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Background
These days, A typical drug discovery process takes 12–14  years and costs about $ 2.6 
billion [1, 2]. As one of the solutions to this problem, computer-aided drug discovery 
(CADD) has become one of the most efficient methods to reduce these costs. At the 
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Background:  Recently, machine learning-based ligand activity prediction methods 
have been greatly improved. However, if known active compounds of a target protein 
are unavailable, the machine learning-based method cannot be applied. In such cases, 
docking simulation is generally applied because it only requires a tertiary structure of 
the target protein. However, the conformation search and the evaluation of binding 
energy of docking simulation are computationally heavy and thus docking simulation 
needs huge computational resources. Thus, if we can apply a machine learning-based 
activity prediction method for a novel target protein, such methods would be highly 
useful. Recently, Tsubaki et al. proposed an end-to-end learning method to predict the 
activity of compounds for novel target proteins. However, the prediction accuracy of 
the method was still insufficient because it only used amino acid sequence information 
of a protein as the input.

Results:  In this research, we proposed an end-to-end learning-based compound 
activity prediction using structure information of a binding pocket of a target protein. 
The proposed method learns the important features by end-to-end learning using a 
graph neural network both for a compound structure and a protein binding pocket 
structure. As a result of the evaluation experiments, the proposed method has shown 
higher accuracy than an existing method using amino acid sequence information.

Conclusions:  The proposed method achieved equivalent accuracy to docking simula-
tion using AutoDock Vina with much shorter computing time. This indicated that a 
machine learning-based approach would be promising even for novel target proteins 
in activity prediction.

Keywords:  Drug discovery, Virtual screening, Docking simulation, Graph convolution, 
Deep neural network

Open Access

© The Author(s), 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third 
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​
creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​mmons.​org/​publi​
cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

RESEARCH

Tanebe and Ishida ﻿BMC Bioinformatics          (2021) 22:529  
https://doi.org/10.1186/s12859-021-04440-w

*Correspondence:   
ishida@c.titech.ac.jp 
Department of Computer 
Science, School 
of Computing, Tokyo Institute 
of Technology, 2‑12‑1 W8‑85 
Ookayama, Meguro‑ku, 
Tokyo 152‑8550, Japan

http://orcid.org/0000-0002-9478-3223
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-021-04440-w&domain=pdf


Page 2 of 10Tanebe and Ishida ﻿BMC Bioinformatics          (2021) 22:529 

initial stage of drug discovery, a compound screening is often performed for selecting 
drug candidate compounds from a chemical compound library. Such a library some-
times contains millions to tens of millions of compounds and the cost of the screening 
cannot be ignored. Virtual screening is a computational method to predict the activ-
ity of chemical compounds without biochemical experiments. The accuracy has been 
improved recently and the technology has been applied successfully [3].

The virtual screening technique can be roughly divided into two categories: ligand-
based virtual screening (LBVS) methods and structure-based virtual screening (SBVS) 
methods. LBVS predicts the activity of a given compound only from its chemical struc-
ture and supervised machine learning algorithms are used for the prediction. The 
method generally shows a good performance if we have a sufficient number of activity 
data for a target protein. However, LBVS cannot be applied if we have no compound 
activity data of a target protein. In contrast, SBVS can be used even if there is no activity 
information of a target protein. SBVS generally performs a simulation based on phys-
icochemistry using the 3-dimensional structure of a target protein for predicting the 
activity of a compound. Docking simulation is one of the most major SBVS methods. It 
predicts the binding energy of a compound to a target protein by virtually docking the 
compound (i.e., ligand) with a binding site (i.e., pocket) of a target protein surface.

Currently, various docking simulation software, such as AutoDock Vina [4], Glide [5], 
and eHiTS [6], have been developed and widely used in practical research projects [7]. 
However, docking simulation has a problem. Docking simulation needs to search a large 
conformational space by rotating and translating a compound and calculate the bind-
ing energy of a protein-compound interaction using a complicated score function. This 
process is computationally expensive and takes a few minutes to predict the activity of 
one compound with a single CPU core [5]. The execution time of docking simulation 
of a compound is acceptable. However, for virtual screening, we have to perform the 
process for a large number of compounds. Therefore, even if a docking simulation can 
evaluate one compound in 10 s, a screening of a compound library includin10 million 
compounds requires approximately 1200 CPU days.

In order to tackle this problem, several researchers proposed machine learning-based 
virtual screening methods to predict the activity of a compound for a novel target pro-
tein. Such researches used not only a chemical compound structure but also protein 
information as the input of the machine learning models. Recently, Tsubaki et al. pro-
posed an end-to-end learning prediction method for the problem and achieved better 
accuracy than the previous methods [8]. End-to-end learning combines feature design 
and task learning at the same time. By directly learning the relationship between the 
input and the output, it is possible to obtain a better representation of the input data 
rather than to manually encode it. The accuracies of end-to-end learning-based methods 
were often higher than those of conventional methods in various applications, such as 
Diagnosis of X-ray Images [9]. In the research of Tsubaki et al., they used a graph neu-
ral network for a compound and a one-dimensional convolutional neural network for a 
protein amino acid sequence. They managed to avoid manual encoding of input vectors. 
However, this method has some room for improvement because the method used only 
amino acid information. Structure information of a protein, especially the pocket struc-
ture, is considered to contain more useful information for ligand binding prediction. As 
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illustrated by the key and keyhole theory, a binding compound often has a specific shape 
for the pocket structure of a target protein. Thus, the pocket structure information is 
more important for binding estimation than the amino acid sequence which only implies 
the pocket information. In addition, when using an amino acid sequence, it is assumed 
that there is sequence homology between a target protein and a protein in the training 
data set. However, using a pocket structure, it may be possible to predict the activity 
even for a novel target protein without any sequence homology.

In this paper, we proposed a method to predict the activity of a compound by end-to-
end learning using the pocket structure information of a protein. The proposed method 
uses graph neural networks both for compound and protein pocket structures. As a 
result of the benchmark on a data set for virtual screening performance evaluation, the 
proposed method achieved higher accuracy compared to the previous method which 
uses amino acid sequence information as the input.

Results
Dataset

We used the DUD-E (a Database of Useful Decoys: Enhanced) dataset [10] as a training 
dataset of machine learning-based prediction models. DUD-E is a dataset constructed 
for the performance evaluation of the structure-based screening method created by 
Mysinger et  al. A total of 102 target proteins were selected considering diversity, and 
active compounds and decoy compounds were prepared for each target. In total, the 
dataset contains 22,886 active compounds and more than 1 million decoy compounds. 
In this study, a down-sampled version at a 1:1 ratio of active to decoy was used as the 
training dataset. We checked that proteins in the training dataset had no sequence 
similarity to those in the test dataset using NCBI-BLAST [11] as described below (the 
sequence identity was lower than 30%.)

We used the MUV (Maximum Unbiased Validation) dataset [12] as our test dataset 
because the three-dimensional structure of the target protein is required. Rohrer et al. 
obtained the assay data for 17 target proteins from the bioactivity data contained in 
PubChem [13], and assigned 30 active compounds and 15,000 decoy compounds to each 
target protein. In this study, a total of 9 target proteins, whose protein–ligand complex 
structure has been solved, was used. Those proteins are described in Table 1. This is the 
same dataset as used in the research by Ragoza et al. [14]

Table 1  Details of the selected MUV dataset

MUV ID PDB ID Description Ligand Assay type

600 1yow Steroidogenic factor 1: inhibitors P0E Cell

692 1yow Steroidogenic factor 1: agonists P0E Cell

859 5cxv Muscarinic receptor M1 0HK Cell

852 4xe4 Factor XIIa NAG Biochemical

548 3poo Protein kinase A S69 Biochemical

832 1au8 Cathepsin G 0H8 Biochemical

689 2y6o Ephrin receptor A4 1N1 Biochemical

846 5exm Factor XIa 5ST Biochemical

466 3v2y Sphingosine 1-phosphate receptor ML5 Cell
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Evaluation measure

We used AUROC (Area Under Receiver Operating Characteristic) as an evaluation 
index. AUROC is an index using the area under ROC curve, and it is an evaluation index 
mainly used for binary classification problems. ROC is a curve with a true positive rate 
(TPR) on the vertical axis and a false positive rate (FPR) on the horizontal axis. TPR is 
the proportion of positives correctly identified as positive in the dataset, and FPR is the 
proportion of negatives incorrectly identified as positive in the dataset. TPR and FPR 
can be calculated by the following formulas.

We also used F1-score for the evaluation. F1-score is the harmonic mean of the pre-
cision and recall. The precision is the number of correctly identified positive results 
divided by the number of all positive results, including those not identified correctly. The 
recall is the number of correctly identified positive results divided by the number of all 
samples that should have been identified as positive.

Prediction accuracy evaluation

For checking the improvement of the prediction accuracy of the proposed method, we 
performed the evaluation on the MUV dataset. We compared the prediction accuracy of 
the proposed method with the method using sequence information by Tsubaki et al. and 
docking simulation using AutoDock Vina, which is one of the popular docking simula-
tion software.

Table 2 shows the results of AUROC. The proposed method achieved better accuracy 
than both, Tsubaki et  al. and AutoDock Vina. However, the improvement of the pro-
posed method compared to Tsubaki et al.’s method was not that big. As shown in Table 2, 
the proposed method has shown better accuracy for almost all targets (8/9 targets). In 
addition, judging from the results in Table 2, the proposed method has shown the best 
accuracy for 6 out of the total 9 target protein. To check the statistical significance of the 

TPR = #TP
#TP+#FN

FPR = #FP
#FP+#TN

Table 2  Prediction performance for selected MUV dataset (AUROC)

MUV ID Pocket structure (Proposed) Sequence (Tsubaki et al.) Docking 
(AutoDock 
Vina)

600 0.574 0.539 0.555

692 0.542 0.531 0.470

859 0.508 0.498 0.509

852 0.647 0.643 0.482

548 0.721 0.707 0.482

832 0.612 0.599 0.535

689 0.467 0.481 0.547

846 0.631 0.630 0.461

466 0.409 0.404 0.613

Average 0.568 0.559 0.517
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improvement by the proposed method, we performed a paired t-test at the 5% level of 
significance. The p-values of the test between the proposed method and Tsubaki et al. 
and AutoDock Vina were 0.039 and 0.149, respectively. Thus, the improvement of the 
proposed method was significant compared to Tsubaki et  al., but compared to Auto-
Dock Vina the improvement was not significant because of its high variance.

Table  3 shows the results of the F1-score evaluation. The proposed method has 
shown better accuracy in comparison to Tsubaki et  al. and AutoDock Vina as well as 
in AUROC. We also checked the statistical significance of the improvement for the 
F1-score. The p-value of the improvements for Tsubaki et al. and AutoDock Vina were 
0.047 and 0.051, respectively. For the F1-score, the difference between the accuracy of 
the proposed method and that of AutoDock Vina was clearer than in AUROC, but the 
improvement was also not significant.

Discussion
Evaluation of computing time

The proposed method achieved to improve overall prediction accuracy. However, such 
methods are not so useful if they require significant computing resources. Therefore, we 
also evaluated the computing time. The prediction time was measured on an f-node of 
supercomputer TSUBAME3.0 at Tokyo institute of Technology. The details are shown 
in Table 4. AutoDock Vina used a single CPU core. The proposed method and Tsubaki 
et al.’s method used a single CPU core and a GPU card. The results of the prediction time 
per compound are shown in Table 5. The proposed method took a long time to complete 
the prediction compared to Tsubaki et  al. because the pocket graph used in the pro-
posed method is more complicated than the 1-dimensional convolution neural network 

Table 3  Prediction performance for selected MUV dataset (F1-score)

MUV ID Pocket structure (Proposed) Sequence (Tsubaki et al.) Docking 
(AutoDock 
Vina)

600 0.138 0.029 0.031

692 0.031 0.026 0.014

859 0.041 0.019 0.023

852 0.241 0.199 0.011

548 0.329 0.263 0.020

832 0.122 0.131 0.041

689 0.011 0.021 0.051

846 0.112 0.112 0.009

466 0.010 0.006 0.117

Average 0.115 0.090 0.035

Table 4  Details of the computing environment

CPU Intel Xeon E5-2680 v4 2.4 GHz × 2

Number of CPU core 28 core

Memory 240 GB

GPU NVIDIA TESLA P100 for NVlink-Opti-
mized Servers × 4
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used in that research. However, compared with AutoDock Vina, the prediction time is 
much faster (more than 1000-fold acceleration), and we think that the performance is 
still sufficient to be useful for practical usage.

Conclusions
In this research, we proposed a new end-to-end learning method for activity predic-
tion using protein pocket structure information. The proposed method has shown 
higher prediction accuracy than previous methods. Furthermore, compared with dock-
ing simulation software, the proposed method has shown higher accuracy in a much 
shorter computing time. Unfortunately, the improvement of the proposed method was 
not statistically significant in the case of AutoDock Vina. One clear reason why there 
was no statistical significance is the small size of the dataset used in the evaluation. 
In this research, we used only 9 protein targets for the evaluation, which clearly is not 
enough for this type of evaluation. However, besides the MUV dataset, there is cur-
rently no available dataset that is sufficiently unbiased. For instance, the DUD-E dataset, 
which was used in previous research, has a bias and it is not suitable for the comparison 
between docking and machine learning-based methods [15]. Thus, we used it only as 
the training dataset and evaluated the performance based on a subset of the MUV data-
set. The development of a larger dataset that is more suitable for our approach is one of 
our future works. In this research, the proposed method has shown worse accuracy than 
AutoDock Vina for 2 proteins (MUV ID 689 and 466). Unfortunately, we could not find 
any clear reason for that, but we will be able to analyze such things based on a larger 
dataset.

In addition to a new dataset construction, currently, we use only protein pocket struc-
ture information as a protein feature, but a combination of amino acid information and 
protein pocket structure information may improve overall prediction accuracy.

Materials and methods
The proposed method uses pocket structure information instead of amino acid sequence 
information used in the previous method as the feature of a protein and applies a graph 
neural network for not only a compound but also a protein. The generation of compound 
features is the same as the previous method by Tsubaki et al. [8], but protein feature gen-
eration is highly different. The proposed method consists of the following three parts; (1) 
Graph generation of a compound structure and a protein pocket structure. (2) Feature 
learning by graph neural network. (3) Activity prediction by a classifier.

Graph generation of a compound structure and protein pocket structure

A compound structure was firstly converted from a SMILES format string into a graph 
structure consisting of vertices (atom types) and edges (chemical bonds) by RDKit. If 

Table 5  Requied prediction time per a single compound

Pocket structure (Proposed) Sequence (Tsubaki et al.) Docking (AutoDock Vina)

0.011 [s] 0.0034 [s] 14.37 [s]
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a SMILES-formatted file contains dots (represents non-concatenation), it is excluded 
from the data set because the generation of a single graph is not possible.

Protein pocket structure information was extracted as the information (residue type, 
coordinates) of ligand contact residues identified by LPC software [16]. Then the infor-
mation was converted into a graph. The vertices of the graph correspond to each residue. 
The edges of the graph correspond to residue interactions including bonded and non-
bonded ones (Fig. 1). The vertices were categorized by their amino acid type (20 types) 
and represented as 20-dimensional one-hot vectors. The edges were categorized into five 
types according to the distance between Cα atoms of residues (I: 1.0–4.8 Å, II: 4.8–7.0 Å, 
III: 7.0–9.2 Å, IV: 9.2–11.4 Å, V: 11.4–13.6 Å). The types of edges were defined according 
to previous related research by Ito et al. [17]. By roughly grouping the distance between 
Cα atoms, we expected that it can cope with the structural change of a protein pocket.

Graph neural network

The compound and protein pocket graphs generated by the procedure described above 
are each converted to real-valued vectors by using a graph neural network. The proce-
dure of the graph neural network consists of three parts (embedding, transition, and 
averaging) both for compound graphs and protein pocket graphs (Fig. 2).

E

G

I
K

D

Protein pocket
structure

Extracting C
atoms

E

G

I
K

D

Protein pocket
graph

Fig. 1  Conversion of a protein pocket structure into a graph. Each circle is a residue (vertex). Green line, blue 
line, yellow line, red line, and gray line mean type I, II, III, IV, and V edges, respectively

Fig. 2  Representation learning by graph neural network
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In the embedding part, we employed the same method used in research by Tsubaki 
et al. [8]. We defined r-radius vertex and r-radius edge, which introduced the concept of 
r-radius subgraphs [18] to vertex and edge, respectively. The r-radius subgraphs include 
all neighboring vertices and edges within a radius r (r is the number of hops on the 
graph) from a certain vertex. In the transition part, the following operation (i) and (ii) 
for each r-radius vertex and each r-radius edge are repeated. (i) Add adjacent r-radius 
vertex and r-radius edge vector. (ii) The vector generated by the operation (i) is input to 
the non-linear function and updated. Finally, all r-radius vertex vectors generated by the 
operation (ii) are averaged and one real-valued vector is output in the averaging part.

Activity prediction by a classifier

The activity of a compound was predicted using the d-dimensional compound vector 
ymolecule and the protein vector yprotein obtained from a graph neural network described 
above. Firstly, we simply concatenated ymolecule and yprotein as follows: [ ymolecule; yprotein] . 
Then, the input z ∈ R

2 to a softmax layer is obtained by the following equation:

Here, Woutput ∈ R
2×2d , boutput ∈ R

2 . Finally, z = [y0, y1] was inputted into the softmax 
layer and binary classification on whether the ligand is active or not was performed.

Hyperparameter optimization and docking simulation settings

We used almost the same neural network structure and hyperparameters used in the 
previous method by Tsubaki et al. Thus, the hyperparameter values are the same as pre-
vious research except for the parameters related to protein features (i.e. r-radius of a pro-
tein pocket subgraph). The value was determined by using the training dataset. Details 
of hyperparameters used in the proposed method are shown in Table 6.

We performed experiments on target proteins for which protein–ligand complex 
structures were obtained. Therefore, we assumed that the central coordinates of a ligand 
were the central coordinates of the pocket. A 24 Å × 24 Å × 24 Å cube centered on that 

z = W output

[

ymolecule; yprotein

]

+ boutput

Table 6  Hyperparameters used in this research

Hyperparameter Value/method

Dimensions of feature vector 10

Compound r-radius subgraphs 2

Layers of compound graph neural network 3

Protein pocket r-radius subgraphs 1

Layers of protein pocket graph neural network 3

Learning rate 0.001

Learning rate decay 0.5

Decay interval 10

Optimization function Adam

Epoch size 100

Batch size 1
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coordinates was defined as the search range of AutoDock Vina. In addition, we set num_
modes to 100, energy_range to 3, exhaustiveness to 8.

Abbreviations
AUROC: Area under receiver operating characteristic; TPR: True positive rate; FPR: False positive rate.
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