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Introduction
Over 300 protein kinases share a common biological function as ATP-dependent phos-
phorylation enzymes [1], with a significant role in signal transduction, particularly in the 
progression of complex diseases such as cancers [2], immune system misfunctions, and 
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Keywords: Pan‑kinase family inhibitor, Graph convolutional network, Visualized 
explanation, Gradient‑weighted class activation mapping, Family‑sensitive pre‑moiety

Open Access

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third 
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate‑
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdo‑
main/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

RESEARCH

Lin et al. BMC Bioinformatics  2022, 23(Suppl 4):247 
https://doi.org/10.1186/s12859‑022‑04773‑0 BMC Bioinformatics

*Correspondence:   
moon@faculty.nctu.edu.tw

1 Institute of Bioinformatics 
and Systems Biology, National 
Yang Ming Chiao Tung University, 
Hsinchu, Taiwan
2 Institute of Biomedical 
Engineering, National Yang Ming 
Chiao Tung University, Hsinchu, 
Taiwan
3 Institute of Molecular Medicine 
and Bioengineering, National 
Yang Ming Chiao Tung University, 
Hsinchu, Taiwan
4 Institute of Bioinformatics 
and Structural Biology, National 
Tsing Hua University, Hsinchu, 
Taiwan

http://orcid.org/0000-0002-3205-4391
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-022-04773-0&domain=pdf


Page 2 of 13Lin et al. BMC Bioinformatics  2022, 23(Suppl 4):247

Alzheimer’s disease [3]. Accordingly, they fall under the category of intensively inves-
tigated drug targets [2, 4], with 61 US Food and Drug Administration (FDA)-approved 
kinase inhibitors to date [5]. Due to the highly conserved catalytic sites of protein 
kinases, investigation of kinase inhibitor selectivity in the kinome space has been a chal-
lenge [6]. On the contrary, protein kinases within a single kinase family regulate shared 
cancer-related pathways [7]; therefore, inhibition of a single target leads to drug adapta-
tion and resistance [8–12].

To overcome these issues of drug resistance, various studies have suggested drug com-
binations or multi-targeting drugs to be an effective approach for complex diseases [8, 
9, 13–18]. Moreover, several approved kinase inhibitors were originally designed as 
pan-kinase-family inhibitors (PKFIs) to target multiple proteins of the kinase families 
[16, 17, 19–21], such as the epidermal growth factor receptor (EGFR)/HER2 dual-tar-
geting inhibitor lapatinib [19] and the pan-vascular endothelial growth factor (VEGF) 
inhibitor sorafenib [22, 23]. To discover potential inhibitors within the large chemical 
space, deep learning techniques have been applied to rapidly identify potential inhibitors 
against a single target within the kinome [21, 24, 25]; however, these studies have seldom 
addressed the multi-targeting issue or the lack of explainability for the trained model’s 
judgment.

Graph convolutional network (GCN)[26] is a recently developed deep learning archi-
tecture that is designed to extract the spectrum information on the topological data. 
Due to the no-distanced and no-ordered properties of the topological data, it is hard to 
be operated by previous machine learning and deep learning techniques until the GCN 
architecture is brought onto the stage. The power that the GCN model provides is on 
the capability of self-organizing the surrounding information of each atom in the com-
pound, and extracting the chemical substructures with different sizes. Therefore, with 
the help of GCN architecture, now we have the chance to achieve our aim: self-organiz-
ing the pre-moieties within families without using pre-defined fingerprints. On the other 
hand, some explainability methods, like gradient-weighted CAM (Grad-CAM)[27], for 
GCNs were developed to help identify functional groups or substructures on small mol-
ecules for biological molecular properties.

In this study, we aimed to develop GCN models to identify PKFIs and to highlight 
the chemical pre-moieties. First, we collected PKFIs from the ChEMBL database [28, 
29] and kinase profiling data [30], and a total of 60,122 compounds of 384 kinases from 
103 families within 195,802 data points were obtained. We then selected two families 
for each of the four kinase groups, tyrosine kinase (TK), AGC, CMGC, and calmodu-
lin-dependent protein kinase (CAMK), and built GCN models for each selected family. 
Then, we applied gradient-weighted class activation mapping (Grad-CAM) [27] method 
to explain each inhibitor’s prediction. Our results indicate that our GCN model can aid 
in judging the viability of identifying family-sensitive pre-moieties in PKFIs.

An overview of our method and models for identifying PKFIs is presented in Fig. 1. 
First, we collected 195,802 sets of kinase-compound activity data and defined the PKFI 
sets, followed by the featurization of each inhibitor into atomic features and Laplacian 
matrix-based topologies. The GCN model was constructed for each family to identify 
the PKFIs. Three indices, accuracy, the area under the receiver operating characteristic 
curve (AUROC), and Matthews correlation coefficient (MCC), were used in addition to 
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applying the Grad-CAM sample-wise explanation to examine the predictability and reli-
ability of our models and to further determine the family-sensitive pre-moieties.

Results
PKFI sets and model performance

To assess the PKFI differences between each kinase family, we applied GCN models 
on eight families in four kinase groups (Table 1) individually. The configuration of our 
GCN architecture includes three graph convolutional layers with 64, 32, and 16 kernels 
respectively, and all. All convolutional feature maps were followed by a GAP layer, and 
then concatenate all GAP feature vectors were concatenated before applying a softmax 
classifier (Fig. 5). Each model was trained for 100 epochs, with an 80:20 training/test-
ing distribution of each PKFI set utilizing the ADAM optimizer with a learning rate of 

Fig. 1 Scheme for utilizing atom‑wise featurization and topological information on compounds for the 
identification of pan‑kinase family inhibitors (PKFIs) using graph convolutional network (GCN) models. A 
Schematic of the research framework. B 195,802 test datasets of 60,122 chemicals and 384 kinases were 
collected from the ChEMBL database and kinase profiling. C Eight families in four kinase groups were 
targeted in this study. D Each compound is transformed into atom features and a structure graph for GCN 
architectures to identify PKFIs. E A visualized explanation was made using the grad‑CAM method
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0.001, β_1 = “0.9”, β_2 = “0.999” based on cross-entropy as a loss function. All models 
were implemented in Keras [35] with a Tensorflow backend [36].

To evaluate the performance of each model, three metrics were applied: (1) accuracy 
(ACC) for general precision, (2) Matthew correlation coefficient (MCC) for measuring 
the quality of classification according to class-wise distributions, and (3) AUROC for 
measuring the composite index of sensitivity and specificity. The evaluation metrics of 
the test results of the eight PKFI sets are presented in Table 1. The average ACC (0.84) 
and AUROC (0.89) of all models were high enough to distinguish PKFIs. However, the 
MCC scores of the four GCN models were significantly lower in terms of their misbal-
anced distribution in the training sets: protein kinase D (PKD) family in the CAMK 
group (balance: 0.15 positive/negative), cGMP-dependent protein kinase (PKG) family 
in the AGC group (balance: 0.13), GSK family (balance: 0.37), and CLK family (balance: 
0.42) in the CMGC group. Overall, the average ratio of balance of eight families was 
0.62, where the balance values of the other four families were all above 0.5 and showed 
qualified MCC scores. This indicates that increasing the data size may aid in overcoming 
the imbalanced data distribution.

Discover common/specific pre‑moieties across kinase families

Explanation and visualization were generated using the Grad-CAM method (see 
method, Eq. (6) and (7)). As shown in Fig. 2, we compared different explanations based 
on three families: the EGFR family [37, 38], the Janus kinase (JAK) family [39, 40] in 
the TK group, and the serine/threonine kinase PIM family [41] in the CAMK group. 
To demonstrate the rationality of the Grad-CAM explanation, lapatinib, a highly selec-
tive [42] EGFR/HER2 targeting dual inhibitor used in the treatment of breast cancer [43, 
44], was introduced and explained by the EGFR model (Fig. 2). The preferences of the 
positive class are highlighted by green circles (Fig.  2A). The preference on the double 
nitrogen atoms in ‘middle naphthalenyl structure’ (structure of aromatic double ring) 
indicates that the hydrogen bond formable environments on aromatic rings were pre-
served in pan-EGFR inhibitors and could be captured by the EGFR model. We refer to 
these conserved chemical environments as family-sensitive pre-moieties, as they only 
retain parts from fixed moieties; the chemical characteristics are already indicated. 
This observation has also been validated in X-ray-crystalized complexes wherein the 
naphthalenyl nitrogen actually interacts with the main chain atoms of the hinge region 

Table 1 Performance on eight PKFI sets

Group Family Members Data size ACC MCC AUROC

Positive Negative

TK EGFR 4 620 808 0.85 0.70 0.92

JAK 4 1347 877 0.84 0.64 0.91

CAMK PIM 3 688 628 0.84 0.68 0.91

PKD 3 67 462 0.92 0.16 0.91

AGC AKT 3 394 772 0.90 0.79 0.94

PKG 2 51 396 0.89 0.31 0.91

CMGC GSK 2 243 657 0.75 0.28 0.81

CLK 4 178 418 0.72 0.20 0.79
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allowing hydrogen bonding, thereby enabling ATP-competitive interaction to block the 
kinase activity, which is one of the key modes for designing kinase inhibitors [2, 45] (see 
Fig. 2C, deep blue).

After confirming the rationality of the explanations of Grad-CAM, we further com-
pared the rationality of the explanations of inhibitors from different families (see Fig. 2B). 
The EGFR model pays intense attention to the hinge-interacting region, which is also 
represented in JAK family inhibitors. Explanations of baricitinib [46] and tofacitinib [47] 
indicate that this region has a minor effect on the formation of pan-family selectivity of 
JAKs, but is critical for selectivity of the EGFR family. In contrast, the major highlight of 
JAK inhibitors appears as triple-bonded nitrogen, which interacts with the p-loop struc-
ture (see Fig. 2C, light blue). This structure is essential for the transfer of phosphate onto 

Fig. 2 Explanation of the GCN model’s prediction of lapatinib and other inhibitors in EGFR, JAK, and PIM 
models. (A) Grad‑CAM preferences of lapatinib from the latest graph convolutional layer for both positive 
and negative classes. Circles are centered at each atom, with green ones for the positive class and orange 
for the negative class. The larger the circle, the more the atom contributes to the prediction of the model 
at a specific class. (B) Preferences for different inhibitors within and across families. Within the same family, 
conserved attention on similar environments is visualized, and family‑sensitive pre‑moieties can be seen by 
comparing cross‑family inhibitors. (C) Crystallized complexes of the pan‑EGFR inhibitor lapatinib (deep blue, 
PDB ID: 1XKK), pan‑JAK inhibitor tofacitinib (light blue, PDB ID: 3EYG), and pan‑PIM inhibitor LGH‑447 (purple, 
PDB ID: 5DWR) demonstrated three different modes of kinase inhibition
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substrates and disrupting it will interfere with phosphorylation. Indeed, within the same 
kinase group, inhibitors of EGFR and JAK families share partially similar structures but 
use different modes to interrupt kinase activity, as indicated by the explanation of our 
models as well as crystallized 3D structures.

In addition to the intra-TK-grouped comparison, we examined the inhibitors of the 
PIM family in the CAMK group to further assess the inter-grouped differentiation on 
the explanation of PKFIs. Aligned by the position of the hinge region as the center, LGH-
447 and AZD-1208[21] of the PIM family showed no preference for the hinge region, but 
instead showed a preference for the cyclo-nitrogen regions of the tail (see Fig. 2B). These 
highlighted pre-moieties in PIM inhibitors (Fig. 2C, purple compound) actually undergo 
the third mode of interaction with the DFG motif of a kinase to destabilize the kinase 
structure and further interfere with its function [48].

Through the comparison of inhibitors across three families, family-sensitive pre-moi-
eties and environments were demonstrated, along with the actual kinase-binding inhibi-
tor structures.

Correlation of model explanation and statistics through current moiety‑based fingerprint 

mapping

While revealing the family-sensitive pre-moieties (defined in Results, section B) by 
focusing along the decision process of the model, statistical significance must also be 
considered. Owing to the unfixed structure of pre-moieties, we utilized moiety-based 
fingerprint checkmol [49] to establish the statistical significance using odds ratio, as 
shown in Fig.  3. Most discovered pre-moieties are distinguishable (outline fingerprint 
in Fig. 3A) by checkmol descriptors, such as the triple-bonded nitrogen on baricitinib 
mapped to the #90 fingerprint and the cyclo-nitrogen on LGH-447 to #49 fingerprint, 
and also are significantly possessed by positive inhibitors within each PKFI set (i.e., #49 
fingerprint concentrative possessed by pan-PIM inhibitors and #90 by pan-JAK inhibi-
tors) (see Fig. 3A). However, there still remain several unmappable pre-moieties. For the 
naphthalenyl-nitrogen region of lapatinib, the only matched checkmol descriptor is #201 
(any aromatic atoms) and #202 (any hetero-ring structures), and both are undistinguish-
able not only within the EGFR set but also across different PKFI sets (Fig. 3B).

The inconsistency between Grad-CAM-based family-sensitive pre-moieties and moi-
ety-based checkmol fingerprint mapping might indicate that the information and rules 
of kinase-inhibitor interactions are hidden within the compound structures and com-
positions to a greater extent than we assumed. The GCN architecture is not only able 
to discover the specified local environments within inhibitors from each family but also 
shows the limitations of the current moiety-based describing methods. Furthermore, in 
this study, the GCN architecture has the potential to broaden the recognizable chemi-
cal moiety spaces and thus facilitate the rapid identification of potential inhibitors from 
large chemical spaces.

Conclusion and discussion
In this study for exploring kinase multi-targeting, we formulated pan-kinase-family inhibi-
tor sets for the first time and used GCN architecture to identify the hidden information in 
the PKFI sets of EGFR, JAK, and PIM families. We further applied Grad-CAM to visualize 
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the effects of chemical environments on inhibitors that were considered by the models to 
make decisions. Validated by the kinase-inhibitor complexes, we discovered that the family-
sensitive pre-moieties contain information on kinase-inhibitor interactions and are asso-
ciated with different modes of inhibition of kinase activity. By comparing our discovered 
pre-moieties and the checkmol moiety-based fingerprints, we demonstrated the insuf-
ficiency of current moiety-based descriptors, which can be overcome by the GCN archi-
tecture for recognizing family-specific chemical environments. In summary, the GCN 
technique has the power to identify PKFIs and learn the undefined pre-moieties in the field 
of potential drug design and optimization.

Fig. 3 Correlation between preferences and the mapping of current checkmol fingerprints. (A) The mapped 
region of checkmol fingerprint and their odds‑ratio ranking (epsilon = 0.5, is added to prevent dividing by 
zero) of 204 checkmol descriptors within each family of the PKFIs set. Most pre‑moieties associated with 
different modes of kinase inhibition (described previously) are mappable and correlated with the feature 
distribution in the training sets. However, several pre‑moieties are still not precisely defined in the current 
fingerprint and thus are undistinguishable (i.e., naphthalenyl‑nitrogen regions on lapatinib). (B) Overall 
odds‑ratio distribution of checkmol descriptors on EGFR, JAK, and PIM datasets with mapped moieties is 
indicated. It should be noted that several super peaks are observed with relatively few compounds and thus 
are not currently discussed
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Methods
Datasets

To access the information on kinase-inhibitor reactivity, we collected 195,802 sets 
of kinase-chemical activity data from ChEMBL and kinase profiling, which contain 
about 60,122 compounds belonging to 384 kinases grouped into 103 kinase families.

The ChEMBL data was obtained from the ChEMBL version 25 (March 2019), 
which contains 15 million data points of 1.8 million chemicals and 12.5 thousand 
targets. We filtered our kinase-inhibitor set according to the following criteria: (1) 
selection of targets of 518 kinases [1] by UniProt ID with  IC50 bioactivity, (2) exclu-
sion of relation of “ ~ ” and “ >  > ” for a certain activity, and (3) use of “Binding” assay 
type, “SINGLE PROTEIN” target type and confidence score 9 for retaining the direct 
experimental kinase-inhibitor interaction data. The resulting set contained 95,462 
data points for 58,846 compounds and 382 kinases with  IC50 < 500 nM as the activity 
cutoff.

To understand the complete test results between compounds and kinases, we col-
lected kinase profiling data (containing 172 kinases and 3,858 compounds) published 
by Metz [30] and further applied the criteria below to obtain a reliable kinase-inhib-
itor set: (1) removal of ID-lacking, InChIKey-lacking, and InChIKey-duplicated 
chemicals, and (2) exclusion of pairs of blank activity results. The filtered dataset 
contained 1,421 compounds and 172 kinases, with a total of 100,786 test points and 
pKi > 6 as the activity cutoff.

After collecting these two sources of data, we merged them with “80% voting” 
for duplicates, which meant that the final active/inactive labels for the duplicated 
data points were in agreement with 80%-consistent answers among its duplicates, 
and those with maximum consistency below 80% were excluded. The final kinase 
bioactivity dataset contained 195,802 test points, with 60,122 compounds and 384 
kinases.

4.2 Definition of pan‑kinase‑family inhibitors (PKFIs)

To establish the PKFI sets from kinase-inhibitor data, we further investigated the 
criteria for any compound Ci tested in the kinase family kFi to be a PKFI.

where the total test points within compound i and family j must be no less than half of 
the total membership of family j with testing data on at least two kinase members. The 
final label of each PKFI is given as an answer when all the test points are consistently 
active or inactive.

(1)TestCi↔kFj ≡ Test Ci ↔ kinases ∈ kFj

(2)TestCi↔kFj →

∥

∥

∥
TestCi↔kFj

∥

∥

∥
≥

1

2

∥

∥kFj
∥

∥ ≥ 2

(3)LabelCi =

{

0, TestCi↔kFj = active,

1, TestCi↔kFj = inactive.
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Featurization of input compounds

To facilitate the classification of PKFIs with GCN frameworks, an attributed graph 
Gi =

(

AFi, L̃i

)

 is presented for each input compound Ci where AFi ∈ R
N×dfeat is the 

node descriptions of atomic environments in the compounds, and atom types, chemo-
properties, and charges, are described [26, 31] (Table 2). Following the previous work of 
Kipf and Welling [32], we used a modified normalized Laplacian matrix L̃i ∈ R

N×N that 
encodes the topological structure of connections and bond order cross atoms (Fig. 4):

where Ã = A+ IN is the adjacency matrix of input compounds added by self-interac-
tion, IN ∈ R

N×N is the identity matrix, and D̃ii =
∑

j Ãij is the diagonal degree matrix 
based on Ã . Given that the task of our GCN models is to identify PKFIs that potentially 
contain a different number of atoms, we enabled both the atomic environment AF and 
modified Laplacian matrix L̃ to contain 50 heavy atoms (hydrogen excluded) maximally 
by padding up the blank region with zeros (Fig. 4).

Graph convolution network architecture

Following the presentation of G =

(

AF , L̃
)

 for each input compound, the function of the 

graph convolution layer is defined as follows:

where Fl denotes the graph convolutional function at layer l and F0 = AF  is the com-
pound atomic environment, and, Wl ∈ R

dl−1×dl is the trainable kernel set of the lth layer 
that responds to the spectral pattern recognition of compound local information. Fig-
ure 5 describes the operation of graph convolution upon the presentation of G =

(

AF , L̃
)

 

and the schematic of our GCN architecture. To understand the chemical environments 
of compounds that cannot be provided by atomic features, we utilized the atomic con-
nection information provided by the modified Laplacian matrix L̃ to gather the sur-
rounding information of each atom and form local environments, which is the purpose 

(4)L̃i = D̃− 1
2 ÃD̃− 1

2

(5)Fl
(

AF , L̃
)

= L̃ · F (l−1)
(

AF , L̃
)

·Wl

Table 2 Summary of 28 atom descriptions of a compound

Feature Description Size

Atom type C, N, O, S, F, P, Cl, Br, I and other (one‑hot) 10

Implicit valance Bonding hydrogens (integer) 1

Hybridization sp,  sp2,  sp3 and other hybridization (one‑hot) 4

Charges Formal charge (integer) 1

Partial charge (float) 1

Radical electrons (integer) 1

Ring structure The atom is included in rings of size (3–8) (binary) 6

Chemo‑property Chirality: Is the atom a chiral center or not (one‑hot) 1

Aromatic: Is the atom in an aromatic system (one‑hot) 1

Hydrogen bonding: Is the atom a hydrogen bond donor and/or an 
acceptor (binary)

2

Total 28
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of equation L̃ · F (l−1)
(

AF ,˜L
)

 (Eq. (5) & Fig. 5). To learn the composition of local envi-

ronments, trainable kernel weights Wl were applied.
As the graph convolution layer is stacked along with the graph, the local environment 

centered on each atom expands with bond orders. Therefore, to facilitate the sensing 
of diverse spectral patterns from different sizes of local environments, our GCN model 
considered all outputs from the three graph convolution layers. The global average pool-
ing (GAP) was then applied after each convolution output to eliminate overfitting upon 
the pseudo-atomic order stipulated just for utilizing the GCN framework. Then, the final 
softmax binary classifier was applied to obtain a concatenation of three pooled feature 
maps to predict PKFIs (Fig. 5).

Gradient‑weighted class activation mapping as model explainability

Grad-CAM was originally designed and applied for convolutional neural networks 
(CNNs) [33], is an additional explanation for deep learning models that visualize the 
heat map of the attention region (which contributes the most to compounds for the pre-
diction of the model) from the feature maps of each layer. Owing to the commonality 
of convolution and graph convolution, Pope and Kolouri further extended it to GCN 
frameworks [34]. The Grad-CAM method consists of two major steps. We first defined 
the class-specific weights α for the kth feature of class c at layer l :

Fig. 4 Feature encoding of the input compounds. Each compound is encoded by atomic features and 
a structure graph. Atomic features contain 28 descriptors belonging to six types, including atom types, 
hybridization, charges, and chemo‑properties. For a structure graph, a modified normalized Laplacian matrix 
(Eq. (4)) was applied as a representation of the compound’s topology information. Padding to 50 atoms with 
zeros was applied to contain variable numbers of atoms in the input compounds
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where yc ← GCN
(

AFi, L̃i

)

 is the predicted probability on class c of compound i, and the 

weight vector αl,ck  of k features is calculated by the summation of the back-propagated 
gradients along the atom order dimension.

By defining the weights for each feature k of compound i, we computed the Grad-
CAM feature map of layer l through αl,ck :

with the help of Grad-CAM, we can evaluate how much attention a model pays to 
each atom during prediction and further visualize the pre-moieties regions of each 
compound.

Abbreviations
PKFI  Pan‑kinase family inhibitor
GCN  Graph convolutional network
Grad‑CAM  Gradient‑weighted class activation mapping
FDA  Food and Drug Administration
AUROC  Area under the receiver operating characteristic curve

(6)α
l,c
k =

1

N

N
∑

n=1

ReLU

(

∂yc

∂Fl
k ,n

)

(7)Mc
grad−CAM[l, n] =

∑

k

α
l,c
k F l

k ,n

(

AFi, L̃i

)

Fig. 5 The operation of the graph convolution and GCN model architecture of binary classification is 
described in this paper. To include the surrounding environments of each atom (local environments), the 
multiplication of topology graph L̃ and the compound features (either the input atomic features AF or 
the feature map F(l−1) from the last layer) is required, which should be further multiplied by Wl to learn the 
information provided by the local environment. 
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MCC  Matthews correlation coefficient
GAP  Global average pooling
ACC   Accuracy
CNN  Convolutional neural network
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