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Background
The rapid development of high-throughput next-generation sequencing (NGS) plat-
forms has produced massive sets of genomic reads under low costs for a wide range of 
biomedical applications [1–4]. Serious concern over these datasets is that there are lots 
of random errors (such as substitutions, insertions and deletions) existing in these reads. 
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Background: Genomic reads from sequencing platforms contain random errors. 
Global correction algorithms have been developed, aiming to rectify all possible errors 
in the reads using generic genome-wide patterns. However, the non-uniform sequenc-
ing depths hinder the global approach to conduct effective error removal. As some 
genes may get under-corrected or over-corrected by the global approach, we conduct 
instance-based error correction for short reads of disease-associated genes or path-
ways. The paramount requirement is to ensure the relevant reads, instead of the whole 
genome, are error-free to provide significant benefits for single-nucleotide polymor-
phism (SNP) or variant calling studies on the specific genes.

Results: To rectify possible errors in the short reads of disease-associated genes, our 
novel idea is to exploit local sequence features and statistics directly related to these 
genes. Extensive experiments are conducted in comparison with state-of-the-art 
methods on both simulated and real datasets of lung cancer associated genes (includ-
ing single-end and paired-end reads). The results demonstrated the superiority of our 
method with the best performance on precision, recall and gain rate, as well as on 
sequence assembly results (e.g., N50, the length of contig and contig quality).

Conclusion: Instance-based strategy makes it possible to explore fine-grained 
patterns focusing on specific genes, providing high precision error correction and 
convincing gene sequence assembly. SNP case studies show that errors occurring at 
some traditional SNP areas can be accurately corrected, providing high precision and 
sensitivity for investigations on disease-causing point mutations.
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The most popular Illumina platforms generate sequencing data with 0.5–2.5% error rates 
[5]. Substitutions are the major error type in the short sequencing reads, while insertions 
and deletions are the major error types in the long sequencing reads.

To avoid possible negative effects on the downstream analysis caused by the sequenc-
ing errors, correction algorithms have been previously studied and many tools [6–14] 
have become available to rectify errors in the raw data. These methods take a global 
approach to rectify all possible errors using genome-wide patterns and statistics. 
Because the correction is operated on the whole set of reads (usually millions or billions 
in number), the algorithm complexity is high and the correction performance is not per-
fect; sometimes even a lot of new errors are introduced into the reads by these global 
approaches. These challenges are attributed to several reasons. Firstly, the sequencing 
depth is non-uniform—the sequencing coverage varies remarkably from one part to 
another in the genome. The resulting conflicts between the k-mer statistics from the low-
coverage regions and those from the high-coverage regions have significantly hindered 
the global approach to conduct effective error removal—Some genes may get under-cor-
rected while some other genes get over-corrected. Secondly, genome fragmentation for 
read generation is random and the errors are distributed non-uniformly. Thirdly, repeti-
tive regions exist in the genome sequences. Reads from the repetitive regions are likely 
to share the same nucleotide sequence, or highly similar to each other   [15]. Errors in 
these reads tend to be corrected falsely by the global approaches and many new errors 
are introduced.

It is sometimes unnecessary to conduct global correction. Instead, highly-accurate 
instance-based error correction for short reads of specific genes is more important. For 
example when SNP [16] or genotyping properties [17] are of great importance, then only 
specific genes or pathways involved in the disease mechanism or a special segment of 
loci in the genome would be focused on. In these important situations, the paramount 
requirement is to ensure the relevant reads, instead of the whole genome, are error free 
after the correction step. As in a recent breast cancer study [18], the tumour suppres-
sor gene BRCA1 and particularly the single-nucleotide variants (SNVs) in this gene’s 
exons are focused on understanding the functionally critical domains of BRCA1 and 
the related clinically actionable genes [19]. It is vital to provide error-free reads related 
to these specific genes [20] for the precise detection of SNVs and accurate discovery of 
SNPs. As another example in the mutation and protein research area, error correction 
is important because one or two DNA base mutations in the coding region of a gene 
may lead to functionally different amino acids [21–23], and more likely when the open 
reading frame mechanism is considered. These mutations are called point mutations, 
and more than 31,000 such mutations in the human genome are associated with genetic 
diseases [24]. The reads related to such a gene without error correction or with under-
correction may mislead the conclusion about the functional properties of the proteins. 
The existing global error correction is not the best choice for this.

In this work, we propose to use an instance-based approach to make error cor-
rection for the reads of a disease-associated gene. The method is also applicable to 
the reads of multiple disease genes, or a set of genes related to a phenotype, or an 
unknown-function region in the genome, or even any nucleotide sequence of inter-
ests. The method, named InsEC, aims to rectify the errors in the instance reads with 
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a very high accuracy and to reduce the number of introduced new errors to a mini-
mum. The global approaches suffer from the issue of non-uniform sequencing depths 
occurred in error correction. However, when the instance-based approach is taken 
for the error correction in a subset of reads, this issue can be significantly moderated. 
Comparing with the global approaches which may have neglected the local features of 
the instance reads, our instance-based approach has the advantage that the patterns 
and statistics can be exhaustively explored to rectify the errors, and can be conserv-
atively combined to reduce the number of introduced errors. InsEC has two steps. 
The first step is for read extraction, which collects all reads relevant to a given gene. 
The second step is for correction, which exploits the local sequence features in the 
extracted read sets It uses local alignments to quantify erroneous probability of each 
base in the reads for an accurate correction.

In fact, global approaches can be turned into instance-based approaches if the 
whole set of reads is narrowed down to the subset of reads of a specific gene as input 
data. These global approaches include k-mer based error correction methods such as 
BFC [9], BLESS [11], Lighter [8], Blue [12], and ACE [7]. The key idea of these meth-
ods is to use the frequencies of all k-mer strings and a global frequency threshold 
to define solid and weak k-mers. The error correction process is to transform each 
weak k-mer into a solid k-mer according to some heuristics (e.g., the minimum edit 
distance between a weak and a sold k-mer). Because the sequencing depths are non-
uniform across the genome, some globally weak k-mers are actually solid k-mers in a 
local region. Thus it is a wrong correction to transform these local solid k-mers. Com-
pared with the global k-mer based methods, the global multiple alignment methods, 
including Coral [13], ECHO [14] and Karect [10], do not rely too much on the selec-
tion of k-mers. Firstly, reads are grouped based on whether they share some k-mer. 
Then reads in each group are concatenated to form a long consensus contig, which 
is assumed error-free. Then, these consensuses are used as references to correct the 
mismatches in every read. But, the k-mer grouping can intensify the issue of non-uni-
form sequencing depths in the contigs, i.e., the error-free assumption on the contigs 
is too strong and biased.

Our instance-based approach InsEC does not need to define solid or weak k-mers in 
the correction step, and thus it can avoid the issue of non-uniform sequencing depths in 
the global approaches. Although similarly as the multiple sequence alignment methods 
to implement the alignment process, our InsEC quantifies error probabilities conserva-
tively column-by-column and row-by-row in the alignment array to avoid introducing 
new errors.

The performance of InsEC is evaluated on the error correction itself as well as on the 
quality of the resulted assemblies. Extensive experiments demonstrated that our method 
has superior precision, recall and gain rates over all state-of-the-art error correction 
methods when tested on reads datasets of lung cancer associated genes. The qual-
ity of the assemblies of the reads also become improved after our error correction. We 
obtained longer and less number of contigs, and the contigs are closer to the ground 
truth in the simulated datasets. In our SNP case studies, we found that some corrections 
can happen at the current lung cancer SNP database, implying that instance-based error 
correction is crucially important for SNP and mutation analysis.
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Results
We compare the error correction performance of InsEC with instantialized state-of-
the-art tools Bcool [6], BFC [9] and Coral [13]. Bcool is the latest method published 
in year 2020; BFC and Coral are two classical error correction methods, representing 
the k-mer based methods and the multi-alignment error correction methods respec-
tively. Our experiments are conducted on both simulated and real sequencing data. 
The ground truth of the genome sequence is not available for the real datasets, so the 
simulated datasets are used as a supplement to the real data experiments. With the 
ground truth provided by the simulated datasets, we are able to evaluate error correc-
tion and further assembly performance objectively for all of the methods. Our InsEC 
method is designed for error correction on disease-causing genes, so seven genes 
related to lung cancers are selected to illustrate method performance in the following 
experiments.

Extracted read datasets of lung cancer associated genes

Illumina sequencing datasets are available at the Sequence Read Archive (SRA) 
(https:// www. ncbi. nlm. nih. gov/ sra/); and the simulated Illumina sequencing data can 
be produced by ART [25] which is a benchmark tool for the generation of simulated 
short reads. The real dataset used in this work is ERR174310, which contains paired-
end human whole genome deep sequencing reads generated by Illumina HiSeq 2000. 
We denote this dataset as D0. The two simulated sequencing datasets (denoted by D1 
and D2) have the same read length and the same sequencing platform as ERR174310. 
D1 is a single-end dataset, and D2 is a paired-end dataset, both generated with ref-
erence to the standard sequence of human chromosome one. The genome annota-
tions are obtained from the NCBI (National Center for Biotechnology Information) 
(https:// www. ncbi. nlm. nih. gov/ genome/), including gene name, gene ID and gene 
positions. More details of these datasets are shown in Table 1.

The seven genes related to lung cancer in this study are ILR6R, IL10, ATF3, GRIK3, 
MYCL, PRDX1, and ENO1. All of these genes are located at chromosome one. The 
nucleotide sequences of the genes are available at the NCBI gene database (https:// 
www. ncbi. nlm. nih. gov/ gene/). The length of these genes ranges from 4,892 to 238,602 
bases. See more details of these genes in Table 2.

Table 1 Description of the datasets

The latest version of human genome, GRCh38.P13, is used in our experiments as of September 2019

Dataset Real dataset Simulated dataset

D0 D1 D2

Read length 100 100 100

Total reads 586,941,413 23,046,123 23,048,001

Type of reads Paired-end Single-end Paired-end

Accession No. ERR174310 Simu-Single Simu-Pair

Reference Human Genome Chromosome.1 Chromosome.1

https://www.ncbi.nlm.nih.gov/sra/
https://www.ncbi.nlm.nih.gov/genome/
https://www.ncbi.nlm.nih.gov/gene/
https://www.ncbi.nlm.nih.gov/gene/
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Performance evaluation metrics

The performance is evaluated not only on the error correction but also on the read 
assembly before and after the error correction.

Metrics for error correction performance

To assess the accuracy of the correction methods, we use the following three metrics.

• Precision: TP/(TP+FP), shows the fraction of truly corrected bases among all 
changed bases.

• Recall: TP/(TP+FN), shows the fraction of truly corrected bases among all bases 
which are supposed to be corrected.

• Gain: (TP-FP)/(TP+FN), shows the fraction of removing errors without inducing 
additional errors.

where true positives (TP) correspond to corrected errors; true negatives (TN) cor-
respond to initially correct bases left untouched; false positives (FP) correspond to 
newly introduced errors; and false negatives (FN) correspond to unidentified errors.

Metrics for assembly performance

To assess the impact of error correction on the assembly results, we compare InsEC 
with other state-of-the-art methods by standard assembly assessment metrics. We 
choose SPAdes [26] to assembly read data before and after error correction, except 
that the error-free datasets are assembled for the performance assessment as well. 
To assess our method more specificlly, each nucleotide in the gene sequence updated 
by InsEC is compared with its in gene reference. On simulated dataset, the ground 
truth of gene sequence is available, so the more similar the updated sequence with the 
referferce is, the better performance of assembly is.

• Assembly results comparison: the assembly results are evaluated by QUAST [27], 
a quality assessent tools for genome assemblies. Detailed reports include the num-
ber of contigs, the largest contigs and N50. A contig is a continuous nucleotide 
sequences obtained from the assembly process. N50 is defined as the minimum 
contig length needed to cover 50% of genome.

Table 2 Genes related to lung cancer on human chromosome one

The details of genes are from the genome annotation of the latest version GRCh38.P13

Gene_ID Gene_Name Gene_length Gene_function

Gene1 (g1) IL6R 64257 protein_coding

Gene2 (g2) IL10 4892 protein_coding

Gene3 (g3) ATF3 55443 protein_coding

Gene4 (g4) GRIK3 238602 protein_coding

Gene5 (g5) MYCL 6830 protein_coding

Gene6 (g6) PRDX1 12011 protein_coding

Gene7 (g7) ENO1 18250 protein_coding



Page 6 of 17Zhang et al. BMC Bioinformatics  2021, 22(Suppl 6):142

• The Reference vs the corrected sequence: The nucleotide of gene sequences, 
updated by our method, are compared with the reference sequence of genes base-
by-base. The less difference between the two sequences is, the better assembly 
performance is.

Performance by instance‑based error correction and comparison with state‑of‑the‑art 

methods

For each g of the seven lung cancer disease-associated genes, we constructed 
subset(D1, Ig ) and subset(D2, Ig ) , and conducted instance-based error correction by 
InsEC. Strictly on these two subsets of reads, we also apply three state-of-the-art global 
correction methods Bcool  [6], BFC [9] and Coral  [13] to rectify errors for a fair com-
parison. This is exactly so called “global approaches can be turned into instance-based 
approaches” as stated in Introduction. The overall error correction performance by 
InsEC, Coral, BFC and Bcool on the seven lung cancer disease genes are presented in 
Table 3.

Table 3 Performance comparison of instance-based error corrections

AVE indicates the average score over the seven genes. Bold font indicates the best result in the row

On single-end reads On paired-end reads

Ins_EC Coral BFC Bcool Ins_EC Coral BFC Bcool

Precision ( %)

 g1 98.42 95.95 91.91 93.01 99.49 94.46 90.96 89.82

 g2 100 99.65 100 94.70 100 97.39 100 98.18

 g3 99.64 92.19 93.90 95.48 99.85 93.49 94.10 97.97

 g4 99.93 94.86 97.34 96.30 99.97 95.19 98.18 98.00

 g5 100 100 100 98.68 100 90.16 95.00 96.02

 g6 98.56 93.36 91.64 87.73 99.27 92.30 95.35 91.49

 g7 100 99.25 99.87 93.79 100 98.57 96.02 95.81

 AVE 99.51 96.47 96.38 94.24 99.80 94.51 95.66 95.33

Recall ( %)

 g1 95.06 91.06 78.64 79.38 96.78 93.92 95.04 86.78

 g2 97.26 95.65 71.91 89.63 99.32 97.39 95.93 96.42

 g3 98.07 97.07 76.00 89.23 98.48 97.92 95.49 92.75

 g4 97.16 96.97 78.19 91.25 97.82 97.05 97.75 93.85

 g5 99.34 61.84 69.74 98.03 99.78 90.16 94.44 95.73

 g6 99.60 96.44 76.91 79.34 99.69 97.20 96.65 81.10

 g7 99.72 96.81 71.52 86.53 99.87 98.41 95.48 89.78

 AVE 98.03 90.83 76.13 87.63 98.82 96.01 95.83 90.91

Gain ( %)

 g1 93.54 87.95 71.72 79.38 96.29 89.66 85.60 86.78

 g2 97.26 95.64 71.91 89.63 99.32 95.71 95.93 96.42

 g3 97.71 89.56 71.06 89.23 98.34 92.15 89.50 92.75

 g4 97.09 92.76 76.06 91.25 97.79 93.29 95.94 93.85

 g5 99.34 61.84 69.74 98.03 99.78 81.04 89.47 95.73

 g6 98.15 91.32 69.90 79.34 98.96 91.23 91.94 81.10

 g7 99.72 96.79 71.43 86.53 99.87 98.39 91.52 89.78

 AVE 97.55 87.98 73.11 87.63 98.62 91.64 91.42 90.91
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Our method InsEC achieved the best precision, recall and gain rate on all of the data-
sets. In particular, the average precision, recall and gain rate by our method are much 
superior respectively by 3.13%, 21.9% and 24.44% to the latest method Bcool on the 
single-end datasets, and much superior respectively by 4.14%, 2.99% and 7.2% on the 
paired-end datasets. More importantly, our method improved the gain rates a lot, imply-
ing more number of bases are rectified and less number of errors are induced compared 
with the existing methods. In detail, InsEC improved the gain rates ranging from 9.57% 
to 24.44% on the single-end datasets, and improved the gain rates ranging from 6.98% 
to 7.71% on the paired-end datasets. It is noted that the other methods are sensitive to 
data types. All of the other methods perform better on pair-end datasets than single-
end datasets, especially the gain rate improved from 3.28% to 18.31%. While our method 
InsEC shows good robustness on both single-end and pair-end datasets, achieving the 
gain rate at 97.55% and 98.62% respectively.

All the experiments were conducted on a computing cluster running Red Hat Enter-
prise Linux 6.7 (64 bit) with Intel Xeon E5-2695 v3 and 128 GB RAM. We use the Linux/
Unix time command to record the system time and memory usage. The average running 
time (seconds) of InsEC, Coral, BFC and Bcool is 3.2 s, 1.55 s, 1.02 s and 18.92 s and the 
average memory usage (kbytes) is 503,271 kb, 419,156 b, 1,109,266 kb and 527,268 kb 
respectively. Our InsEC ranks the second in running time and memory usage.

The global approaches improved when focusing on disease‑associated genes

To show the significance of instance-based error correction for the reads related to 
disease-causing genes, we compare the error correction performance on the whole 
sequencing datasets with those on the gene-related subsets of reads.

After running error correction on the whole datasets D1 and D2, those reads rel-
evant to the given gene g are extracted for performance assessment and comparison. 
The methods are specially denoted as Bcool_g, BFC_g and Coral_g in this situation. The 
overall error correction performance for lung cancer-associated genes is presented in 
Table 4.

These global error correction methods got improved when directly applied to the sub-
sets of reads related to the gene-associated genes, namely the gain rates by Coral, BFC, 
and BCOOL are better than their global versions (labeled with _g), increasing the per-
formance from 2.56 to 7.61%.

Performance of read assembly after error correction

To see whether the error correction has impact on the quality of the assemblies, we 
compare on the number of contigs, the longest contigs and N50 before and after the 
error correction of D1 and D2. We also construct the assemblies from the error-free 
read sets (the ground truth is available for the simulated datasets). The best error cor-
rection method is expected to have the most similar assembly results to those from the 
error-free dataset. The differences in the assembly results between the error-free data-
sets and corrected datasets after error correction by all the methods are listed in Table 5. 
There are no differences in assembly results for the other four genes, so their results are 
not listed in table.
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The assembly results get improved after the error correction. In particular, there is 
an increasing trend at the length of contigs after the error correction, and a decreas-
ing trend at the number of contigs. Compared with the other error correction 
methods, InsEC has the most similar assembly results to those from the error-free 
datasets for 5 of the 6 cases; on the remaining one, the result of our method has 
only one difference in the number of contigs. Furthermore, we achieved the identical 
assembly results as those from the error-free datasets g1, g3 and paired-end g3.

The contig quality are shown in Table  6, where the numbers of base differ-
ences between the contigs from our corrected reads and those from the reference 
sequences are presented. Most of the contigs assembled from the corrected reads 
by our method are identical to the reference sequences (see the sign ‘M’); while the 

Table 5 Assembly results compared with the ground truth

Truth row indicates the assembly results of the error‑free read data. Other rows show the difference value where value in 
Truth row minus the current row. NO. indicates the number of contigs. Lar. Indicates the largest length of contigs

Bolf font indicates the best assembly result

g1 g3 g4

NO. Lar. N50 NO. Lar. N50 NO. Lar. N50

Single-end reads

Truth 6 24854 11363 3 27822 27822 3 187434 187434

Raw − 1 3170 − 1316 0 50 13879 − 2 37224 37224

InsEC 0 0 0 0 0 0 0 − 13 − 13
Coral 2 − 11485 0 0 − 50 − 13879 1 15 15

Corel_I 4 − 28181 − 41672 1 − 13824 − 13824 0 − 186 − 186

BFC − 1 3170 − 1316 0 50 13879 0 34 34

BFC_I − 2 0 0 0 50 50 0 34 34

Bcool − 1 3198 − 1316 0 50 13879 − 2 52585 52585

Bcool_I − 1 0 0 0 − 6 − 6 − 1 52505 52505

Paired-end reads

Truth 3 40458 40458 2 27893 27893 6 134849 134849

Raw − 4 13097 27287 0 63 63 − 3 15530 15530

InsEC − 1 0 0 0 0 0 0 13 13
Coral 0 0 0 0 91 91 − 2 302 302

Corel_I 2 − 23894 − 23894 1 − 27650 − 27650 2 − 23329 − 23329

BFC 0 0 0 0 91 91 − 2 783 783

BFC_I − 2 0 0 0 69 69 − 2 813 813

Bcool 0 0 0 0 91 91 − 3 15565 15565

Bcool_I 0 63 63 0 63 63 − 2 64126 70640

Table 6 The contigs from corrected reads vs the reference sequence

The sign ‘M’ indicates the contig assembled from the corrected reads by our method and the reference sequence are 
identical. 6/64258 indicates there are 6 different bases in 64258 bases, and similarly for other number combinations

Contig_Q g1 g2 g3 g4 g5 g6 g7

Single-end_D1 6/64258 M 5/55444 7/238603 M 2/12012 M

Paired-end_D2 6/64258 M 5/55444 6/238603 M M M
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remaining assemblies have only tiny differences from the reference sequences (e.g., 
only 7 or 6 base differences over a length of 238,603 bases).

Case studies: error correction at mutation‑prone regions in the lung cancer associated 

genes

On the real sequencing reads dataset D0, we have performed instance-based error cor-
rection for the reads relevant to EGFR and KARS which are two genes highly associated 
with lung cancer [28]. Some of our corrections happened at the mutation-prone regions 
of EGFR. These point mutations or mutation combinations are known [29] to make lung 
carcinomas more responsive to treatments with tyrosine kinase inhibitors. These muta-
tions are usually at least one base different from a reference sequence, also referred to 
’variant calling’.

One of the corrections changes A to G at the SNP:rs1476431328 position, located at 
chr7:55205427. Due to this base correction from A to G, the corresponding amino acid 
is changed from Asparagine (AAC) to Serine (AGC). If this base is not corrected, the 
amino acid Asparagine instead of the correct amino acid Serine would be focused in the 
downstream analysis which may lead to different conclusions about the functions of the 
protein. This is quite possible because Asparagine and Serine pose their own distinct 
biophysical properties.

Another of our corrections is at SNP:rs781609053 which changes nucleotide T 
to C. Correspondingly, the amino acid would be changed from Methionine (ATG) to 
Threonine(ACG). Furthermore a correction was performed at SNP:775317295 which 
changes nucleotide C to T, implying that the amino acid Proline (CCA) should be 
changed to Leucine (CTA). The effects of mutations lead to different structures of its 
coding proteins, thereby affecting its functions   [30], which is shown in Fig.  1, where 
we use SWISS-MODEL  [31] to model the structure of coding protein according to its 
amino acids sequence.

Fig. 1 Two examples of point mutations in case studies. The mutation bases and changed amino acids are 
highlighted by green and blue color. The predicted structure of coding proteins are shown in the right side
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The amplification of gene KARS primarily decides the growth and survival of lung can-
cer cell lines   [32]. For the reads in D0 that are relevant to KARS, some of our instance-
based error corrections also occurred at its SNP positions. The correction from A to G at 
SNP:rs35225896 changes the corresponding amino acid from Isoleucine (ATA) to Methio-
nine (ATG). Highly accurate sequences near this position should be ensured, as mutations 
at this position are closely related to hereditary cancer-predisposing syndrome, supported 
by clinical significance and publications (https:// www. ncbi. nlm. nih. gov/ snp/ rs352 25896). 
Error corrections at non-coding regions are important as well. For instance, our correc-
tion at SNP:rs11762213 changes the nucleotide from G to A. Though such corrections at 
non-coding regions do not effect type of amino acids, SNP:rs11762213 is recognized as a 
predictor of adverse outcomes in clear cell renal cell carcinoma [33]. Thus, high-quality cor-
rections at mutation-prone regions (coding and non-coding regions) are very important for 
downstream SNP and mutation studies.

Discussion
Our approach (named InsEC) is contrast to the existing error correction methods which 
all take a global approach to make a genome-wide error correction. Genome-wide error 
correction is not good enough especially when the study is focused on disease genes or 
pathways.

InsEC’s correction step adequately exploits fine-grained local patterns so as to rectify 
those errors which were unable to be corrected by the global approach. The reason is that 
the instance-based approach can significantly moderate the global approach’s issue on the 
non-uniform sequencing depth. We have conducted extensive experiments on simulated 
single-end and paired-end reads. The performance evaluation confirms that InsEC has 
much superior precision, recall and gain rate over the state-of-the-art methods on various 
sets of reads related to lung cancer genes. InsEC can also provide an assembled nucleotide 
sequence of the corrected reads which is closer to the ground truth than the other methods 
on the simulated datasets. Our SNP case studies on the real paired-end reads show that the 
error correction can happen at the mutation-prone bases stored at the current SNP data-
bases, implying that highly accurate instance based approach is particularly useful for SNP 
and mutation investigations.

Conclusions
In this work, we have proposed a novel approach for short reads error correction. The 
method is an instance-based approach, or a local approach, to rectify all possible errors 
in the reads relevant to a disease gene, or a subset of disease-associated genes. Our novel 
idea is to exploit local sequence features and statistics directly related to these genes. Two 
main steps can collects reads relevant to a given gene from a WGS dataset through a noise-
tolerant mapping technique and take advantage of alignment processes and rectify errors 
according to fine-grained patterns and statistics. InsEC achieves good performance on both 
single-end and pair-end datasets, and can also provide an assembled nucleotide sequence 
for gene sequence studies. This study successfully serves as read preprocess tools to provide 
high-quality data for targeted genes or genome region research.

https://www.ncbi.nlm.nih.gov/snp/rs35225896
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Methods
A read r is a genomic sequence denoted by r = r1r2 · · · rn , ri ∈ � = { A , C , G , N , T } 
, where A, C, G and T stand for the nucleotides Adenine, Cytosine, Guanine and 
Thymine respectively, and the character N stands for uncertain nucleotide; and n 
is the length of r (e.g., n = 100 or 200). Usually, the length of all of the reads from 
one wet-lab experiment (short read sequencing) is exactly the same. The sequencing 
errors can be randomly distributed anywhere in r.

Computation required by InsEC consists of two main tasks. One task is to draw 
relevant reads to a given gene from a WGS sequencing dataset. Through read extrac-
tion, a gene-related read dataset is constructed for error correction. The second task 
is to precisely correct errors on the gene-related subset of reads using fine-grained 
alignment patterns and statistics.

Reads extraction

Let S be a set of human genomic reads generated by Illumina whole genome sequenc-
ing platforms, and let Ig be a reference sequence of our interested gene g. But the 
reference sequence Ig is assumed not error-free. We extract reads from S which are 
relevant to the gene sequence Ig for the correction of possible errors in these reads. 
This subset of reads is denoted by subset(S, Ig ) . We also assume that the ground 
truth of gene sequence can vary from different individual samples because of single-
nucleotide polymorphism. So the ground truth of gene g, denoted by Tg , should have 
different nucleotide bases with the reference gene sequence Ig . Under the above two 
assumptions, reads having a Hamming distance with Ig (i.e., with noise tolerance) 
are required to move from S to form subset(S, Ig ) . The Hamming distance threshold 
is set as 95 so as to have complete relevance of subset(S, Ig ) to Tg as much as possi-
ble. In this work, we use BWA-MEM [34] for the read mapping with Hamming dis-
tance tolerance. BWA-MEM is a widely-used alignment tool, highly efficient to align 
short reads against a nucleotide sequence, and it allows mismatches and gaps, which 
means the extracted subsets of reads may contain insertion and deletion (indel) 
errors as well. These indel errors are handled at the multiple sequence alignment 
stage. Insertions are directly removed and the deletions are recovered by the align-
ment mechanism.

We note that this reads extraction step is very similar to the reads extraction step 
used in variant calling studies [17, 35]. But the purpose and assumptions are polarly 
different. The purpose of variant calling studies is to identify variations between 
genomes and the reference genome is assumed to be error-free. But the purpose of 
our study is to make corrections for the possible errors in the extracted reads, and 
the reference genome is assumed to be not error-free. Variant calling studies do not 
have any attempt to correct the possible errors in the extracted reads. Our error-
corrected reads can be used for potentially better variant calling analysis.

In the reads extraction step, we actually extend the sequence Ig at both ends with 
50 nucleotide bases, to guarantee that some reads crossing the boundary of Ig can be 
extracted as well. Through the extension of the gene sequence and the noise-tolerant 
mapping process, more reads are extracted as far as possible. We note that a few 
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reads mapped to the nucleotide sequence Ig with high mapping scores may belong 
to other genes (the repetitive areas). So in a further step, we double-check whether a 
read should be collected in subset(S, Ig ).

Error correction step

After subset(S, Ig ) is formed, we align all the reads in subset(S, Ig ) according to their 
positions in Ig , and place them one by one in each row in an increasing order of their 
start position. This sorted organization of subset(S, Ig ) is called an alignment array.

The alignment array is traversed column-by-column for error correction. Intuition-
ally, if a base has a very low type frequency in the column, this base (i.e., an outlier) is 
very likely to be erroneous. The key idea is to detect dominance information in the col-
umns according to the nucleotide type distribution and to locate error bases in the rows 
according to their error-aware probabilities.

Suppose only four nucleotide types (i.e., A, C, G, and T) are in the reads. For a col-
umn of bases in the alignment array, there are four possible cases for the nucleotide type 
distribution:

• One-type dominance. All or almost all of the bases have the same nucleotide type. 
For example, 99% of the bases in the column are nucleotide type ‘A’; all the other 
bases (‘C’, ‘G’, or ‘T’) constitute the remaining 1% of the bases. These 1% of the bases 
are outlier bases or erroneous bases.

• Two-type dominance. All or almost all of the bases are split into two main nucleotide 
types.

• Three-type dominance. All or almost all of the bases are split into three main nucleo-
tide types.

• Four-type dominance. All of the bases are split into four main nucleotide types.

We say a column is dominated by one or more types of bases if the total count of the 
other types of bases is 0, 1, 2, or 3; or the total percentage of the other types of bases is 
less than 2% when the total number of bases in the column is 100 or more. These thresh-
olds can be adjusted according to data characteristics.

The respective error correction is as follows:

• Correction for one-type dominance. Suppose the dominant type of bases is X, then 
change all other type(s) of base(s) to X for correction;

• Correction for two-type dominance. Suppose the two dominant types of bases are 
X and Y, then change all other type(s) of base(s) to X and Y proportional to the per-
centages of X and Y;

• Correction for three-type dominance. Suppose the three dominant types of bases are 
X, Y and Z, then change all other bases to X, Y and Z proportional to the percentages 
of X and Y and Z;

• Correction for four-type dominance. No correction is needed.
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Let f(X) denote the percentage of X in the column, namely the frequency of X. Some 
examples of the base distribution and error correction are: (i) f (A) = 99% , f (T ) = 0.5% , 
f (G) = 0.5% (dominated by one type), change all the Ts and Gs to A; (ii) f (T ) = 40% , 
f (G) = 58% , f (A) = 0.8% , f (C) = 1.2% (dominated by two types), change all the As 
and Cs to T and G in the ratio 40:58; f (T ) = 40% , f (G) = 58% , f (A) = 2% (domi-
nated by two types), change all the As to T and G in the ratio 40:58; (iii) f (T ) = 40% , 
f (G) = 41% , f (A) = 18% , f (C) = 1.0% (dominated by three types), change all the Cs to 
T and G and A in the ratio 40:41:18; f (T ) = 40% , f (G) = 41% , f (A) = 19% (dominated 
by three types), no change; and (iv) f (T ) = 25% , f (G) = 40% , f (A) = 30% , f (C) = 5% 
(dominated by four types), no change.

If the minor types of the bases have the same frequency at multiple columns, for a 
conservative correction, we set priorities to change those bases at the columns with a 
less number of dominant types. The order is: one-type dominance is prior to two-type 
dominance which is prior to three-type dominance. The priority value of base V is set as 
0.1 if V is at a one-type dominance column, denoted by p(V ) = 0.1 ; set as 0.2 if V is at 
a two-type dominance column, denoted by p(V ) = 0.2 ; and set as 0.3 if V is at a three-
type dominance column, denoted by p(V ) = 0.3.

We then traverse the alignment array row-by-row to make the conservative error cor-
rection. For each row, we rank all the bases r1r2 · · · rn , according to their base type fre-
quency together with their dominance value (i.e., f (ri)+ p(ri) ), into an increasing order. 
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Since Illumina sequencing data (used in this work) has an error rate around 0.5% to 2% , 
the first two per cent of bases in a row are considered as errors. Then these bases are 
confirmed to change. Before changes, we check the number of dominant types in the 
column. If there are more than one potential dominant type to correct, we consider its 
neighbor columns as well. We give a high priority to corrections which is followed by 
dominant types with large number of bases.

Note that in the situation of two-type or three-type dominance, some of the reads in 
subset(S, Ig ) are not relevant to gene g. They may come from another gene with a repeti-
tive region of g. This issue is not solvable by the reads extraction step; it is only identifi-
able in the alignment step. In this work, if more than one of bases’ probability in the top 
two per cent bases is larger than the threshold, we assume the read are more likely from 
the other part of the genome sequence I, instead of from the sequence of the gene Ig . 
These reads are labeled ’out’ and deleted from subset(S, Ig ) for the contig construction of 
gene g. An example of the correction is shown in Fig. 2. The pseudo code of the correc-
tion algorithm is shown in Algorithm 1.
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