB model without the attention mechanism.

RFAB This model is proposed in this paper. In the experiments, we tune the hyper-
parameters by random search, and share all the experimentally selected hyperparam-
eters as much as possible in Table 3.

(12)F =
2 ∗ P ∗ R

P + R

Table 3  Hyper parameters of RFAB

Parameter Description Value

dw Dimension of word embedding 100

lr Learning rate le−3

B Batch size 10

dp Each neuron’s deactivation rate 0.5

dr Decay rate for lr 0.99

ds Number of decay steps 500

h Each BiLSTM’s hidden unit quantity 256

n Number of epochs 60
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Experimental results

For the risk factor identification stage and cardiovascular disease prediction stage, we 
have carried out specific comparative experiments. In the second stage, we have done 
abundant experimental exploration from the aspects of input, embedding, and model 
ablation.

In Fig. 5, we compare the performance of CRF and BiLSTM-CRF on three evalua-
tion indicators. On the whole, both of them perform well, but the latter’s F-score is 
better than the former. Therefore, we chose BiLSTM-CRF model as the risk factor 
extractor.

In Table 4, we show the comparison between the previous model and our proposed 
RFAB model for Accuracy, Precision, Recall, and F-score. And the performance of each 
model when the dataset is the original EMRs, the risk factor with the label, or the risk 
factor without the label. As shown in Figs. 1 and 2, the labels contain the correspond-
ing category and time attributes for each risk factor. The |�| in the table represents the 
absolute value of the difference between the average of each model’s above four evalu-
ation values and the best average.

In Table 5, we compared four cases: (1) The performance of the ConvNets model in 
random embedding. (2) The performance of the LSTM model in random embedding. 

Fig. 5  Comparison of CRF and BiLSTM-CRF models

Table 4  The comparison of each model for CVD prediction results

Model Accuracy % Precision % Recall % F-score % |�|

SVM(raw) 90.91 90.91 90.91 90.91 4.98

SVM(no labels) 89.39 89.03 89.39 89.21 6.64

ConvNets(raw) 92.83 92.64 92.83 92.73 3.13

ConvNets(risks with labels) 93.94 89.43 93.21 91.28 3.93

LSTM(raw) 92.24 93.46 92.73 93.09 3.01

LSTM(risks with labels) 82.58 81.35 83.01 82.17 13.61

RFAB(raw , no att) 93.91 93.83 93.91 93.86 2.01

RFAB(risks with labels, no att) 89.23 88.96 89.23 89.07 6.77

RFAB(no labels) 95.43 95.39 95.43 95.41 0.48

RFAB 95.87 95.98 95.87 95.86 –
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(3) The performance of our model without attention mechanism, that is, the perfor-
mance of the BiLSTM model. (4) When our model is in random embedding.

In Fig. 6, we have made a visual example of the attention mechanism, which consists 
of the following two parts: (a) The specific conditions of the patient’s examination after 
entering the hospital in EMR. (b) A sentence from the case characteristics module in 
EMR. The label on the y-axis in the figure is a risk factor.

Discussion
In Table 4, we compare the predictive performance of each model on different forms of 
corpora. When we utilize pre-trained embeddings along with labeled risk factors as the 
corpus, the RFAB model outperforms the other models on all four evaluation metrics. 
In addition, by comparing the performance of LSTM and BiLSTM models on the pre-
processed raw EMRs and the labeled risk factor corpus, respectively, we can find that the 
prediction effect is not optimistic when the contextual information of the text sequence 
is not considered. Meanwhile, compared with the ConvNets proposed by Xiang et  al. 
[23], we can find that the sequence models can better capture the contextual information 
of the EMR text than the convolutional neural network-based model. From the perfor-
mance of RFAB in Tables 4 and 5, we can help improve the model’s accuracy in predict-
ing CVD with the help of pre-trained character embeddings with a medical background. 
Moreover, from the performance of our model in Table 4 without attention mechanism, 
the significance of attention mechanism to the performance of this model is clearly 

Table 5  The performance of each model at random embedding

Model Accuracy % Precision % Recall % F-score % |�|

ConvNets(risks with labels) 91.67 90.87 91.24 91.05 3.99

LSTM(risks with labels) 81.82 79.45 82.36 80.88 14.07

RFAB(no att) 92.31 92.18 92.31 94.09 2.47

RFAB 95.22 95.16 95.22 95.19 –

Fig. 6  Visualization of learned attention α. a Basic physical status of a patient on EMR. b A description in the 
Case Characteristics module of a patient in EMR
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reflected, and it also shows that the information of risk factors is more important to this 
prediction task. We exemplify the core part of the diagnostic basis in an electronic medi-
cal record based on the α learned by the attention mechanism in Fig. 6a. In addition, we 
also exemplify the associations between the three risk factors and their original char-
acter-level sequences in Fig. 6b. For Fig. 6, we emphasize that it can reduce the reading 
burden for doctors or individuals.

Conclusions
Disease prediction research based on machine learning methods plays a pivotal role 
in supporting medical decisions for the correct diagnosis and treatment of diseases. 
Through the study of related technologies, doctors or individuals can quickly and accu-
rately obtain key information and possible predictions after seeing a doctor, which is 
of great significance for reducing the pressure on experts and preventing diseases for 
individuals.

Aiming at the study of predicting CVD based on electronic medical records, this paper 
proposes an effective and reference idea to identify and extract risk factors and then 
rely on these key information to predict CVD. Meanwhile, we propose a corresponding 
CVD prediction model, a risk factor attention-based model (RFAB). With the help of the 
attention mechanism, the model effectively integrates the information between the risk 
factors and the context of the EMR text, and also considers the category and time attrib-
utes of the risk factors by the mean of labels. This enables the model to avoid redundant 
and confusing information, while focusing on effective key information, and can also 
take into account the original information of the EMR.

In the future, we will focus more on the research of CVD itself. Although the fac-
tors that can be found in EMRs that lead to CVD in individuals can be determined, it is 
undeniable that factors such as environment are diverse. Therefore, we will explore more 
comprehensive information sources, and then rely on machine learning methods to pre-
dict CVD efficiently and accurately.
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