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Background
Cancer is one of the most complex diseases that threaten human health [1]. The lat-
est developments in next-generation sequencing (NGS) technology have provided us 
with an unprecedented opportunity to better characterize the molecular characteristics 
of human cancer [2, 3]. The Cancer Genome Atlas (TCGA) [4] and the International 

Abstract 

Background:  As one of the deadliest diseases in the world, cancer is driven by a few 
somatic mutations that disrupt the normal growth of cells, and leads to abnormal 
proliferation and tumor development. The vast majority of somatic mutations did not 
affect the occurrence and development of cancer; thus, identifying the mutations 
responsible for tumor occurrence and development is one of the main targets of cur‑
rent cancer treatments.

Results:  To effectively identify driver genes, we adopted a semi-local centrality 
measure and gene mutation effect function to assess the effect of gene mutations on 
changes in gene expression patterns. Firstly, we calculated the mutation score for each 
gene. Secondly, we identified differentially expressed genes (DEGs) in the cohort by 
comparing the expression profiles of tumor samples and normal samples, and then 
constructed a local network for each mutation gene using DEGs and mutant genes 
according to the protein–protein interaction network. Finally, we calculated the score 
of each mutant gene according to the objective function. The top-ranking mutant 
genes were selected as driver genes. We name the proposed method as mutations 
effect and network centrality.

Conclusions:  Four types of cancer data in The Cancer Genome Atlas were tested. 
The experimental data proved that our method was superior to the existing network-
centric method, as it was able to quickly and easily identify driver genes and rare driver 
factors.

Keywords:  Cancer, Driver genes, Mutation data, Local centrality, Transcriptional 
network

Open Access

© The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third 
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate‑
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdo‑
main/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

RESEARCH

Tang et al. BMC Bioinformatics          (2021) 22:457  
https://doi.org/10.1186/s12859-021-04377-0

*Correspondence:   
zhengch99@126.com 
1 Key Lab of Intelligent 
Computing and Signal 
Processing of Ministry 
of Education, College 
of Computer Science 
and Technology, Anhui 
University, Hefei, China
Full list of author information 
is available at the end of the 
article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-021-04377-0&domain=pdf


Page 2 of 16Tang et al. BMC Bioinformatics          (2021) 22:457 

Cancer Genome Consortium (ICGC) [5] have produced and analyzed a large amount of 
genomic data of various cancers [6]. Cancer development involves many complex and 
dynamic cellular processes. These processes can be accurately described according to 
the pathological stages, and the extraction of reliable biomarkers is required to char-
acterize the dynamics of these stages, including (1) stage-specific recurrence somatic 
copy number alterations (SCNAs), (2) the related aberrant genes, and (3) the enriched 
dysfunctional pathways [7–12]. The key challenge for cancer genomics is analyzing and 
integrating this information in the most efficient and meaningful way, which can pro-
mote cancer biology and then translate this knowledge into clinical practice [13, 14]; for 
example, the design of anticancer drugs and identification of drug-resistant genes [15]. 
Cancer is an evolutionary process in which normal cells accumulate various genomic 
and epigenetic changes, including single-nucleotide variations (SNVs) and chromosomal 
aberrations. Some of these alterations give mutant cells an advantage in growth and pos-
itive selection as well as cause intense proliferation, giving raise to tumors [16]. Although 
somatic mutations occur in normal cells, they are neutral or apoptosis-inducing, not 
leading to conversion to cancer cells [17]. One of the key questions in cancer genomics is 
how to distinguish ‘driver’ mutations that cause tumors from ‘passenger’ mutations that 
are functionally neutral [18].

The simplest way to identify driver genes is to classify mutations according to recur-
rence; in other words, the most frequently occurring mutations are more likely to be 
drivers [19, 20], or the background mutation rates are used to measure significantly 
mutated genes. Many computational methods based on mutation frequency recognition 
for driver mutations and driver genes have been widely used, such as MutSig [21] and 
MuSic [22]. MuSig estimates the background mutation rate of each gene and identifies 
mutations that deviate significantly from that rate. MuSic uses mutation rates that are 
significantly higher than expected, pathway mutation rates, and correlations with clini-
cal features to detect driver genes. Tamborero et al. used a silent mutation in the coding 
region to construct a background model and proposed the OncodriveCLUST method, 
which is mainly used to identify genes with a significant mutation clustering tendency 
in protein sequences [23]. However, a portion of the driver genes are mutated at high 
frequencies (> 20%), and most cancer mutations occur at intermediate frequencies 
(2–20%) or lower frequencies than expected [24]. Although frequency-based methods 
can identify driver genes among genes that are frequently mutated in patients, they are 
ineffective in identifying drivers in infrequently or rarely mutated genes [25]. To obtain 
sufficient statistical power to detect cancer driver genes with low mutation frequency, a 
large number of cancer patients must be sequenced [26]. This situation has provoked a 
number of methods that assist in identifying driver genes. Generally, these methods can 
be categorized into machine learning-based methods and network-based methods.

Machine learning-based approaches use existing knowledge to identify driver genes 
or driver mutations. For example, CHASM uses random forests to classify driver muta-
tions and uses known carcinogenic somatic cells for missense mutation training [27]. 
Moreover, the CHASM score has also been successfully applied to the CRAVAT algo-
rithm [28]. In addition to CHASM, the CRAVAT algorithm integrates the results of the 
SNVBox [29] and VEST [30] tools and realizes the annotation of the effect of non-syn-
onymous mutation functions [28]. The CanDrA algorithm integrates the results of more 
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than 10 algorithms (such as CHASM, SIFT, and MutationAssessor); obtains 96 features 
in structure, evolution, and genes; and builds an algorithm based on machine learning 
prediction-driven missense mutations [31]. The FATHMM algorithm integrates homol-
ogous sequences and conserved protein domain information and uses a hidden Markov 
model-based algorithm to distinguish cancer-related amino acid mutations among pas-
senger mutations [32, 33]. The DriverML algorithm proposed by Han et al. used statisti-
cal methods to quantify the scores of different mutation types on protein function and 
then combined them with machine learning algorithms to identify cancer driver genes 
[34]. However, the method of training prediction models using machine learning has 
some shortcomings. For example, in predicting driver mutations, it is difficult to obtain 
high-quality positive and negative sample datasets, which is a significant challenge for 
machine learning-based algorithms.

The development of network analysis science, such as in the fields of complex systems, 
social networks, communication networks, and transportation networks, has inspired 
many bioinformatics researchers to use network analysis methods to study the func-
tional mechanism of molecular systems. Pathway- and network-based methods can eas-
ily simplify biological entities and their interactions into nodes and edges, allowing the 
systematic study of the nature of complex diseases [35] and the diagnosis, prevention, 
and treatment of cancer. Moreover, network- and pathway-based strategies have become 
one of the most promising approaches for identifying driver mutations, and some 
researchers have found that genes work together to form biological networks, which can 
be used to identify driver genes. MEMO [36] relies on the predictive pathway or the 
mutual exclusion of driving mutations in the sub-net to try to find a small sub-net of 
genes belonging to the same pathway. PARADIGM-Shift [37] uses pathway-level infor-
mation and other features to infer the dysfunction of mutations. Researchers have also 
attempted to use protein–protein interaction network (PPI) data to integrate different 
omics data. For example, HotNet2 [38] combined with PPI used hotspot diffusion to find 
the small sub-networks of frequent mutations. However, the authors tried to identify a 
cancer-driving module composed of many genes, rather than genes that are crucial for 
cancer development. A recently published method, DriverNet [39], identifies a simple 
set of mutated genes associated with genes that experience mRNA expression disor-
ders in a PPI network. OncolMPACT [40] prioritizes mutated genes based on linkages 
to dysregulated genes in cancer using matched expression data. The VarWalker algo-
rithm, through sample-specific gene screening, constructs a sample-specific network, 
and integrates and recognizes driver genes [41]. The DawnRank algorithm analyzes the 
effect of a mutant gene on its downstream genes in a molecular interaction network, and 
used the PageRank algorithm sequences the genes of a single sample, finally resulting in 
the identification of driver genes [3]. The DEOD algorithm integrates genomic muta-
tion data, expression data, and PPI network data; constructs a directed weighted graph 
based on the method of partial covariance selection; and identifies driver genes that have 
a significant effect on the target gene [42]. MUFFINN [43] considers mutations in neigh-
boring genes in a network in two different ways, either consider mutations in the most 
frequently mutated neighbor (DNmax) or to consider mutations in all direct neighbors 
with normalization by their degree connectivity (DNsum) showing good predictive per-
formance in large candidate sets.
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In recent years, researchers have also attempted to identify driver genes from the per-
spective of individual networks. For example, the SSN algorithm is based on individual net-
work identification of driver genes, which uses the Pearson Correlation Coefficient (PCC) 
of sample expression data to construct individual networks and then, through statistical 
analysis, determine cancer driver genes or modules [44]. The HIT’n DRIVE algorithm inte-
grates each patient’s individual genomic mutation data and expression data to construct 
a network and identify the driver genes and modules that affect transcriptional changes 
based on the expected value of the shortest random walk length in the network [45]. From 
the perspective of individuals, Guo et al. successively proposed the SCS [46] and PNC [47] 
algorithms. The SCS algorithm integrates mutation data, expression data, and molecular 
network data of each patient sample, and uses the network control method to evaluate the 
individual genes. Driver genes are then identified based on the effect of gene mutations 
on gene expression [46]. The PNC algorithm uses paired samples to construct individual 
networks, and then uses structure-based network control principles to identify individual 
driver genes [47]. The PRODIGY algorithm proposed by Dinstag et al. integrates individual 
mutation and expression data with pathways and PPI network data, uses reward collection 
Steiner tree models to quantify the regulatory effects of mutant genes on pathways and rec-
ognize driver genes [48]. However, owing to incomplete data in gene interaction networks, 
the false positive rate of these existing methods is still very high; therefore, further improve-
ment is needed, which brings challenges to network-based prediction methods.

To overcome false positives and improve prediction accuracy, in this study, we intro-
duced semi-local centrality and considered mutational information between genes to iden-
tify mutant genes in tumors. Unlike DriverNet, we considered the structure of the genes in 
the network. The introduction of network centrality can lead to the identification of genes 
at key locations in the network. These genes may be driven by genes or regulatory genes. 
MUFFINN considers the direct neighbor information of mutated genes in the network, 
but ignores the information of the secondary neighbor. Based on this, our method consid-
ered not only the nearest and the next-nearest neighbors of node but also the interaction 
between mutant gene nodes. We processed the cancer coding region mutation data from 
TCGA into a gene–patient mutation matrix as well as calculated the gene mutation score 
and the Euclidean distance between two genes according to the matrix. Increasing evidence 
shows that miRNAs are widely involved in the occurrence of cancer [49, 50]; therefore, we 
also performed gene expression analysis to obtain differentially expressed genes. Moreover, 
functional studies have suggested that driver mutations alter the expression of its down-
stream genes in the molecular interaction network [51]; therefore, we integrated differen-
tially expressed genes and mutated genes into the PPI network and calculated the effect of 
the mutated genes based on the obtained local network. Experiment on TCGA datasets 
verified that our proposed mutations effect and network centrality (MENC) method was 
superior to the existing methods based on frequency and network centrality.

Results
Most existing network methods for identifying driver genes are based on global 
networks. These global networks increase computational complexity. In addi-
tion, the accuracy of these methods needs to be improved. Our method employed 
a novel scheme: we first calculated the effect of the mutation, and then identified a 
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local network for each mutated gene. We used the objective function to calculate the 
effect of mutated genes in the local network and sort the mutated genes according to 
the score to determine the driver genes. The top-ranking genes were more likely to 
become driver genes, which are more interesting to researchers and can even advance 
to further biological experiments for verification. Therefore, in the comparison analy-
sis, we only used the top 50 candidate genes. To show the advantages of our model, we 
analyzed four large-scale publicly available datasets, including glioblastoma (GBM), 
bladder cancer (BLCA), prostate cancer (PRAD), and ovarian cancer (OVARIAN). 
The experimental results showed that our method was better than not only the net-
work-centric method but also other types of methods. More importantly, our method 
was also able to recognize rare driver genes.

Datasets and resources

In this study, we mainly used two types of data: coding region mutation data and gene 
expression data. In particular, the coding region mutation data included copy number 
variations (CNVs) and SNVs. These data were obtained from 328 GBM samples, 379 
BLCA samples, 252 PRAD samples, and 316 OVARIAN samples, and downloaded 
from the TCGA data portal (https://​tcga-​data.​nci.​nih.​gov/​tcga/). We used only sam-
ples that included both of them. The PPI network we used was downloaded from the 
Human Protein Reference Database (HPRD) [52, 53], which consists of 9617 genes 
and 74,078 edges. Table 1 shows the sample counts in the four cancers mapped on the 
PPI network mutated gene numbers and outlying gene numbers.

In the absence of basic facts, quantitative measurements using standard sensitivity/
specific benchmarking techniques are impractical. To help assess the quality of our 
results, we obtained a list of 616 known drivers from the Cancer Gene Census (CGC) 
database (09/26/2016) [54].

Comparison with network‑centric approaches

To evaluate the method’s ability to identify known driver genes, we compared our 
method with network centricity-based methods. As mentioned above, we used the 
CGC as an approximate benchmark for known driver genes. For comparison, we used 
the following three metrics (precision and recall rates and F1score) in this study:

Table 1  Description of datasets

Tumor type Number of tumor 
expression samples

Number of 
mutation samples

Map to DEGs on 
the network

Map to mutation 
genes on the 
network

GBM 328 328 4196 5650

BLCA 379 379 8787 8029

PRAD 252 252 5953 4184

OVARIAN 316 316 5309 5705

https://tcga-data.nci.nih.gov/tcga/
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We compared our method with two main network-centrality-based methods, SCS 
[46] and MUFFINN [43]. MUFFINN considers mutational information among direct 
neighbors, either in the most frequently mutated neighbor (DNmax) or in all direct 
neighbors with normalization by their degree of connectivity (DNsum). The results 
are shown in Fig.  1. Here, we only show the results for two types of cancer (GBM 
and OVARIAN). As shown in the figure, our method performed better than SCS and 
MUFFINN. For GBM cancer, our method was not as effective as SCS in identifying 
the first 15 candidate driving genes, but our method showed a great improvement 
in the latter. MENC was significantly superior to the other methods for the other 
three cancers. The number of CGCs covered among the top 50 genes identified was 
27 genes with our method, 24 with SCS, 12 with DNsum, and 21 with DNmax. Our 
method achieved the best results for the BLCA and PRAD cancer data.

For OVARIAN cancer, the top 50 genes analyzed by our method included 27 in the 
CGC database, while SCS had 17, DNsum had 10, and DNmax had 17. It can also 
be seen that the SCS method exhibits a large downward trend. The accuracy of the 
top 10 genes was 0.8, and the accuracy was reduced to below 0.4 in the top 30. Our 
method is relatively stable, and there is no significant decline. The results indicated 
that our method yielded reliable results for identifying driver genes.

(1)

Precision =
(#Mutated genes in CGC) ∩ (#Genes found in MENC)

(#Genes found in MENC)

Recall =
(#Mutated genes in CGC) ∩ (#Genes found in MENC)

(#Genes found in CGC)

F1score = 2×
Precision× Recall

Precision+ Recall

Fig. 1  Comparison of precision, recall, and F1score for the top-ranking genes. The X axis represents the 
number of top-ranking genes, and the Y axis represents the score of the precision, recall, and F1score
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Comparison with other approaches

Because our method not only considers the characteristics of the network but also cal-
culates the mutation scores and interaction of the genes, we also compared MENC with 
DriverNet [39], a frequency-based method, and OncolMPACT [40]. As shown in Fig. 2, 
in general, relative to CGC, our approach was superior to DriverNet, Frequency, and 
OncolMPACT in analyzing all cancer datasets. Although only the results of BLCA and 
PRAD cancers are shown here, the same good results were obtained for other cancer 
data, which are not shown here.

Novel and reliable driver genes found using our method

In addition to identifying frequently mutated driver genes, MENC can identify impor-
tant rare driver genes. According to DawnRank’s [3] definition of novel and important 
driver genes, genes meeting the following requirements are rare genes: (1) the ranking of 
the driver gene is based on patient population; (2) frequency of the mutation is less than 
2% of the patient population in the mutation data; (3) the gene has not been identified as 
a driver gene by CGC.

In OVARIAN, 316 samples were analyzed. Using our method, nine rare driving fac-
tors were identified as the top 20 genes according to the above definition, seven of which 
were in included in CGC (see Table 2). Although some rare driver genes such as EGFR, 
EP300, and CREBBP have been found in DNMax and DNSum, they rank higher in our 
method. In addition, SRC (1.58% of cases) is usually associated with disease and may 
lead to the development of human malignancies [55]. FYN (0.95% of cases) and PRKCA 
(1.58% of cases) have not been listed as driving genes by CGC, but studies have found 
that they are associated with many cancers and overexpressed in cancer patients [56, 57].

Fig. 2  The comparison of precision, recall and F1score for top ranking genes of MENC and other methods. 
The X axis represents the number of top ranking genes and the Y axis represents the score of the precision, 
recall and F1score respectively. The last row is the result of BLCA and the next row is the result of PRAD
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In BLCA, we identified 18 rare genes among 22 candidate driver genes (see Table 3), 
12 of which were in CGC. For example, MENC recognized AKT1 (0.53% of cases) as 
a serine/threonine protein kinase, and its downstream proteins have been reported to 
be frequently activated in human cancers [58]. Most of the highest-ranked genes in 
BLCA are low-frequency mutant genes.

Considering that the identification of cancer driver genes is required for cancer 
treatment, we used the drug–genes interaction database (DGIdb) [59] and TARGET 
database [60] to determine whether our candidate driver genes are clinically relevant 
genes. The results are shown in Fig. 3. In all four cancer datasets, 80% or more can-
didate driver genes were identified as actionable targets. Approximately 40% of the 
genes were druggable. There is a partial intersection between the candidate genes and 
druggable genes. The union of the actionable and druggable genes in the four cancers 

Table 2  Rare driver genes in OVARIAN

Rank Gene Mut Mutation frequency (%) CGC gene

2 SRC 5 1.582278 YES

8 EP300 6 1.898734 YES

9 SMAD3 2 0.632911 YES

11 FYN 3 0.949367 NO

12 PIK3R1 6 1.898734 YES

13 AR 1 0.316456 YES

17 PRKCA 5 1.582278 NO

19 PTPN11 6 1.898734 YES

20 SMAD4 4 1.265823 YES

Table 3  Rare driver genes in BLCA

Rank Gene Mut Mutation frequency (%) CGC genes

2 SRC 4 1.055409 YES

3 ESR1 1 0.263852 YES

4 GRB2 1 0.263852 NO

8 MAPK1 2 0.527704 YES

9 AR 2 0.527704 YES

10 PIK3R1 3 0.791557 YES

11 SHC1 4 1.055409 NO

12 SMAD3 5 1.319261 YES

13 FYN 3 0.791557 NO

14 ABL1 7 1.846966 YES

15 SMAD2 3 0.791557 YES

16 PRKCA 3 0.791557 NO

17 CSNK2A1 5 1.319261 NO

18 STAT3 6 1.583113 YES

19 LCK 1 0.263852 YES

20 BRCA1 4 1.055409 YES

21 AKT1 2 0.527704 YES

22 PRKCD 1 0.263852 NO
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BLCA, GBM, OVARIAN, PRAD was 42, 42, 39, and 42, respectively. These results 
indicate that the candidate driver genes are clinically relevant.

Enrichment analysis

To test the biological function of the MENC-predicted candidate drivers, we used the 
DAVID tool (v6.8) for KEGG pathway and GO function enrichment analyses.

For OVARIAN, the important candidates were mainly enriched in pathways in can-
cer, viral carcinogenesis, proteoglycans in cancer, prostate cancer, and pancreatic cancer. 
They were also involved in biological process such as positive regulation of transcription 
from RNA polymerase II promoter and signal transduction. Regarding cellular com-
ponents, the identified candidates were enriched in the nucleus, nucleoplasm, cytosol, 
cytoplasm, and plasma membrane. Furthermore, with regards to important molecular 
functions, the candidate drivers were enriched in identical protein binding, DNA bind-
ing, and transcription factor binding.

In BLCA, KEGG analysis showed that the candidate genes were enriched in pathways 
in cancer, chemokine signaling pathway, and PI3K-Akt signaling pathway. GO analysis 
revealed that the candidate genes were enriched in signal transduction, positive regu-
lation of transcription, and DNA template. As for cellular components, the candidates 
were enriched in the cytoplasm and nucleus. In terms of molecular functions, the can-
didates were enriched in protein binding, enzyme binding, and transcription factor 
activity.

In GBM, the candidates were enriched in pathways in cancer, viral carcinogenesis, and 
hepatitis B. In terms of biological processes, the candidate drivers were enriched in sig-
nal transduction, viral processes, and protein phosphorylation. With respect to cellular 
components, the candidates were enriched in the nucleus, plasma members, cytoplasm, 
and nucleoplasm. As for molecular functions, the candidates were enriched in enzyme 
binding, transcription factor activity, and sequence-specific DNA binding.

In PRAD, the enriched KEGG pathways were proteoglycans in cancer, thyroid hor-
mone signaling pathway, and microRNAs in cancer. The enriched GO functions were 

Fig. 3  Actionable and druggable genes among candidate driver genes in four types of cancer
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negative regulation of the apoptotic process and protein phosphorylation. As for cellular 
components, the candidates were enriched in the cytosol, nucleus, and plasma mem-
brane. In terms of molecular functions, the candidate drivers were enriched in protein 
binding, ATP binding, transcription factor binding, and kinase activity.

Discussion and conclusions
In this study, we proposed the MENC method for identification of driver genes. Our 
approach not only considered mutation frequency in patients but also integrated muta-
tion and gene expression data into a gene–gene interaction network. We considered the 
nearest and next-nearest nodes from the source node when calculating the network cen-
trality. When tested on the GBM and OVARIAN datasets, our method performed sig-
nificantly better than the network-based SCS and MUFFIN methods. In addition, our 
method was superior to other methods such as DriverNet in analyzing the PRAD and 
BLCA datasets. Our method even identified rare driver genes.

Nevertheless, our approach had some limitations. For example, in clinical practice, 
precision medicine and personalized medicine are important for the diagnosis and treat-
ment of patients. However, using the proposed method, we could not diagnose driver 
genes in the individual. In the future, we will propose a new approach to identify patient-
specific and rare driver genes based on individual mutations and gene expression pro-
files in tumors.

Methods
Overview of the MENC approach

We proposed a new method that combined mutation and expression data into a PPI net-
work, and adopted a combination of semi-local centrality and mutation effect function 
to identify the driver genes of cancer. The method consisted of three main steps. First, 
we integrated SNV and CNV data to obtain a mutation matrix, and calculated the gene 
mutation score (Eq. 2) and the Euclidean distance (Eq. 3) between two genes according 
to the matrix. Next, the mutation effect function between genes was calculated accord-
ing to Eq. 4. In the second step, we compared the expression profiles of tumor samples 
with those of normal samples to identify DEGs. We subsequently constructed a semi-
local network for each mutation gene using DEGs and mutation genes according to the 
PPI network. The third step was to calculate the local centrality and mutation effect of 
the mutated genes according to the target function (Eq. 5). The top-ranking genes were 
regarded as candidate driver genes. Our method considered the nearest and next-near-
est nodes when calculating the local centrality. Compared with global centrality meas-
ures (e.g., betweenness centrality and closeness centrality), our local centrality measure 
had a much lower computational complexity. We also added the mutational effect func-
tion, as to not ignore some genes that have a low degree but may have a much higher 
influence than high-degree genes [61]. A flowchart of the method is shown in Fig. 4.

Calculation of gene mutation score and distance between genes

The downloaded TCGA coding region mutation data were summarized in a binary 
gene-patient matrix M, in which the rows represent the genes, and the columns rep-
resent the cancer samples (patients). For gene i, if the patient has SNVs or CNVs, M(i, 
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j) = 1; otherwise, M(i, j) = 0. We used the MaxMIF [62] method to calculate the mutation 
score (Eq.  2). Based on the obtained gene-patient matrix, we calculated the mutation 
score of the gene. The mutation score M(i) for each gene i accounts for the contribution 
of its mutation to cancer, defined as follows:

where Ki is the set of patients with mutations in gene i. Nk is the total number of mutated 
genes in sample k. Nmax is the maximum number of mutated genes in all samples. If gene 
i has no mutation in all samples, that is, Ki is empty, then M(i) is assigned a background 
mutation score (BMS) that is no greater than any mutant gene.

We then calculated the Euclidean distance between two genes according to the dis-
tance formula (Eq.  3), where vector X, Y is the row vector of each gene in the gene-
patient matrix, and xi, yi is an element in the row vector. In this study, we also tried 
other distance formulas, such as Jaccard and Manhattan, and brought the distance 
obtained by each distance formula into the final objective function. We found that the 
obtained driver genes were the same; therefore, we chose the Euclidean distance in the 
experiment.

(2)M(i) =

{

∑

k∈Ki

1
Nk

, Ki �= �
1

Nmax
, Ki = �

Fig. 4  Flowchart of comparative transcriptome analysis of the mutations effect and network centrality 
(MENC) method used in this study. The red nodes represent the mutated gene from the mutation-patient 
matrix, and the blue nodes represent the differentially expressed genes from the gene expression matrix
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Mutations effect function between genes

Reference MaxMIF measures the effect of interaction between two mutant genes on 
biological functions. In this experiment, we also used mutation impact function (MIF) 
values to calculate the effect of mutation between two genes. The value is driven by 
the gravity principle [63].

Here, M(i) and M(j) are the mutation scores of gene i and j, respectively. rij is the 
reciprocal of the Euclidean distance between gene i and gene j. Euclidean distance 
measures the similarity of two vectors (the similarity of two genes on the patient set). 
Two genes with high mutation scores and high similarity had high MIF values.

Identification of DEGs and construction of local network

In this study, expression data were processed the same way as SCS data. To indicate 
the DEGs of each patient, we first calculated the log2 fold-change in gene expression 
between the paired tumor and normal samples. Genes with an absolute value greater 
than 1 were considered as DEGs. We then collected the DEGs from each patient to 
obtain the DEGs of the cohort. All patient mutation genes were selected from the 
mutation matrix. In addition, we downloaded the PPI network as an interaction graph 
between the mutated genes and DEGs. If there are edges of mutant genes and DEGs 
in the network, the two genes are connected to the semi-local network. We built a 
semi-local network where mutated genes were considered the source node and DEGs 
were the target nodes. Moreover, we only considered the role of the mutant in two 
steps, which reduced the computational complexity. After preprocessing the data, the 
next step was performed.

Calculation of driver gene scores

Unlike some existing network-based methods, we constructed a new semi-local inter-
section network for each mutated gene by merging mutant genes, DEGs, and HPRD 
networks. Referring to the metric of the network local centrality measure CL(v) in [61], 
CL(v) calculates the number of neighbors of node v and the neighbors of the neighbors. 
We have made corresponding improvements to this formula: when counting the number 
of neighbors of a node gene, we performed different calculations for the neighbors of the 
node that were mutations and DEGs. If the neighbor of the node was a mutated gene, we 
used the MIF between the genes multiplied by the degree of the node, and if the neigh-
bor was the DEGs, only the degree of the node was calculated. See formula (5):

(3)dist(X ,Y ) =

√

√

√

√

n
∑

i=1

(xi − yi)2

(4)MIF(i, j) =
M(i)M(j)

r2ij
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where N(v)/N(w) represents the set of neighbors of node v/w. We calculated the local 
centrality of the mutated gene. For mutation i, if the mutated gene u/w was ligated, we 
also considered the mutation effect between them as a weight, calculated by c(u)/c(w). 
Therefore, we can identify drivers that are important in the network and have a strong 
effect on other genes. If the neighbor u/v is a DEG, calculated by b(u)/b(w), which only 
considered the centrality of the network. Our main idea was to accord the function as 
the effect score in a local network. The higher the score, the greater the effect of the 
mutated gene on the DEGs in the local network. The presence of genes is both a muta-
tion and a differential expression. Therefore, these genes may be more important. There-
fore, when a gene is differentially expressed, it acts as a target node. However, when 
mutated, it acts as a source node. The score for this type of gene increased. Using this 
model, we obtained a score for each mutant gene. Then, according to the scores, we 
ranked the mutation genes to identify influential genes. We assumed that the higher the 
ranking, the more likely it was to be a driver gene.
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