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Abstract 

Background: Converting molecules into computer-interpretable features with rich 
molecular information is a core problem of data-driven machine learning applica-
tions in chemical and drug-related tasks. Generally speaking, there are global and local 
features to represent a given molecule. As most algorithms have been developed 
based on one type of feature, a remaining bottleneck is to combine both feature sets 
for advanced molecule-based machine learning analysis. Here, we explored a novel 
analytical framework to make embeddings of the molecular features and apply them in 
the clustering of a large number of small molecules.

Results: In this novel framework, we first introduced a principal component analysis 
method encoding the molecule-specific atom and bond information. We then used a 
variational autoencoder (AE)-based method to make embeddings of the global chemi-
cal properties and the local atom and bond features. Next, using the embeddings 
from the encoded local and global features, we implemented and compared several 
unsupervised clustering algorithms to group the molecule-specific embeddings. The 
number of clusters was treated as a hyper-parameter and determined by the Silhouette 
method. Finally, we evaluated the corresponding results using three internal indi-
ces. Applying the analysis framework to a large chemical library of more than 47,000 
molecules, we successfully identified 50 molecular clusters using the K-means method 
with 32 embeddings based on the AE method. We visualized the clustering result via 
t-SNE for the overall distribution of molecules and the similarity maps for the structural 
analysis of randomly selected cluster-specific molecules.

Conclusions: This study developed a novel analytical framework that comprises a 
feature engineering scheme for molecule-specific atomic and bonding features and a 
deep learning-based embedding strategy for different molecular features. By applying 
the identified embeddings, we show their usefulness for clustering a large molecule 
dataset. Our novel analytic algorithms can be applied to any virtual library of chemical 
compounds with diverse molecular structures. Hence, these tools have the potential 
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of optimizing drug discovery, as they can decrease the number of compounds to be 
screened in any drug screening campaign.

Keywords: Unsupervised deep clustering, K-means, Embedding, Variational 
autoencoders, Internal clustering measurements, Chemical diversity

Introduction
In the practice of drug discovery, high-throughput screening (HTS) is the primary 
approach for identifying drug candidates from chemical libraries [1]. Nevertheless, 
screening is an expensive and time-consuming process, especially with the emergence 
of multidrug-resistant and extensively drug-resistant infections, which create formida-
ble obstacles and challenges for this conventional drug discovery pipeline. To this end, 
various machine learning (ML) models have been developed and integrated as part of 
routine protocols in chemical and biological applications for decades [2]. For instance, 
quantitative structure-activity relationships (QSAR) and quantitative structure-property 
relationships (QSPR) models played a major role in molecular property predictions, one 
of the central tasks in drug discovery [3–5]. On the other hand, unsupervised ML meth-
ods have been extensively applied in the contexts of exploring molecular data sets and 
discovering the underlying molecular mechanisms of action (MOA) of new drugs [6]. 
To establish an efficient ML model for chemical-related tasks, two core questions need 
to be answered: (1) how to encode a molecule in a machine-interpretable representation 
with the inclusion of informative and unique features of compounds (molecular featuri-
zation); (2) How to ensure the molecular database is diverse enough so that a ML model 
can learn sufficient chemical patterns to predict the desired properties outside of the 
training data.

In general, molecular representations can be divided into two main categories: chemi-
cal descriptors or fingerprints and representations that are aggregated from molecular 
graphs [7]. Chemical descriptors and fingerprints are deterministic characterizations of 
molecules in cheminformatics, and they are commonly employed as the input of conven-
tional QSPR/QSAR models. For instance, extended-connectivity fingerprints (ECFP), a 
type of topological fingerprints that characterize molecular structures through circular 
atom neighborhoods, are wildly adopted in QSPR/QSAR models [8]. On the other hand, 
a molecular graph is a non-Euclidean structural representation composed of a set of 
atoms (V) and a set of chemical bonds or interactions (E) between each pair of adjacent 
atoms [9]. In principle, the molecular graph can be treated as a connected undirected 
graph G defined by a set of nodes (V) and edges (E). In practice, various chemical prop-
erties can be calculated for each atom/bond (local features) so that a molecular graph 
is initialized by an atomic feature matrix ( xv ) and a bond feature matrix ( evw ). To utilize 
local features of molecules for cheminformatics tasks such as molecule property predic-
tion or clustering, the atomic and bond features need to be aggregated to the molecular 
level.

Clustering is an unsupervised strategy that discovers the existing patterns in a given 
dataset and classifies the objects into similar groups [10]. In bioinformatics, various clus-
tering algorithms have been implemented depending on different tasks and data [11, 12]. 
There are three reasons why clustering analysis of compounds in a virtual chemical data-
base must be carried out before developing a QSPR/QSAR model. First, as the quality 
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of predictions from a data-driven model is largely determined by the dataset, validating 
the diversity of compounds in the selected virtual library ensures that the model learns 
sufficient chemical information and makes decent predictions. Second, by identifying 
the similarity or heterogeneity among the chemicals in the dataset, a more comprehen-
sive understanding of drugs’ underlying mechanism of action (MOA) could be gained. 
Finally, clustering analysis can broaden the selection of compounds facilitating the chal-
lenging and costly process of establishing datasets for chemical-based ML tasks [4]. 
Knowing the categories of chemicals that need to be included in the dataset can greatly 
reduce the number of molecules that should be screened in the laboratory while, at the 
same time, ensuring the quality of the dataset for the model building.

In this study, we developed a novel molecular embedding learning approach that 
combines both principal component analysis (PCA) [13] and a variational autoencoder 
(VAE) [14] to integrate molecular global and local features. We used this approach to 
cluster ~ 50,000 chemicals previously selected for a large-scale chemical-genetic screen 
against the bacterium Mycobacterium tuberculosis [15], where chemical-genetic interac-
tion profiles (CGIP) were created using M. tuberculosis mutant strains (hypomorphs). 
This work provides an in-depth analysis of a large-scale chemical library successfully 
used to find potential antibacterial activity. Moreover, by investigating the generated 
compound clusters, we highlight the importance of feature engineering and gain insight 
into clusters of compounds that may target the same biological systems and thus may 
possess similar biological functions.

Results
Estimating the number of clusters using the integration of local and global features

Using a range of 5–200 clusters with a step size of 5 and different numbers of embed-
dings (16, 32 and 64) from the autoencoder (AE) [16] and VAE algorithms, respectively, 
we applied the Silhouette method [17] to estimate the Silhouette scores for the inte-
gration of global and local features (Fig.  1). As shown in Fig.  1, all the feature sets or 
embeddings achieve relatively stable Silhouette scores at a cluster size of 50. Using the 
243 integrated local and global features (see details in “Materials and methods” section) 

Fig. 1 Embedding-specific silhouette scores under different number of molecule clusters using the 
integration of local and global features. Results are based on the 243 features and the 64, 32, and 16 
embeddings from the VAE and AE algorithms, respectively
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produced the lowest Silhouette value, while the best embeddings are the 32 latent fea-
tures from the VAE algorithm with the largest Silhouette value 0.286 at the cluster size 
50 (Fig. 1).

Performance evaluation of the identified molecular clusters using the integration of local 

and global features

Table  1 summarizes and compares the clustering performance of the four suggested 
algorithms (K-means [18], BIRCH (Balanced iterative reducing and clustering using 
hierarchies) [19], AE + K-means and VAE + K-means) based on the 243 integrated 
local and global features and their embeddings of the molecule data set from AE and 
VAE, respectively. For the K-means and BIRCH, we determined the optimal number of 
clusters 30 based on the 243 features (Fig. 1). For AE + K-means and VAE + K-means, 
we determined the optimal number of clusters based on different numbers of embed-
dings (16, 32, and 64) (Fig.  1, Table  1). Overall, based on the three internal measure-
ment indexes, we found the algorithm of VAE + K-means with 32 embeddings showed 
the best performance (Calinski–Harabasz Index [20]: 10112.928, Silhouette Index: 0.286, 
and Davies–Bouldin Index [21]: 0.999) with 50 optimized clusters while K-means and 
BIRCH with the 243 features showed the worst performance (Table 1).

Comparison of clustering performance using only local features and only global features

Clustering performance using only local features

Following the same procedure as we did for the integration of local and global features, 
we applied the Silhouette method to estimate the Silhouette scores for a range of 5–200 
clusters with a step size of 5 and different numbers of embeddings from the AE and VAE 
algorithms using the 157 atomic and bond features, respectively (Fig. 2).

Table 2 summarizes and compares the clustering performance of the four suggested 
algorithms based on the 157 local features and their embeddings of the molecule data set 
from AE and VAE, respectively. For the K-means and BIRCH, we determined the opti-
mal number of clusters 55 based on the 157 local features (Fig. 2). For AE + K-means and 
VAE + K-means, we determined the optimal number of clusters based on different num-
bers of embeddings (16, 32, and 64) (Fig. 2, Table 2). Overall, based on the three internal 
measurement indexes, we found the algorithm of VAE + K-means with 64 embeddings 
showed the best performance (Calinski–Harabasz Index: 9348.354, Silhouette Index: 

Table 1 Clustering performance evaluation using the integration of local and global features

The best result of each performance index is boldfaced

Clustering method #Clusters Internal indices

Calinski–Harabasz Silhouette Davies–Bouldin

K-means 30 1010.383 0.066 2.167

BIRCH 30 825.288 0.042 1.964

VAE (16) + K-means 50 5545.491 0.236 1.142

VAE (32) + K-means 50 10,112.928 0.286 0.999
VAE (64) + K-means 70 4965.177 0.229 1.183

AE (16) + K-means 50 1498.595 0.116 1.703

AE (32) + K-means 40 1117.688 0.085 1.912

AE (64) + K-means 70 717.636 0.075 2.260
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0.253, and Davies–Bouldin Index: 1.018) with 35 optimized clusters while BIRCH with 
the 157 local features showed the worst performance (Table 2).

Clustering performance using only the global features

Similarly, we also applied the Silhouette method to estimate the Silhouette scores for a 
range of 5–200 clusters with a step size of 5 and different numbers of embeddings (16, 32 
and 64) from the AE and VAE algorithms using the 193 raw global features, respectively 
(Fig. 3).

Table  3 summarizes and compares the clustering performance of the four sug-
gested algorithms based on the 193 raw global features and their embeddings of the 
molecule data set from AE and VAE, respectively. For the K-means and BIRCH, we 
determined the optimal number of clusters 60 based on the 193 raw global features 
(Fig.  3). For AE + K-means and VAE + K-means, we determined the optimal number 
of clusters based on different numbers of embeddings (16, 32, and 64) (Fig. 3, Table 3). 
Overall, based on the three internal measurement indexes, we found the algorithm of 
VAE + K-means showed the relatively better performance than other methods, while 

Fig. 2 Embedding-specific silhouette scores under different number of molecule clusters using the local 
features. Results based on the 157 local features and their 64, 32, and 16 embeddings from the VAE and AE 
algorithms, respectively

Table 2 Clustering performance evaluation using the 157 local features

The best result of each performance index is boldfaced

Clustering method #Clusters Internal indices

Calinski–Harabasz Silhouette Davies–Bouldin

K-means 55 8509.651 0.124 1.704

BIRCH 55 7243.245 0.082 1.831

VAE (16) + K-means 105 7248.059 0.249 1.007
VAE (32) + K-means 40 5166.671 0.197 1.194

VAE (64) + K-means 35 9348.354 0.253 1.018

AE (16) + K-means 30 4666.621 0.145 1.579

AE (32) + K-means 50 5032.735 0.128 1.608

AE (64) + K-means 50 5889.523 0.132 1.626
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BIRCH with the 193 raw global features showed a relatively worse performance than 
other methods (Table 3).

Overall, comparing the performance using only local features (Fig. 2 and Table 2), only 
global features (Fig. 3 and Table 3) and the integration of local and global features (Fig. 1 
and Table  1), it is evident that the algorithm of VAE + K-means with 32 embeddings 
based on the integrated local and global features has better performance than those of 
different models based on only local features and only global features.

Visualization of the identified clusters from the integrated local and global features

We evaluated the distribution of the molecules in each cluster based on the number of 
molecules using the results from the VAE-based K-means clustering with 32 embed-
dings (VAE (32) + K-Means) and 50 clusters (Fig. 4). The results are based on the inte-
grated local and global features. As shown in Fig. 4, more than 80% of the clusters with 
more than 500 molecules and the cluster size is relatively homogeneous.

Furthermore, we visualized the embeddings from the results with the best algorithm 
(VAE (32) + K-means) using the t-SNE method [22] (Fig.  5). Overall, the clustered 

Fig. 3 Embedding-specific silhouette scores under different number of molecule clusters using the global 
features. Results are based on the 193 global features and their 64, 32, and 16 embeddings from the VAE and 
AE algorithms, respectively. It should be noted that 7 raw global features with low variation were filtered out 
(see “Materials and methods” section)

Table 3 Clustering performance evaluation using the 193 raw global features

The best result of each performance index is boldfaced

Clustering method #Clusters Internal indices

Calinski–Harabasz Silhouette Davies–Bouldin

K-means (193 molecular features) 60 749.187 0.068 1.888

BIRCH (193 molecular features) 60 706.192 0.059 1.710

VAE (16) + K-means 95 4985.544 0.236 1.141

VAE (32) + K-means 55 5168.007 0.223 1.160

VAE (64) + K-means 65 4991.844 0.227 1.130
AE (16) + K-means 45 878.878 0.073 2.009

AE (32) + K-means 45 1112.495 0.090 1.923

AE (64) + K-means 45 1700.526 0.117 1.688
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molecules using the VAE (32) + K-means with 50 clusters showed consistent patterns 
with the t-SNE analysis of the embeddings. The t-SNE clustered the majority of the clus-
ter-specific molecules from the VAE (32) + K-means together.

To further examine the effectiveness of our clustering framework and discover the 
commonalities in molecular structures within the same cluster, four samples, includ-
ing one reference molecule and three test molecules, were randomly selected from 

Fig. 4 Distribution of molecules in each cluster

Fig. 5 The t-SNE visualization of the 32 embeddings from the VAE algorithm. The numbers are the cluster IDs 
from the results of VAE (32) + K-means. The colors represent the t-SNE analysis results
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each of five randomly chosen clusters and visualized (Fig. 6). During the generation 
of the similarity maps [23], the count-based ECFP with radius 2 and 2048 bits was 
used as the compound representation. In addition, the Tanimoto [24] was selected 
as the metric during the fingerprint comparison as it is one of the best choices for 
fingerprint-based similarity calculation reported by Bajusz et al. [25]. In the similarity 
maps, atoms that contribute to the similarity score between the reference compound 
and the test compound are highlighted in green, whereas red represents the opposite 
contribution.

From the randomly selected cases in Fig. 6, our clustering framework successfully 
grouped molecules with more structural similarities into clusters. For instance, all 
four molecules in cluster 7 contain aromatic carboxylates (labelled in green). Aryl hal-
ides appear in three samples in cluster 35, and all samples from cluster 44 contain sul-
fonamides. We also show the pairwise similarities scores between all selected samples 
in one matrix (Fig. 7) to present how samples differ within clusters. In order to gener-
ate a matrix with a larger contrast, we chose binary ECFP (radius = 1, bit = 2048) as 
the molecular representation and calculated the Tanimoto score between them. The 
matrix is diagonally symmetric, and orange rectangles denote samples that belong to 
the same cluster. The more similar two molecules are, the greater the value of Tani-
moto between them. As shown in Fig.  7, it is clear that samples originating from 
the same cluster obtained larger Tanimoto scores and exhibited darker colors in the 
matrix. Cluster 35, in particular, has a distinctive difference in color from samples 

Fig. 6. 2D structure and similarity map for the examples randomly selected in the five clusters. For each 
cluster, the similarity scores between the reference compound and three test compounds were measured 
by the Tanimoto metric using the count-based ECFP (radius = 2, bit = 2048). The similarity weights were 
visualized by colors on the structure (similarity maps). Sub-structures that increase the similarity score were 
presented in green, whereas red indicates the opposite



Page 9 of 21Hadipour et al. BMC Bioinformatics  2022, 23(Suppl 4):132 

not in this cluster. Mol1 and Mol3 in cluster 29 achieved the highest similarity score 
(0.86). From their structure in Fig. 6, we can also identify the characteristics of struc-
tural closeness between them.

Discussion
In this study, we first tried to capture molecular descriptors, atomic features and bond 
features. However, for a given molecule, the molecular descriptor is a feature vector, 
while the atomic features and bond features are two different matrixes with different 
dimensions. We explored a simple PCA method to reduce the atomic feature matrix 
and the bond feature matrix to a PCA-based feature vector, respectively. As the smallest 
molecule in the Johnson et al. dataset contains only three atoms with two bonds, to sim-
plify the calculation, we only considered the first PC in both the atom and bond-specific 
PCA, respectively. Generally speaking, the first PC explained at least 60% variance for 
80% and 82% of the molecules using the atom features and the bond features, respec-
tively. There is a potential that the number of clusters estimated using different numbers 
of top PCs from the local bond and atomic features will be different. We will further 
investigate this interesting question in the future.

Fig. 7 Tanimoto similarity matrix between each pair of the examples, including the reference compounds 
(Mol0) and three test compounds (Mol1, Mol2, Mol3). The binary ECFP (radius = 1, bit = 2048) were used for 
the similarity calculation. The orange rectangle circles the samples belonging to the same cluster
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It is well known that features normalization is a critical step for creating robust 
machine learning pipelines, especially for frameworks where distance-based clustering 
methods such as K-means are used. This is because, for distance-based algorithms, the 
similarity between each pair of data points is determined by the distances of feature vec-
tors. Thus, the ranges of input features can largely affect the clustering outcome. During 
our experiments, we did not apply normalization on local features as we have already 
scaled the atomic mass by multiplying the values with 0.01 and encoded the other atomic 
and bond features into one-hot numeric arrays. However, for the 200 molecular descrip-
tors generated from RDKit [26], different descriptors have significantly distinct ranges of 
values, and those with larger absolute values would greatly dominate the clustering pro-
cess and force the algorithm to be more biased towards them. During our experiments, 
we found the normalization strategies can significantly impact the clustering results. 
For instance, we tested both min–max scaling and Z-score scaling individually on each 
molecular descriptor across all molecules. The Z-score scaling gave the features centered 
around 0 with a standard deviation of 1. We found this property is especially crucial to 
compare similarities between features according to the results of three internal metrics.

One major challenge of applying K-means for clustering analysis is to predefine the 
number of clusters in the data. Here, we applied the widely used Silhouette method to 
estimate the number of clusters in the large-scale molecule set. However, we expect 
some other soft K-means methods [27] to perform similar to the methods we applied 
here. Comparing with the clustering applications in other domains, such as disease sub-
typing using gene expression profiles, we found that the molecular cluster separation 
score measured by the Silhouette index is relatively low (the maximum one is 0.286), 
suggesting the molecules are more diverse and harder to be grouped than data sets from 
other domains.

As the performance of various unsupervised clustering algorithms (e.g. different vari-
ants of K-means) is heavily dependent on the choice of features from the same raw data, 
much work in this study has been focused on automatically learning these features, or 
representations of the same raw data. Giving the raw data with 243 integrated local and 
global features, we explored to autoencoder (use both the standard autoencoder and 
variational autoencoder) the high dimensional mapping to a lower one with 16, 32 and 
64 hidden features, respectively so that the higher dimensional mapping can be recon-
structed again. Hence, although the AE(16), AE(32), AE(64), VAE(16),VAE(32),V AE(64) 
were constructed at different spaces, they are just different set of learned features or rep-
resentation of the same raw data for K-means clustering. Our deep clustering approach 
involves two separate processes: one where a representation is learned, and the other 
where the actual clustering occurs. A better strategy may be to integrate the learning of 
the representation and clustering into the backward and forward passes of a single learn-
ing model so that a single combined loss can be applied. This is an interesting topic we 
will investigate in the future.

Our results showed that VAE-based embeddings have significantly better performance 
than AE-based embeddings by performing a simple K-means clustering method on their 
learned latent vectors. In contrast to the standard AE, which can only construct com-
pact latent representations from inputs and be used as a method of non-linear dimen-
sionality reduction, VAE further generalizes the concept of AE and is able to create new 
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instances by sampling from vectors of means and standard deviations. Given the large-
scale dataset used in our study, this additional property of VAE enables the model to 
generate more accurate and informative latent spaces as the a priori information from 
the entered molecules gives important control over how a distribution is modelled. Nev-
ertheless, the topological information of molecules is lacking in the latent representation 
generated from AE/VAE as we only utilized one-dimension (1D) molecular descriptors 
and local features embedded in 2D space. A potential avenue for future improvement is 
to incorporate 3D features into the AE/VAE by adding an additional embedding scheme 
tailored for them so that the topological information of molecules can also be embedded 
and contribute to clustering.

To summarize, by performing a series of feature aggregation and embedding, we incor-
porated both global and local features into the clustering analysis of a large-scale com-
pound library and selected the best combination of algorithms (VAE (32) + K-means) as 
our pipeline according to three internal indices. We investigated the clustering results by 
calculating the Tanimoto similarities scores of Morgan fingerprints between each pair 
of randomly selected compounds from five clusters. From the results of the similarity 
maps, we identified structural similarities within the same clusters and dissimilarities 
between different clusters. Given the molecular clusters obtained from our framework, 
it is feasible to carry out the diversity analysis of molecules in each cluster. In addition, 
based on the molecular properties one wishes to predict, the same QSPR models can 
be trained on several training sets, which comprise compounds from different combina-
tions of molecular clusters. By investigating the composition of clusters in each training 
set and their corresponding results on the same test set, we could gain valuable insights 
into the database itself and the underlying relationships between molecular structures 
and the desired properties.

Conclusion
In this study, we developed a novel molecular embedding framework that combines both 
PCA and VAE to integrate molecules’ local and global features. To evaluate the useful-
ness of the molecular embeddings, we applied our methods to extract the embeddings 
of the ~ 47,000 molecules from a large-scale molecule library that were screened against 
Mycobacterium tuberculosis mutant strains. We then performed an in-depth clustering 
analysis of the embeddings by comparing various unsupervised clustering algorithms, 
including standard K-means, K-means with AE, K-means with VAE, and BIRCH. We 
demonstrated that embeddings of the molecules using the VAE-based method have sig-
nificant advantages over those based on the AE-based method. Our analytic framework 
can be applied to any large-scale chemical libraries with diverse molecular structures. 
Hence, our novel analytical framework based on the clustering analysis may provide 
insights for optimizing drug discovery by decreasing the size of screening libraries.

Materials and methods
Overall study design

The study framework included three parts: molecule featurization, clustering analysis 
and evaluation (Fig. 8). The first component of our framework is the feature engineer-
ing of the compounds. To better take advantage of both the global and local features of 
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molecules, chemical descriptors and atomic and bond features were first generated from 
RDKit [26]. The atomic and bond feature matrices for each molecule were first summa-
rized and extracted using PCA, then incorporated in the clustering analysis along with 
the chemical descriptors. With the composite representations of molecules, we selected 
the optimum number of clusters based on the analysis of the Silhouette method. Next, 
we investigated three clustering methods using the obtained hyper-parameter: K-means, 
K-means with autoencoder, and BIRCH. Lastly, we evaluated and compared the clus-
tering methods on three internal indices and visualized examples from five clusters 
employing similarity maps.

Data sources

The Johnson et  al. [15] dataset used in this study is publicly available on the website 
(https:// www. chemi calge nomic softb. com), where the structure and function annotation 
of 47,217 compounds represented in the simplified molecular-input line-entry system 
(SMILES) [28] is provided. We used the SMILES strings and the bond and atomic infor-
mation of the compounds to analyze the distribution and diversity of chemicals.

Generation of molecular descriptors

A collection of 200 descriptors was derived from different modules in the RDKit pack-
age, ranging from basic descriptors such as molecular weight and the number of radi-
cal electrons to topochemical descriptors (e.g. Balaban’s J index) and hybrid Estate-VSA 
descriptors (e.g. MOE VSA descriptors), etc. [29]. The comprehensive cheminformatics 
descriptors include a wide range of chemical properties at the molecular level, providing 
a rich source of chemical information on various aspects.

Generation of atomic and bond features

As defined in the introduction, a molecular graph consists of an atomic matrix ( xv ) and 
a bond matrix ( evw ). Table 4 shows the eight types of atomic features and four types of 
bond features used in this study. All atomic and bond features were one-hot encoded, 
except for the atomic mass, which was scaled by dividing by 100. Encoding features in 
a one-hot manner is a common technique for categorical data, which guarantees the 

Fig. 8 Schematic representation of the study design

https://www.chemicalgenomicsoftb.com
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algorithm does not consider higher numbers to be more important and allows for a 
more expressive representation of categorical data [30].

Feature engineering of molecules

After extracting the global (molecular descriptors) and local (atomic and bond) features 
for each molecule, we designed a novel feature engineering scheme (Fig. 9), which fuses 

Table 4 Descriptions of atomic and bond features

Feature type Attribute Size Description

Atomic features Atom type 118 Known chemical elements (by atomic number)

Degree 6 Number of bonds the atom is involved in

Formal charge 5 Electronic charge assigned to an atom

Chirality 4 Unspecified, tetrahedral CW/CCW, or other types of chirality

Number of H 5 Number of bonded hydrogen atoms

Hybridization 5 sp,  sp2,  sp3,  sp3d, or  sp3d2

Aromaticity 1 Whether the atom is aromatic

Atomic mass 1 Mass of the atom

Bond features Bond type 4 Single, double, triple, or aromatic

Conjugated 1 Whether the bond is conjugated

Ring 1 Whether the bond is in a ring

Stereo 6 Stereochemistry of bonds (none, any, E/Z or cis/trans)

Fig. 9 Overview of the feature engineering. a The first compound of the Johnson et al. dataset (compound 
identifier: A00052363) is used as an example. The extracted chemical descriptors and the atomic and bond 
feature matrices were entered as inputs. Firstly, PCA was performed on each transposed atomic and bond 
matrix. The first principal component (PC), which contains the greatest amount of variance, was selected as 
the one-dimensional representation for each feature matrix. b The same process was used to iterate through 
all the compounds in the dataset. We first concatenated the atom and bond features, then performed 
another PCA on the matrix, and finally selected the top 50 PCAs or features, which explained all the variance 
in the data. For molecular descriptors, we normalized the values with Z-score scaling among samples. c For 
each molecule, we concatenated the normalized chemical descriptors with the aggregated local features. 
Finally, we filtered out columns with zero variance, resulting in a feature matrix of size (47,217 × 243) for the 
subsequent clustering
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the global and local features by performing a series of concatenations and dimensionality 
reductions.

To utilize graph representations of a molecule, the features of atoms and bonds need to 
be aggregated and embedded into a vector (readout) for use in subsequent tasks. In this 
regard, many graph neural networks (GNN) have been proposed, in which molecular 
features were aggregated via different message passing (or graph convolution) schemes 
[5, 31, 32]. However, GNNs belong to supervised algorithms, where the ground truth 
for each molecule is required during training. In other words, the local messages of a 
molecule can only be updated iteratively via backpropagation on the gradients of the loss 
between current states and targets. Since we only use the SMILES strings in the library 
and do not have the ground truth for clustering, we propose a PCA-based approach to 
combine local molecular features.

PCA is an unsupervised technique of dimensionality reduction that works by finding 
a new set of mutually uncorrelated variables (principal components) to represent the 
original data while retaining most of the variation [13, 33]. This study used the linear 
PCA, which projects the data onto linear subspaces, to aggregate the local features to a 
lower dimension. Specifically, we performed a linear PCA on each transposed molecule-
specific atomic and bond matrix, respectively. The first principal component, which con-
tains the greatest amount of variance, was chosen as the one-dimensional representation 
of each atomic and bond feature matrix of a given molecule, respectively (Fig. 9a-mid-
dle and right panels). In this way, the local features of different sizes in each molecule 
were aggregated into a representation with the same dimensionality for all molecules 
(Fig. 9b-middle panel).

To further filter out the redundant features with low variance across the molecules, 
we performed another PCA on the concatenated atomic and bond feature matrix 
(Fig.  9b-middle panel) and selected the top 50 PCAs or features (Fig.  9b-right panel), 
which explained all of the variance (Fig.  10). To prevent features with larger absolute 
values from dominating the algorithms, we performed a Z-score normalization of the 
molecular descriptors so that the values all fell within the same range. Lastly, we con-
catenated the resulting local and global features, followed by a filtering operation that 
deletes the feature columns with zero variance (Fig.  9c). The final representation of a 
molecule is in size of 243 learned features, which incorporate abundant local and global 
information for the subsequent clustering of the molecules (Fig. 11).

Fig. 10 The proportion of variance explained based on the number of PCs. The first 50 PCs explained 100% 
of the variance of the data
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Molecule clustering

Due to the large number of small molecules in the dataset, we selected below four clus-
tering methods since they are scalable for very large datasets, perform data reduction, 
and are efficient in memory and time usage.

K‑means method

K-means [18] is one of the simplest and most famous algorithms used to group objects. 
K-means starts to indicate centroids (a centroid is the center of a cluster of molecules) 
randomly. For example, a molecule can be assigned to a particular cluster if it is closer 
to its centroid than any other centroids. K-means iteratively optimizes the centroids 
by alternating between assigning molecules to clusters based on the current centroids 
and choosing centroids based on the current clusters of the molecules. The distances 
between a given molecule and the centroids are measured by the Euclidean distance 
metric. The algorithm stops the iterative procedure when either the centroids have been 
stabilized or when the prespecified number of iterations has been achieved.

Fig. 11 Heatmap showing the correlations between each pair of the features. The 50 aggregated atomic and 
bond features are named as PCA (1–50), while the rest are the names of the molecular descriptors generated 
by RDKit
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BIRCH method

BIRCH (Balanced iterative reducing and clustering using hierarchies) is an unsupervised 
machine learning algorithm used to cluster particularly large datasets. The basic idea of the 
algorithm is to generate a small and compact summary of a given large dataset but retain 
as much information as possible [19]. Hence, each clustering decision is made locally, and 
it does not require to consider all other molecules and currently existing molecule clusters. 
Compared with other clustering algorithms, this method can use computing memory more 
efficiently to cluster large data sets. The distances between a given molecule and other mol-
ecules are also measured by the Euclidean distance metric in this method.

Deep learning autoencoder‑based K‑means clustering

An autoencoder (AE) is a type of unsupervised neural network that maps input molecules 
to generate molecule-specific features for reconstructing the input molecules [16, 34]. An 
autoencoder includes two parts: (1) The encoder that maps the high-dimensional data into 
low-dimensional data with the most important latent features; (2) The decoder that uses 
the reduced set of latent features to reconstruct the original input data.

The autoencoder algorithm makes the embedding of the large molecule-specific feature 
data and reconstructs it in a lower dimension without losing important information. We 
used K-means to cluster molecule-specific embeddings and generate molecule clusters, 
which is expected to have much better performance and capture the cluster labels [16].

Deep learning variational autoencoder‑based K‑means clustering

Although AE is simple, controlling how the latent distribution is modelled can be challeng-
ing. A variational autoencoder (VAE) [14] is a type of generative neural network based on 
an autoencoder that is made from an encoder and a decoder. VAE makes the embedding of 
the input molecule-specific features to a latent space in a probabilistic manner and recon-
structs the input data from the latent space. Hence, VAE makes it more practical and feasi-
ble for large-scale data sets, like the set of molecules we analyzed here.

The general architecture of the VAE algorithm is summarized in Fig. 12. The goal is to 
minimize the VAE loss that defines as follow,

Reconstruction Loss:

Fig. 12 Schematic of the Variational Autoencoder model + K-Means. Encoder: X →  R2d, Decoder: Z →  Rn. E(Z) 
represents the mean of the points, and V(Z) is the variance of the points
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where m is the number of molecules, x is the input, and x̂ is the output.
VAE Loss:

where x is the input data, x̂ is the output data, β is the hyperparameter, V (Z) is the vari-
ance of the inputs in the encoder section, and E (Z) is the mean of the molecules in the 
encoder section.

The encoder of the VAE model used in our framework accepts samples of molecule`s 
features. The encoder contains the combination of six layers of linear, batch normaliza-
tion layers and an output layer that produces embeddings with reduced-dimension of 
the samples described above. The decoder subnetwork accepts these encoded samples 
as input, passing these through an architecture like the encoder, which reconstructs the 
original samples. In both subnetworks, the activation function of the hidden layers is a 
ReLu. An Adam optimizer with a learning rate of 1e-3 was used to update the neural 
networks’ weights.

Using the embeddings from the molecule-specific features based on VAE, we applied 
the K-means algorithm to generate the molecule clusters based on the predefined num-
ber of clusters.

Clustering performance evaluation

After implementing a clustering algorithm, it is necessary to evaluate the quality of the 
algorithm so that we can choose the clustering algorithm that performs best for an input 
set of large-scale molecules. Generally speaking, there are external and internal evalua-
tion measures. External evaluation measures usually require a ground truth, which is not 
available in our study. Hence, we focused on the internal clustering validation. In par-
ticular, we applied three widely used performance measures, the Silhouette coefficient 
[17], the Calinski–Harabasz index [20] and the Davies–Bouldin index [21], to evaluate 
our clustering performance. The internal clustering measurements were implemented 
with the “sklearn” python package [35].

Silhouette index

Silhouette index [17] is a mathematical method for validating and interpreting the 
consistency within data clusters. Generally speaking, a simple graphical representa-
tion is used to visualize how well each object is grouped. The Silhouette coefficient s is 
expressed as:

where a is the mean distance between a given molecule and all other molecules in 
the same cluster, while b is the mean distance between a given molecule and all other 
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molecules in the next nearest cluster. Silhouette coefficient values range between − 1 
and + 1, with higher values indicating that the molecules are better clustered. As the 
Silhouette index is bounded between [− 1, 1] and it indicates the level of cohesion of an 
object to its own cluster compared to other clusters, it is commonly calculated for find-
ing the optimal number of clusters or used as the validation of consistency within clus-
ters for unsupervised clustering tasks.

Calinski–Harabasz index

The Calinski–Harabasz index represents the ratio of the sum of between-clusters dis-
persion and inter-clusters dispersion of all clusters identified from the analysis [20]. 
The index can be calculated as a score S for k clusters:

where the tr(Bk ) is the trace of the between-group dispersion matrix and tr(Wk ) is the 
trace of the within-cluster dispersion matrix. They can be calculated as:

where Cq is the set of molecules in the cluster q. cq is the center of the cluster q.  nq is the 
number of molecules in the cluster q. cE is the center of cluster E. A higher score indi-
cates a model with more separate clusters.

Davies–Bouldin index

The Davies–Bouldin (DB) index is an internal evaluation measure to evaluate the 
performance of cluster algorithms [21]. It is defined as the similarity of the average 
between each cluster Cu, for u = 1, …, k, and its most similar one Cv. Ruv is defined as 
the similarity given by:

where  sw is the diameter of a cluster for w = 1, …, k; duv is the distance between cluster 
centroids u and v. The DB index can be calculated as:

where a lower DB index means a given model has better separation between the clusters.
Among the three internal performance metrics, the Silhouette index is more com-

monly used than the other two metrics since its value is bounded between [− 1, 1], 
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which means the value is more interpretable. The main advantage of the Davies–
Bouldin index is that it is calculated using only point-to-point distances. Hence, the 
index is exclusively based on the quantities and features inherent in the data set. In 
addition, compared to the Silhouette index, the Davies–Bouldin index is simpler to be 
computed. By definition, the Calinski–Harabasz score is computed quickly and relates 
to a standard concept of a cluster where a higher score indicates denser and better-
separated results.

Estimation of the number of molecule clusters

One of the major challenges in performing clustering analysis is to decide the number 
of clusters in a given observed data. One of the most popular methods to calculate 
this number is the Silhouette index [17]. To do this, we first calculate the Silhouette 
scores using the observed data under a different predefined number of clusters. We 
then draw an X–Y plot where the Y-axis is the Silhouette scores, and the X-axis is the 
different number of clusters. The optimized number of clusters in the observed data is 
the minimum number of clusters where the Silhouette scores become relatively stable.

Visualization analysis

t‑SNE visualization of the molecular embeddings

t-distributed Stochastic Neighbor Embedding (t-SNE) is a statistical tool to visual-
ize high-dimensional data by mapping the data points in high-dimensional space to 
a two or three-dimensional space in such a way that similar objects (molecules) are 
modelled by nearby points (molecules) and dissimilar objects are modelled by distant 
points with high probability [22, 36]. We applied the t-SNE to visualize our embed-
dings from the VAE analysis.

Molecular similarity map

In cheminformatics, a common strategy to quantify the similarity between two com-
pounds is by assessing the fingerprint similarities with distance metrics, such as Dice 
[37] or Tanimoto [24]. Based on this scheme, the similarity map proposed by Riniker 
et  al. [23] provides the ability to visualize the atomic contribution to the similarity 
between two molecules or the predicted probability from a given machine learning 
model. For each atom in a test compound, its atomic contribution (weight) to the 
similarity to a reference compound equals the similarity difference when the bits in 
the fingerprint corresponding to the atom are removed. The weights generated for 
each atom are then normalized and used to color the topography-like map for visuali-
zation. We generated the molecular similarity map using the module implemented in 
the RDKit.
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