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Background
The majority of cancer driver gene studies have been focusing on the identification of 
individual somatic point mutations [1, 2]. However, somatic mutations are often highly 
heterogeneous between cancer genomes, even within the same type of cancer, and 
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Background:  Genetic information is becoming more readily available and is increas-
ingly being used to predict patient cancer types as well as their subtypes. Most 
classification methods thus far utilize somatic mutations as independent features for 
classification and are limited by study power. We aim to develop a novel method to 
effectively explore the landscape of genetic variants, including germline variants, and 
small insertions and deletions for cancer type prediction.

Results:  We proposed DeepCues, a deep learning model that utilizes convolutional 
neural networks to unbiasedly derive features from raw cancer DNA sequencing 
data for disease classification and relevant gene discovery. Using raw whole-exome 
sequencing as features, germline variants and somatic mutations, including insertions 
and deletions, were interactively amalgamated for feature generation and cancer 
prediction. We applied DeepCues to a dataset from TCGA to classify seven different 
types of major cancers and obtained an overall accuracy of 77.6%. We compared Deep-
Cues to conventional methods and demonstrated a significant overall improvement 
(p < 0.001). Strikingly, using DeepCues, the top 20 breast cancer relevant genes we have 
identified, had a 40% overlap with the top 20 known breast cancer driver genes.

Conclusion:  Our results support DeepCues as a novel method to improve the rep-
resentational resolution of DNA sequencings and its power in deriving features from 
raw sequences for cancer type prediction, as well as discovering new cancer relevant 
genes.
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only represent for a small portion of the genome variations [3]. While many meth-
ods attempted to address the complex mutational heterogeneity in cancer, driver gene 
identification still remains a challenge due to the limited capability in integrating other 
genome components for integrative study [4–8]. Other genome components, such 
as nonsense mutations of insertions and deletions, as well as germline variation, were 
largely ignored in the past but have been recently highlighted to play a significant role 
for cancer development [9–11]. Genome components, including somatic mutations, 
germline variants, insertions and deletions, when studied together, especially in an inter-
active term, give rise to the challenges of model complexity and study power [12].

Due to the limitation of analysis power, methods including Bayesian classifier [13], 
regression models [14, 15], and KNN [16] are not optimal in handling such high-dimen-
sional features interactively. To circumvent these challenges, labor intensive feature 
engineering using prior knowledge need to be performed prior to modeling [17]. These 
conventional learning algorithms rely heavily on data representations and are typically 
designed by domain experts. The complexity of the human genome and the amount of 
required human effort make it difficult to derive meaningful features [18, 19], whereas 
deep learning can automatically learn a good feature representation [20]. Deep learning 
has recently emerged with the advances in big data with the power of parallel comput-
ing and sophisticated algorithms. Furthermore, deep learning models are exponentially 
more efficient than conventional models in learning intricate patterns from high-dimen-
sional raw data with little guidance [20–23]. Typically, convolutional neural networks 
(CNNs) computes convolution on small regions by sharing parameters between regions 
[24], which allows training models on large DNA sequences. Recent examples of explor-
ing the application of CNNs within raw sequencing data include DeepBind [25], DanQ 
[26], DeepSEA [27], DeepCpG [28].

Inspired by the successful applications of deep learning models in genomics data, 
and in an attempt to study somatic mutations, germline variants, insertions and dele-
tions collectively and interactively, we propose to utilize deep learning models to study 
the tumor raw sequences, namely Deep learning for disease Classification using exome 
sequencings (DeepCues). Specifically, we propose to use a CNNs model to utilize tumor 
raw DNA sequences for cancer type classification and more importantly, relevant gene 
identification. In addition to raw tumor sequence, we also investigated the utility of ger-
mline DNA sequences. Collectively, we have identified a subset of genes that are rel-
evant for each cancer development. In a pilot study utilizing 4174 samples across seven 
major cancer types from The Cancer Genome Atlas (TCGA), we were able to achieve an 
accuracy of 77.6% in predicting cancer types using the raw tumor sequences. Germline 
variants dominant somatic mutations number-wise, strikingly, in the attempt of utilizing 
germline raw sequences only, we were able to achieve an accuracy of 73.9%. Using the 
trained models, we have identified several known cancer driver genes, along with a list of 
genes that have not been previously reported as cancer driver genes.

Results
The following cancers were analyzed: brain cancer, breast cancer, colorectal cancer, 
kidney cancer, lung cancer, prostate cancer, and uterus cancer. Germline and somatic 
mutations from 4174 samples across seven major cancer types were obtained from the 
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TCGA [29]. To construct raw sequences for each cancer sample, we merged the refer-
ence genome sequence with the identified germline variants and somatic mutations, 
individually or in combination. To prepare the germline variants, aligned sequenc-
ing data derived from blood or adjacent normal tissues were recalibrated, and vari-
ants were called using HaplotypeCaller from GATK package [30]. SnpEFF was used 
for functional annotation [31], and variants annotated with moderate effects were 
missense mutations and in-frame shifts; nonsense mutations were annotated as high 
effects. In parallel, somatic mutations for the matched samples were obtained directly 
from TCGA and the same functional annotation processes were performed. In total, 
4600 virtual machines were utilized for 119,000 CPU hours for these tasks. Overall, 
we identified 45,119,052 germline variants and 957,115 somatic mutations from the 
4174 matched samples (Table 1).

As a pilot study, we derived features only from genes that have been implicated in 
cancers using a list of 719 consensus genes (Additional file 1: Table S1) from the Cata-
logue of Somatic Mutations in Cancer (COSMIC), which is a mutation catalogue with 
comprehensive mutation information curated from about 542,000 tumor samples 
[32]. In our dataset, these consensus genes corresponded to 985 canonical transcripts 
(Additional file  2: Table  S2) and thus, the transcripts were used to train and evalu-
ate our proposed models. To construct raw sequences for each sample, sequences in 
RefSeq database was started as references (Fig. 1a). The RefSeq database was named 
as consensus matrix. This consensus matrix consists of 24,286 transcripts. The aver-
age length of these sequences were 3375 bases. For each individual, the identified 
germline variants were constructed into the consensus matrix, forming a germline 
raw sequence (Fig. 1b). Once a germline raw sequence was formed for each sample, 
somatic mutations were then constructed in the germline raw sequence, forming a 
cancer raw sequence (Fig.  1c). It has been suggested that mutations prefer certain 
codons and the distance between amino acid changes have been described [33]. 
Moreover, the position within the codon where the mutation occurs is critical. To 
incorporate codon information into our model features, one hot encoding was applied 
with every three nucleotides and was encoded as a binary unit. The combination of 

Table 1  The number of samples of each cancer and the corresponding number of germline 
variants and somatic mutations

Variants annotated with moderate effects are defined as missense mutations and in-frame shifts; variants annotated as high 
effects are defined as nonsense mutations

*Number in parenthesis is standard deviation (SD)

Cancer Cancer # Blood # Adjacent 
normal #

Germline 
moderate

Germline 
high

Somatic 
moderate

Somatic high

Breast cancer 959 936 23 10,911 (71) 641 (5) 65 (10) 16 (3)

Colorectal 
cancer

420 395 25 10,331 (241) 621 (15) 293 (79) 81 (18)

Brain cancer 763 763 0 9572 (55) 550 (3) 94 (30) 23 (6)

Uterus cancer 530 507 23 10,894 (103) 650 (7) 645 (152) 160 (28)

Lung cancer 730 713 17 9717 (37) 555 (2) 217 (15) 43 (3)

Kidney cancer 332 332 0 10,882 (124) 634 (8) 51 (6) 14 (1)

Prostate 
cancer

440 440 0 9744 (53) 558 (4) 34 (22) 7 (3)
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four nucleotides (A, C, T, and G) results in a vector with 64 dimensions to represent 
each codon combination.

A convolutional framework that consists of multiple layers was used in our study 
(Fig.  2). The framework has three components: input layer (Fig.  2a), encoder layer 
(Fig. 2b) (multiple convolutional and dense layers), and fully connected layer (Fig. 2c). 
We first trained convolutional neural networks (CNNs) using the 985 pathogenetic tran-
scripts and calculated overall classification accuracy for each cancer type. Using only 
the germline raw sequence as input (Method), we achieved an overall accuracy of 73.9% 
(SE = 0.7%) (SE standard error). Using the cancer raw sequence as input, the achieved 

Fig. 1  Feature generation for proposed models. a The transcript sequences were retrieved from RefSeq and 
were formed as a consensus matrix. b Each patient’s germline variants were embedded in the consensus 
matrix, forming a germline raw sequence for each sample. The brown dots are the germline variants 
including polymorphisms, deletions, and insertions. As an illustration, single nucleotide polymorphisms were 
identified and embedded in transcript A, E, and H. An in-frame shift deletion was embedded in transcript B 
and an in-frame shift insertion was embedded in transcript C. A frame shift deletion and frame shift insertion 
is embedded in transcripts D and E, respectively. Transcript F and G remained the same. c Each patient’s 
somatic mutations were embedded in the germline raw sequence (from B), forming a germline and cancer 
raw sequences. The green dots are the somatic mutations including SNVs, insertions, and deletions. As an 
illustration, the tissue gained somatic mutations in transcript A and E; gained a stop loss in transcript F; and 
gained a deletion that shifted the frame in transcript G
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overall accuracy was 77.6% (SE = 0.9%). To compare our method to other conventional 
cancer classification methods and to benchmark our results, we calculated baseline accu-
racies using logistic penalized linear regression and linear SVM, which are among the 
most widely utilized methods for cancer classification. We also evaluated more advanced 
models including Gradient Boosting Decision Tree (GBDT) and Multiple Layer Percep-
tron (MLP). Logistic penalized linear regression resulted in an overall accuracy of 51.5% 
(SE = 0.5%) and 65.5% (SE = 0.3%) using the germline and cancer data, respectively; lin-
ear SVM yielded an overall accuracy of 49.4% (SE = 0.4%) and 58.6% (SE = 0.3%). Like-
wise, Gradient Boosting Decision Tree (GBDT) achieved an overall accuracy of 62.1% 
(SE = 0.24%) and 61% (SE = 0.21%) (Fig. 3). Using sequence data as input, MLP model 

Fig. 2  The architecture of the convolutional neural network. Component a is the input layer with one hot 
encoding with the column number equals 64 (number of total possible codons) and the row number equals 
the number of codons in the transcript. Component b is the encoder component containing a sequence of 
layers, each consisting of a convolutional layer, followed by a Leaky Rectified Linear Unit and average pooling 
layer. The number of convolution layers is determined by the gene length. Component c is a fully connected 
layer that combined all the outputs from the component b and has k outputs for k diseases
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achieved an overall accuracy of 69.2% (SE = 0.23) and 74% (SE = 0.89). Using the same 
input information, our proposed method significantly outperformed the conventional 
methods (p < 0.001).

For each cancer type, classification precision, recall, and f-measure were character-
ized (Table 2). Of note, multiclass data will be treated as if binarized under a one-vs-rest 
transformation. Using only germline raw sequence, we found breast cancer and colo-
rectal cancer yielded the highest F-measure scores. Using tumor raw sequence data, 
we found breast cancer, colorectal cancer, and brain cancer had the highest F-measure 
scores. Multilabel confusion matrix averaged between the 10 runs were used to evalu-
ate the effectiveness of our proposed method (Table 3). In our proposed model, tumor 
raw sequence is a combination of somatic mutations and germline raw sequences. Add-
ing the somatic mutation data increased F-measures for breast cancer, brain cancer, and 
uterus cancer significantly (p = 6.7E−03, 3.8E−06, and 1.9E−02 respectively).

In an attempt to identify novel cancer driver genes, we integrated an additional 985 
transcripts to our current feature pools. When using only the germline raw sequence as 
input features, we achieved an overall accuracy of 82.7% (SE = 0.6%). Using the raw can-
cer sequence as input, we achieved an overall accuracy of 80.0% (SE = 0.9%). Similarly, 
for each type of cancer, we calculated precision, recall, and F-measure using either the 
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Fig. 3  Prediction accuracy comparisons between DeepCues and baseline models. The compared methods 
include penalized logistic regression (LR) and support vector machine (SVM) with linear kernel, Gradient 
Boosting Decision Tree (GBDT), and Multiple Layer Perceptron (MLP) model

Table 2  Precision and recall for our proposed model

The experiment is replicated for 10 times and the number in parenthesis is standard error. The bolded number are those 
that significantly improved in cancer sequence compared to germline sequence

Germline sequence Cancer sequence

Precision Recall F-measure Precision Recall F-measure

Breast 81.9% (2.7%) 83.4% (4.2%) 81.4% (1.8%) 85.6% (2.0%) 90.7% (1.8%) 87.8% (1.1%)
Colorectal 85.9% (1.9%) 83.9% (2.1%) 84.6% (0.8%) 84.7% (4.5%) 87.1% (2.6%) 84.7% (2.1%)

Brain 73.0% (1.5%) 66.5% (4.3%) 68.5% (1.9%) 87.5% (2.7%) 78.4% (2.0%) 82.2% (0.9%)
Uterus 76.3% (4.9%) 62.7% (6.9%) 64.2% (3.9%) 85.3% (1.8%) 68.2% (3.3%) 75.1% (1.7%)
Lung 64.8% (3.2%) 75.5% (4.7%) 67.7% (1.5%) 70.3% (4.9%) 78.4% (5.5%) 71.2% (2.0%)

Kidney 76.9% (2.5%) 71.5% (2.8%) 73.4% (1.1%) 77.6% (4.7%) 68.7% (5.9%) 69.5% (2.3%)

Prostate 70.8% (4.2%) 55.7% (6.0%) 58.9% (3.2%) 65.6% (5.5%) 50.5% (9.7%) 49.1% (5.9%)
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germline raw sequence or the cancer raw sequence (Table 4). Using only germline data, 
we found breast cancer and colorectal cancer had the highest F-measure scores. Using 
both germline and somatic mutation data, we found breast cancer, colorectal, and uterus 
cancer had the highest F-measure scores. Consistently, best performances were found 
within breast cancer and colorectal cancer in both models.

Using the coefficients derived from the fully connected layer, the model can be 
extended to prioritize genes that are relevant for each cancer type. The analysis was 

Table 3  The confusion matrix for our proposed model

The number is average of the 10 runs for test set prediction

Predicted Predicted class cancer sequence

Germline sequence Cancer sequence

True Positive Negative Positive Negative

Breast

 Positive 161 31 169 22

 Negative 36 608 39 604

Colorectal

 Positive 73 11 72 11

 Negative 15 737 8 743

Brain

 Positive 124 29 100 53

 Negative 67 616 53 628

Uterus

 Positive 64 42 62 44

 Negative 22 708 16 713

Lung

 Positive 88 58 94 52

 Negative 33 657 60 628

Kidney

 Positive 48 19 49 19

 Negative 18 751 26 741

Prostate

 Positive 57 31 50 38

 Negative 30 719 36 710

Table 4  Precision and recall for our proposed model

The experiment is replicated for 10 times and the number in parenthesis standard error. The bolded number are those that 
significantly improved in cancer sequence compared to germline sequence

Germline sequence Cancer sequence

Precision Recall F-measure Precision Recall F-measure

Breast 87.1% (2.8%) 91.9% (1.6%) 89.0% (1.2%) 89.1% (1.6%) 87.2% (2.2%) 87.8% (0.7%)

Colorectal 87.8% (1.7%) 94.0% (1.6%) 90.6% (0.8%) 86.1% (3.8%) 90.8% (2.9%) 87.5% (2.2%)

Uterus 90.0% (1.8%) 72.8% (6.8%) 78.0% (5.5%) 84.9% (3.1%) 71.4% (2.8%) 76.6% (1.0%)

Brain 88.3% (4.4%) 58.6% (5.2%) 67.9% (2.2%) 77.3% (2.5%) 75.9% (3.5%) 75.6% (1.5%)
Lung 69.1% (4.9%) 79.9% (7.2%) 69.8% (2.7%) 73.7% (3.1%) 75.6% (4.0%) 73.4% (1.8%)

Kidney 81.9% (2.7%) 81.3% (2.0%) 81.3% (1.5%) 70.0% (3.8%) 76.0% (5.0%) 71.2% (3.3%)

Prostate 76.4% (6.1%) 67.3% (7.2%) 66.0% (3.7%) 72.2% (2.7%) 65.5% (3.5%) 68.1% (2.3%)
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repeated 10 times with different initial seeds and top 20 genes were labeled in each rep-
licate. The studied genes were subsequently ranked by frequency among all replicates. 
Top ranked genes were considered as cancer relevant genes and were summarized in 
Additional files 4–7: Table S4–S7. As a result of breast cancer relevant gene discovery, 
strikingly, 8 of the top 20 genes overlapped with the COSMIC breast cancer top 20 genes 
when we use cancer raw sequences as input. The high consensus rate (40%) partially vali-
dated that our method was effective in identifying cancer relevant genes. In addition, we 
have identified cancer relevant genes that have not been previously explored for breast 
cancer (Table 5).

Discussion
The development of high throughput sequencing technology has enabled the cataloging of 
large-scale genetic information. To help improve cancer diagnosis and targeted therapies, 
cancer type classification methods are continually being upgraded. Traditionally, the major-
ity of classification methods based on DNA sequencing data has relied on studying single 
point somatic mutations with various regression models [34–36]. Mutations involving 
insertions and deletions as well as germline mutations have been largely ignored due to the 
high dimensionality problem. Given that many methods are already limited in their ability 
to study so many variables, it has been even more challenging to integrate these variables 
and study them interactively. To deal with these challenges, groups have proposed aggregat-
ing mutations on a gene level to be studied as a feature [35, 37–39]. Mutations within genes 

Table 5  The top 20 genes relevant genes with breast cancer derived from the 985 pathogenetic 
transcripts and the 1970 transcripts

The bold genes in the 985 transcripts are the ones found in COSMIC top 20 genes. The bold genes in the 1970 transcripts are 
the ones in the unknown transcripts

985 transcripts 1970 transcripts

Germline Cancer Germline Cancer

TCF3 GATA3 FOXP1 CASP8

FOXP1 APC TCF3 PALB2

LEF1 RNF213 SPATA31A3 RXFP3
PAFAH1B2 PIK3CA PAFAH1B2 DOCK2
BLM PPP2R1A CCNE1 ANK1

PPFIBP1 CDH1 ADAM23 ADAM23
PALB2 CHD2 NCOA4 ITK

MUC4 RUNX1 KC6 TCF3

CCDC6 MSH6 PALB2 CCNE1

LIFR CNBD1 AMOT FOXP1

MITF KMT2C LEF1 ABHD13
CCNE1 ARID1A CPEB2 SPATA31A3
ZCCHC8 TBX3 SPATA31D1 XPO6
TP53 KRAS IL21 FRYL
FOXO4 CHD4 BLM RFC5
EBF1 KMT2D ITK SDHAF2

TERT NRAS ZNF507 POU4F1
GMPS MAP3K1 CCDC6 PICALM

CCNC HLA-A TERT LEF1
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have also been proposed to be studied within a matrix as inputs for machine learning meth-
ods [40–43]. In our study, we have proposed a novel method, DeepCues. DeepCues utilized 
the raw sequence as inputs, which by nature integrates all somatic mutations and germline 
variants, and also INDELs, to be studied as inputs in a joint manner. Convolutional Neural 
Networks (CNNs) were then applied to train classifiers for cancer type classification. Fur-
thermore, we have included a fully connected layer to allow for relevant gene discovery to 
help characterize genes and pathways important for multiple cancers.

As a pilot study, we retrieved germline and somatic DNA sequencing data from matched 
samples across seven types of cancer and used DeepCues to perform cancer type classifica-
tion. Of note, the COSMIC has combined genome-wide sequencing results from 542,000 
tumors with complete manual curation of 23,489 individual publications [32, 44]. Using 985 
known pathogenic transcripts as input, we obtained 73.9% and 77.6% accuracy using ger-
mline raw sequencing and cancer sequencing data as inputs, respectively. In our results, 
DeepCues was also found to significantly outperform conventional methods (p < 0.01). 
Consistent with somatic mutations playing a large role in cancer [45], integration of somatic 
mutations together with germline data significantly improved overall accuracy (p = 0.005) 
using the 985 known pathogenetic transcripts. Integration of somatic data significantly 
increased accuracy for breast cancer (p = 6.6E−03), brain cancer (p = 3.8E−06), and uterine 
cancer (p = 1.92E−02), suggesting somatic mutations play a relatively larger role in these 
cancers. Following the integration of additional 985 unknown transcripts into the model, 
we were able to boost overall accuracy to 82.7% and 80.0% for germline sequences and can-
cer sequences, respectively. As an observation, after integrating the additional 985 tran-
scripts, cancer raw sequences were not superior to germline sequencing, suggesting that 
the addition of somatic mutations was not informative for cancer type prediction. This 
observation is partially due to the fact that traditional cancer driver gene research’s focus 
on somatic mutations. As a result, the 985 additional transcripts that were not previously 
identified as cancer driver genes, are most likely not enriched for cancer relevant somatic 
mutations. Conventional methods are limited regarding germline variation and their inter-
active role in cancer due to a large number of variables and complexity issues. In our study, 
we were able to obtain reasonable accuracy performances using the germline raw sequence 
only as an input. This suggests that germline variation may be more important than previ-
ously reported based on prior methods [34]. More specifically, we found that breast cancer 
and colorectal cancer have the best performance using only germline information, suggest-
ing that these two cancers probably confer higher heritability compared to others. Stud-
ies have reported high familial heritability in breast cancer and colorectal cancer too [46]. 
Using a fully connected layer in our framework, we identified relevant known and unknown 
pathogenic genes. For the 20 genes we have identified to be relevant for breast cancer, strik-
ingly, 40% of the genes have been reported in the COSMIC top 20 genes for breast cancer.

Conclusions
Future development to better evaluate and assess our model will involve the inclusion of 
gene expression level, copy number variation, methylation, as well as including additional 
transcripts to be studied. Given that DeepCues is novel in its ability to utilize germline 
data in an informative manner, it will be of great interest and clinical impact to apply 
DeepCues to differentiate cancerous and non-cancerous samples. Disease classification 
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not only allows for improved diagnosis and therapies but also allows research to under-
stand a disease through identified groups of genes and related pathways. DeepCues uses 
genetic sequencing data as inputs with little domain knowledge and feature preparation. 
With the abundance of genomic information available, we expect DeepCues can be used 
in a variety of disease settings to help profile diseases.

Methods
Due to the nature of 64 codons in human genetics, the input layer in component (A) uses 
one hot encoding to represent each input sequence as a N * 64 binary matrix, where N 
equals the number of codons. Therefore, the input can be considered as a 1-D sequence 
with 64 channels. Component (B) is an encoder layer to encode the input to a lower 
dimensional vector. The encoder component contains a sequence of convolutional layers 
with six output channels and a fully connected layer for each output channel. Therefore, 
a vector of six outputs is generated by the encoder for each input sequence. In theory, 
the output channel can be set as any positive integer. The more output channel, the more 
expressive capacity and more complexity of the model. To make a trade-off between the 
complexity and the expressive capacity, we set the output channel as six. In fact, if the 
precision of each channel is 0.01 (i.e., can store 100 numbers), 6 channels can express 
100

6 different samples. One convolutional layer is composed of one 1-D convolutional 
layer followed by a Leaky Rectified Linear Unit (LeakyReLU) as the activation function 
and an average pooling layer. The number of convolution layers is determined by the 
transcript length N and the kernel size for average pooling layer. A Kernel size of six 
was used for the average pooling. Therefore, we will have log6N convolution layers for 
each transcript. Component (C) is a fully connected layer with k outputs for k diseases. 
The inputs of component (C) are the combinations of products from the component 
(B) generated under the sequence of transcripts. With the average of 3375 bases in the 
transcripts, the encoder layer would have an average of 3–4 convolution layers. Of note, 
we set the following parameters for our model: the number of input channels for the 
encoder layer: 64; the convolution kernel size: 3, the output channel size of the encoder 
layer: 3; learning rate: 0.001; batch size: 32; number of learning epochs: 30. We used 
cross entropy loss as the loss function and Adam algorithm as the optimizer.

A training set, validation set, and test set were created by randomly splitting the sam-
ples using a 7:1:2 ratio, respectively. Parameters were trained using the training set and 
tuned using the validation set. Precision, recall, and F-measure were calculated for each 
cancer type using the testing set. To compare the performance of our models to other 
conventional methods for cancer classification, we applied penalized logistic regression 
with L1 penalty, linear support vector machine (SVM), gradient boosting decision tree 
(GBDT), and Multiple Layer Perceptron (MLP) [14, 47]. Inputs for regression, SVM, 
GBDT are point mutations, whereas input for MLP are sequence data. The performance 
was also compared between the germline raw sequence and the cancer raw sequence. 
For the DeepCues, evaluations were repeated ten times with different initial seeds.

To reduce computational load, we selected genes that have been implicated in can-
cer using a list of 719 consensus genes (Additional file 1: Table S1) from the Catalogue 
of Somatic Mutations in Cancer (COSMIC). COSMIC is a mutation catalogue with 
comprehensive mutation information curated from about 542,000 tumor samples 
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[32]. In our dataset, we found these consensus genes corresponded to 985 transcripts 
(Additional file 2: Table S2), and we used these transcripts to train and evaluate our 
proposed classifiers. We compared DeepCues with multiple conventional methods 
and state-of-the-art method, including penalized logistic regression (L1 penalty), 
SVM with linear kernel, Gradient Boosting Decision Tree (GBDT), and MLP model. 
The regression, SVM, and GBDT baseline model was trained using germline variants 
and somatic mutations found in these selected transcripts. Default parameters were 
used for the baseline models in scikit-learn (v0.22). To discover potentially relevant 
genes not known to be implicated in cancer, we also applied a multinomial logistic 
regression model to the remaining transcripts using disease type as an output, and 
the number of mutations in each transcript as inputs to identify the 985 top ranked 
transcripts based on p-value (Additional file 3: Table S3). The inputs for the multino-
mial are number of mutations in each transcript. The number of mutations has been 
normalized by gene length. Classifiers were trained, and evaluation was measured 
using only known pathogenic transcripts and also using a combination of the known 
and unknown pathogenic transcripts. It has been demonstrated that features fre-
quently ranked high in different training sets yields a robust set of predictive features 
with stability [48]. To obtain a gene list with reasonable stability, we repeated training 
the classifiers with random seeds and reported the top 20 most frequent transcripts 
in each replication. An earlier version of this article was previously published as a 
preprint [49].
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