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Background
Long non-coding RNA (lncRNA) is a type of RNA molecule with special functions in 
eukaryotic cells [1]. lncRNA are non-protein coding transcripts and populous with the 
length of more than 200nt. They extensively exist in the nucleus or cytoplasm. Research-
ers have found that lncRNAs are involved in regulating multiple crucial biological pro-
cesses by interacting with protein like chromatin-modified complexes and transcription 
factors [2–4]. The interactions are relevant to the vital activities of organisms [5–8]. 
Many key cellular processes, such as signal transduction, chromosome replication, 
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material transport, mitosis, transcription, and translation, are all linked to the interac-
tions between lncRNAs and proteins [9–11]. Although the regulatory role of lncRNAs 
on gene expression is undisputed, few studies have been done on the function and 
mechanisms of lncRNAs. Since the regulatory performance of lncRNAs requires the 
coordination of protein molecules, it is necessary to identify the interactions between 
lncRNAs and protein molecules.

Most of the research work focuses on the interaction between lncRNA and protein 
of humans and animals, but less on plants. Compared with animals and humans, the 
homology of plant RNA is poor. Regulation of gene expression at the post-transcriptional 
level is mainly achieved by proteins containing well-defined sequence motifs involved 
in RNA binding. The most widely spread motifs are the RNA recognition motif (RRM) 
and the K homology (KH) domain. The Arabidopsis genome encodes 196 RRM-contain-
ing proteins, a more complex set than found in Caenorhabditis elegans and Drosophila 
melanogaster. In addition, the Arabidopsis genome contains 26 KH domain proteins. 
Most of the Arabidopsis RRM-containing proteins can be classified into structural and/
or functional groups, based on similarity with either known metazoan or Arabidopsis 
proteins. Approximately 50% of Arabidopsis RRM-containing proteins do not have obvi-
ous homologs in metazoa, and for most of those that are predicted to be orthologous of 
metazoan proteins, no experimental data exist to confirm this. Additionally, the function 
of most Arabidopsis RRM proteins and all KH proteins is unknown. However, the higher 
complexity of RNA-binding proteins in Arabidopsis may account for the observed differ-
ences in mRNA maturation between plants and metazoa [12].

There are many lncRNA databases available, but most are focused on humans and ver-
tebrates. Databases from plants include: NONCODE [13], PNRD database [14], PLncDB 
database [15]. These lcnRNAs play significant roles in guiding reproductive develop-
ment, growth, stress response, chromosome modification, and protein interactions.

Interactions between lncRNAs and proteins are ubiquitous. Only a few conventional 
methods such as X-ray diffraction [16], nuclear magnetic resonance [17], electron micros-
copy [18], neutron scattering [19], cross-linking immunoprecipitation [20] and miRNAs 
as mediators in a heterogeneous network [21] have been used to detect structural data of 
protein complexes. This is due to the shortcomings of experiments, like high cost, long 
time, and complicated test process. Advanced high-throughput sequencing technology 
has enabled researchers to quickly acquire mass transcriptome and proteomic informa-
tion, including RNA protein interaction (RPI) real-time analysis. However, conventional 
experiments have their limits such as they are only used for specific proteins, RNAs, or 
protein-RNA complexes. Therefore, machine learning has extensively been applied to bio-
informatics, such as making multi-labels classification and disease prediction based on 
given lncRNAs [22] and identifying RNA pseudouridine sites [23]. Muppirala et  al. [24] 
put forward RPISeq, which feeds the sequence coding vectors of RNA and protein by con-
joint triad feature (CTF) [25] to the random forest (RF) and support vector machine (SVM) 
to make predictions. Lu et al. [26] create a method named lncPro, which is based on the 
fisher linear discriminant approach and uses secondary structure, hydrogen-bond, and van 
der Waals propensities as input features. IPMiner use the stacked auto-encoder (SAE) and 
predicts the RNA–protein interactions by RF classifier [27]. Yi et al. [28] propose the RPI-
SAN model by using the deep-learning stacked auto-encoder network to mine the hidden 
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high-level features from  RNA and protein sequences  and feed them into a RF model to 
predict ncRNA binding proteins. Traditional machine learning methods extract features 
manually, such as building and extracting features according to physical and chemical char-
acteristics or biological functions. The quality of feature selection directly affects the perfor-
mance of model prediction. The deep learning method only needs to select the appropriate 
coding method without building features, so it is more applicable.

Since researchers have to collect features manually through traditional machine learning 
models, they are not likely to accurately position hidden relationships among the raw data. 
Nevertheless, deep learning provides a solution. With a multi-layer neural network model 
architecture [29–31], deep learning enables the automatic extraction of abstract features 
from datasets. Deep learning has outperformed other commonly used machine learning 
approaches in image analysis [32], speech recognition, and signal processing [33]. It has 
also been widely applied in bioinformatics [34, 35]. For example, deep learning has been 
successfully applied to predict splicing patterns [36], discrimination of breast cancer with 
microcalcifications on mammography [37] and protein interaction network reconstruc-
tion [38]. Compared with other sequence methods, deep learning automatically learns the 
sequence features of RNAs and protein molecules, discovers specific correlations among 
the sequences [39], and suppresses noises on the original data by learning the actual hidden 
advanced features. Besides, with the artificial introduction of noises to some deep learning 
models, over-fitting is decreased, the generalization ability and robustness of such models 
are improved.

Ensemble learning is considered the state-of-the-art solution for many machine-learning 
challenges [40, 41]. Such methods improve the predictive performance of a single model by 
training multiple models and combining their predictions. Ensemble learning is also widely 
used in the field of bioinformatics, such as the prediction of miRNA-Disease Association 
[42].

In this paper, we proposed a sequence- and structure-based ensemble model for pre-
dicting plant lncRNA-protein interaction using stacked denoising autoencoder (SDAE) 
and convolutional neural network (CNN), named PRPI-SC. The architecture is shown in 
Fig. 1. The sequence and structure features were extracted from lncRNAs and proteins [23]. 
Based on the physicochemical properties of protein molecules, 20 protein amino acids were 
divided into 7 groups [43], embedded into a matrix, and extracted features using SDAE and 
CNN. After these two modules complete the prediction, the results are integrated and the 
final results are obtained. The performance of PRPI-SC was tested on plant datasets and 
other common RNA–protein datasets compared with other methods. The results show 
that PRPI-SC has excellent performance on plant datasets, and has achieved the best results 
in accuracy and other evaluation metrics. PRPI-SC effectively predicts the interaction 
between plant lncRNA and protein. Experiments on public datasets show that it has good 
generalization ability and strong robustness.

Results
Effect of structural information

To explore whether the added secondary structure information has a positive effect on 
the final results of the model, we conducted experiments on the ATH948 dataset. The 
results are shown in Table 1.
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According to the experimental results, accuracy, precision and specificity are increased 
by 0.1%, 0.2%, and 0.7% respectively after adding secondary structure information, 
which proves that the structure information can supplement the sequence information 
and improve the prediction performance of the model.

Performance comparison between different modules of PRPI‑SC

PRPI-SC combines two basic prediction modules, SDAE and CNN. We compared each 
module on the dataset ATH948, and the results are shown in Fig. 2. CNN and SDAE 
had their advantages in different indicators, but the ensemble module, PRPI-SC is better 
than a single module. It is showed that our ensemble strategy is effective.

Performance comparison on plant lncRNA‑protein datasets

We compared PRPI-SC with other RPI prediction methods, such as IPMiner, RPISeq 
and lncPro, on our datasets, and the accuracies are shown in Fig. 3. In [24], the authors 
proposed RPISeq-RF and RPISeq-SVM for predicting RNA–protein interaction, and 
RPISeq-RF performed better than RPISeq-SVM on most datasets. Accordingly, here we 
only compared PRPI-SC with RPISeq-RF. PRPI-SC achieved good results on our two 
plant datasets. It achieved the best results on the accuracy, precision and specificity and 
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Fig. 1  The flowchart of PRPI-SC

Table 1  Comparisons of whether to add structure information on dataset ATH948 (%)

Dataset Input data Acc Pre Sn Sp MCC AUC​

ATH948 Only Sequence 88.8 91.2 84.3 91.1 78.1 94.8

Sequence and Structure 88.9 91.4 84.2 91.8 78.1 95.0
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the second-best result in sensitivity. On the ZEA22133 data set, the accuracy of PRPI-SC 
was 13.9% higher than IPMiner, which was a great improvement and reaches 99.9% in 
precision and specificity. Based on the synthetic results, PRPI-SC predicted the interac-
tion of plant lncRNA-protein well, with high accuracy, which was ahead of other RPI 
prediction methods. Detailed results are shown in Table 2.

Performance comparison on other published RNA–protein datasets

To test the robustness of PRPI-SC, we compared it with other RPI prediction methods 
on other published RNA–protein datasets and the accuracies are shown in Fig. 4. On the 
RPI2241 and RPI369 datasets, PRPI-SC achieved the highest accuracy, sensitivity and 
MCC, and the second best in other performance indexes. On the RPI1807 dataset, PRPI-
SC achieved the highest accuracy of 97.0% and the highest MCC of 93.8%, similar to 
RPISeq-RF method. The performance of RPI488 dataset was relatively average, but the 
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performance indexes are not significantly different from other methods. This is under-
standable because no prediction method or deep learning model can handle all predic-
tion problems or adapt to all data sets. Detailed results of the performance indexes are 
shown in Table 3.

Discussion
The ensemble deep learning model PRPI-SC takes advantage of two different predic-
tion modules, and gives more comprehensive prediction results. CNN architecture has 
a more powerful fitting ability for k-mer features of sequence and structural information 
of RNA and Protein and extracts advanced features better. Compared to SDAE-based 
architecture, CNN architecture performs better in advanced feature representation. 
SDAE has strong noise reduction capabilities, which can effectively eliminate the inter-
ference from noise data, which is more common in plant datasets. Compared with previ-
ous methods, PRPI-SC shows good performance in predicting plant RPI.

When training deep learning neural networks, we usually hope to get the best gen-
eralization performance that fits the data well. However, all the deep learning neural 

Table 2  Performance comparison among different methods on datasets ATH948 and ZEA22133 (%)

The best results are highlighted in bold

Dataset Method Acc Pre Sn Sp MCC AUC​

ATH948 PRPI-SC 88.9 91.4 84.2 91.8 78.1 95.0
IPMiner 88.2 89.2 86.9 89.5 76.5 94.1

RPISeq-RF 75.6 76.2 75.2 73.0 79.4 90.2

lncPro 75.4 76.9 75.4 74.7 71.5 89.2

ZEA22133 PRPI-SC 82.6 99.9 65.2 99.9 69.6 92.7
IPMiner 68.7 69.6 66.5 70.9 37.5 84.6

RPISeq-RF 65.4 64.1 62.5 70.3 35.9 81.4

lncPro 60.3 61.3 60.8 69.6 30.9 80.8
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Page 7 of 14Zhou et al. BMC Bioinformatics          (2021) 22:415 	

network structures are prone to overfitting. When the network performance in the 
training set performs better and the error rate is getting lower and lower, at some 
point its performance in the test set begins to deteriorate. The generalization ability 
of a model is usually evaluated by the performance of the model on the validation set. 
When the model performs well on the training set and poorly on the validation set, 
we think that the model has overfitting.

To reduce overfitting, the early stopping method is widely used. It calculates the per-
formance of the model on the verification set during training. When the performance of 
the model on the verification set begins to decline, stop the training to avoid the overfit-
ting problem. To further reduce the impact of overfitting, we set dropout to 0.5 [44].

Compared with the deep learning models dealing with other problems (image rec-
ognition, text processing, etc.), our RPI datasets are relatively small in size, except 
ZEA22133, which is a disadvantage for the deep learning model. In addition to the 
small amount of data, the selection of negative pairs is also a question worthy of con-
sideration. In ATH948, ZEA22133, RPI369, and RPI2241, negative pairs are generated 
by random matching after excluding positive pairs, which may cause uneven distribu-
tion of data on negative pairs and affect the final results. In our future work, we will 
also focus on how to optimize the model for small sample size datasets and how to 
generate more reasonable negative pairs.

Conclusions
In this study, we propose an ensemble deep learning model PRPI-SC, to input the 
sequence and structural information of encoded RNA and protein, and to generate com-
prehensive prediction results using deep learning modules such as SDAE and CNN.

After adding structural information, the overall performance of the model was 
improved, which shows that secondary structural information play a complementary 

Table 3  Performance comparison among different methods on public datasets (%)

The best results are highlighted in bold

Dataset Method Acc Pre Sn Sp MCC AUC​

RPI2241 PRPI-SC 87.1 85.2 89.2 85.8 74.3 94.6
IPMiner 86.1 88.2 87.7 84.1 72.4 90.6

RPISeq-RF 85.0 86.3 86.1 83.8 70.7 69.0

lncPro 61.6 66.9 52.9 69.5 31.0 72.2

RPI369 PRPI-SC 71.2 66.1 76.4 69.6 42.9 80.4
IPMiner 70.3 72.4 72.3 72.3 42.8 77.3

RPISeq-RF 69.4 70.7 70.5 70.2 40.6 76.7

lncPro 50.4 71.3 70.8 69.6 40.9 74.0

RPI488 RPPI-SC 88.3 92.2 84.3 91.8 77.1 90.5

IPMiner 89.1 93.5 84.0 94.4 78.8 91.4

RPISeq-RF 88.3 93.5 82.8 83.6 77.2 88.3

lncPro 85.6 94.1 77.6 94.0 72.5 92.9
RPI1807 PRPI-SC 97.0 95.7 97.9 96.6 93.8 99.3

IPMiner 96.8 95.5 96.5 96.5 93.5 99.8
RPISeq-RF 97.0 96.2 97.0 97.6 93.8 99.6

lncPro 56.9 55.5 56.5 58.1 43.8 99.4
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role to sequence information and helps to improve the prediction results of RPI 
problems.

PRPI-SC performs very well on plant datasets and is superior to other methods in 
most performance indicators such as accuracy. In the ZEA22133 dataset, the accuracy 
is improved by 13.9%. This shows that PRPI-SC can effectively predict the RPI inter-
action of plants and achieve the expected results. Arabidopsis is the representative of 
dicotyledons, and Zea mays is the representative of monocotyledons. This model has 
a good effect on Arabidopsis and Zea mays data set, which shows that it can be further 
extended to other plant data. PRPI-SC also shows good prediction ability on RPI data-
sets of other mixture species, which indicates that it has good generalization ability and 
can meet different needs.

Methods
Datasets

We created two lncRNA-protein interactions datasets, ATH948 and ZEA22133, repre-
senting Arabidopsis thaliana and Zea mays, respectively. Firstly, we downloaded data 
from PlncRNADB [45] and used the CD-HIT [46] tool to eliminate redundant sequences 
with sequence similarity of more than 90% for both protein and lncRNA sequences, thus 
reducing sequence similarity and experimental bias. Since there are no non-interaction 
pairs validated by biological experiments, we randomly select the same number of neg-
ative pairs in the remaining data by pairing proteins with lncRNAs and removing the 
existing positive pairs [23]. Using this method, we obtained ATH948 datasets consist-
ing of 35 protein chains and 109 lncRNA chains, including 948 interactive pairs and 
948 non-interactive pairs. Similarly, we obtained the ZEA22133 dataset consisting of 42 
protein chains and 1704 lncRNA chains, including 22133 pairs of interactive pairs and 
22123 pairs of non-interactive pairs. Because of the poor homology of plant lncRNA, we 
cannot mix different kinds of plant data, to avoid the deep learning model from extract-
ing wrong features which affect the prediction accuracy. We found that the two datasets 
contain minor lncRNA and protein chains, but they produce a large number of interac-
tion pairs, which may cause noise and increase the difficulty of feature extraction. The 
details are shown in Table 4.

To test the robustness of PRPI-SC, we collected other RNA–protein datasets from pre-
vious studies, such as RPI1807 [47], RPI369 [23], RPI2241 [23], and RPI488 [27]. These 
four datasets are constructed according to the minimum atomic distance criterion such 
that if the distance between protein atoms and RNA atoms is less than the specified dis-
tance threshold, then protein and RNA pair is considered to be interaction pairs. They 
are all made up of a mixture of multi-species RNA–protein samples, including animals, 
plants and humans, and the length of RNA samples varies.

We use different methods to predict the structural information of RNA and protein. 
For RNA, we use the RNAfold program in ViennaRNA Package [48] to calculate second-
ary structure information of RNA with minimum free energy, which can be expressed by 
“.” and “()”. For protein, we use network server SOPMA [49] to predict the structure. The 
protein sequence is uploaded, and classical trimorphic structure is predicted, including 
α-helix, β-sheet and coil.
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Sequence information processing

RNA and protein sequences cannot be directly used as input in deep learning models, 
thus, proper sequence coding methods have a great impact on the performance of the 
model. Because the length of RNA and protein sequences in datasets varies widely 
(20–3000), some common digital matrix coding methods (such as one-hot encoding) 
are not suitable for RNA and protein sequences, which make the matrix too large and 
sparse. Therefore, we used k-mer [27] to encode the input sequence and structure 
information to ensure that the length of the generated digital vector was consistent.

For RNA sequences, the usual method is to extract the 4-mer frequency features of 
RNA sequences (each sequence consists of A, C, G, T) to obtain 4*4*4*4 = 256 dimen-
sional features. Each eigenvalue is the normalized frequency of 4-mer nucleotides 
in the RNA sequence, namely AAAA…CATC…TTTT. To fully extract the sequence 
features of RNA, we added 1-3mer features to form a total of 340-dimensional fea-
tures. For protein sequences, existing studies have shown that binding residues are 
more likely to form amino acids with certain properties. Based on the physicochemi-
cal properties and interaction of amino acids, 20 kinds of amino acids were classified 
into 7 categories. They include {Val, Gly, Ala} {Phe, Pro, Leu, Ile} {Ser, Tyr, Met, Thr} 
{His, Asn, Tpr, Gln} {Arg, Lys} {Glu, Asp} and {Cys}. According to the above rules, we 
divided the protein sequence into seven groups, extract the 3-mer features of pro-
tein trimer, and obtained the 7*7*7 = 343 dimensional features. Similarly, we comple-
mented the 1-2mer feature to form 399 dimensional features. If the k-value of k-mer 
feature extraction method becomes larger, it will lead to too many zeros in the feature 
vector and affect the prediction model impact. This is also the method adopted by 
most articles.

For the processing of structural information, we adopted a calculation method 
similar to sequence information, which was added to model input as supplementary 
information. For protein structure, we extracted 1–3 polymer frequencies (α-helix, 
β-sheet and coil) of secondary structure to obtain 39-dimensional features; for RNA 
structure, we extracted 1–4 polymer frequencies (points and scaffolds) of secondary 
structure to obtain 30-dimensional features. The features of these secondary structure 
information were integrated with those extracted from previous sequence informa-
tion to obtain the protein-coding vectors of 438-dimensional features and RNA cod-
ing vectors of 370-dimensional features.

Table 4  Experimental datasets

Dataset lncRNA Protein Interaction pair Non-
interaction 
pair

ATH948 109 35 948 948

ZEA22133 1704 42 22133 22133

RPI2241 842 2043 2241 2241

RPI369 332 338 369 369

RPI488 25 247 243 245

RPI1807 1078 1807 1807 1436
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Stacked denoising autoencoder

Autoencoder (AE) belongs to unsupervised learning and does not need labeled training 
samples. When an autoencoder learns input samples, its training objective is to recon-
struct the input signal from the target expression. Therefore, the output is often set to 
the input itself in training. AE structure can be divided into two parts: encoder and 
decoder. The encoder maps the transformation from input vector x to output represen-
tation y. The typical expression is:

where s is a non-linear function, such as sigmoid. W is the link weight from the input 
layer to the middle layer, and b is the bias of the middle layer. The decoder maps the out-
put representation y back to the input space and reconstructs the vector z. The typical 
form is:

where s is a non-linear function, such as sigmoid. W’ is the link weight from the middle 
layer to the output layer, b’ is the bias of the output layer, and z is regarded as the predic-
tion of x. In general, z is not an accurate reconstruction of the input variable x, it can 
only approach x to the greatest extent.

Denoising autoencoders (DAE) have the same structure as traditional AE, but noise 
is added to the sample input. Its learning goal is to reconstruct the pure input from the 
polluted input. The purpose is to filter the noise in the input data, to avoid the occur-
rence of over-fitting to enhance the generalization ability of the model.

As shown in Fig. 5, unlike traditional AE, signal y is reconstructed from noise-contam-
inated signal xˆ. In general, there are two ways to add noise: one is to add Gaussian noise 
with the same distribution as the input data, and the other is to set the component of 
the input vector to 0 with a certain probability. By calculating y and z with the corrupted 
data xˆ and iterating errors with z and the original x, the network learns the corrupted 
data. Each time sample x is trained, a different xˆ is generated.

To obtain more advanced feature representation, the DAE is stacked layer by layer in 
the form of deep network structure to form a model structure that is connected by the 
DAE top and bottom, namely SDAE [50]. During training, the output of the former layer 
acts as the pure input of the latter layer, and the training is carried out layer by layer. The 
learning process is shown in Fig. 6.

(1)y = s(Wx + b)

(2)z = s
(

W ′y+ b′
)

Fig. 5  The flowchart of denoising autoencoder
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Figure 6a shows the first layer of DAE. The function fθ is used to denoise the input x. 
Figure 6b shows that the output of the first layer is input as the sample of the second 
layer, and the coding function fθ

(2) of the second layer is trained. The training process of 
the whole deep network is repeated, as shown in Fig. 6c.

Model design

We designed a deep learning framework, PRPI-SC, to address plant lncRNA-protein 
interaction problems. After the encoding portion, the CNN and SDAE extract features 
from the input and form a high-level representation. Finally, the ensemble module inte-
grates the outputs of the two basic modules to form the overall structure of the PRPI-SC.

In the CNN module, two similar sequence-embedding levels were first formed by 
analyzing the RNA and protein input vectors by CNN, respectively. Then, a three-layer 
fully-connected part embeds the two sequences as input and performs cross-predic-
tions. There are three convolution layers in each sequence embedding part. Between 
the two convolutional layers, the max-pooling layer was used to reduce the represen-
tation dimension and introduce noise invariance. After the last convolutional layer, the 
two-dimensional tensor of output was flattened and further used as an input to the fully 
connected layer. Then, two sequences of RNA and protein were embedded in the repre-
sentation. Finally, the output of the last layer was the predicted result, which is further 
integrated by the later ensemble modules.

In the SDAE module, RNA and protein input vectors were first sequenced separately 
using SDAE to generate two sequence embedding layers. Then, the three-layer fully-
connected part concatenated the two sequences as inputs and performed cross-predic-
tions. Through the dimensionality reduction and high-level feature extraction of two 
three-layer SDAE parts, the sequence embedding representation of RNA and protein 
was obtained. Finally, a three-layer fully-connected part inserted the first two sequences 
together as input to its first layer and predicted interactions for specific RNA–protein 
pairs in the third layer.

The final ensemble module linked the predictions of the CNN module and the SDAE 
module as the input tensors and produced a more comprehensive prediction for a given 
lncRNA-protein pair. The two basic modules and ensemble modules use the softmax 
activation function at their last layers to make binary predictions and use the back-prop-
agation algorithm to minimize loss function of binary cross-entropy. Two optimization 

Fig. 6  The calculation process of SDAE. a Training process of the first layer of DAE. b Output of the first layer 
serves as the input of the second layer. c Repeated training in multi-layer deep network
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methods, Adam and stochastic gradient descent (SGD) are employed successively to 
train each module, among which Adam first gives the module a quick converge and then 
SGD is used to fine-tune the module after. During the unsupervised pre-training pro-
cess of the three-layer SAE, its parameters are optimized by greedy layer-wise training. 
To avoid the over-fitting problem, the techniques of dropout and early stopping are also 
used.

Evaluation of model performance

In this study, we classify protein and lncRNA pairs as interacting or non-interacting. We 
follow the widely used evaluation measures including the classification accuracy (Acc), 
precision (Pre), sensitivity (Sn), specificity (Sp) and Matthews Correlation Coefficient 
(MCC) defined respectively as follows:

where TP, TN, FP, and FN represent true positive, true negative, false positive, and false 
negative, respectively.
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