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Background
The state of a cell can be described from different perspectives by using a variety of 
omics data, such as genomic, transcriptomic, and proteomic data [1]. Simultaneous 
measurement of RNA and protein abundances in the same cells is conducive to the 
elucidation of cell states [2, 3]. Moreover, there is a correlation between the abun-
dances of RNAs and proteins [4]. According to [5], to some extent, RNAs can guide 
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the expression of proteins. Recently, machine learning methods have been proposed 
to predict protein abundances from transcriptomic data at the single-cell level. 
Because the same set of RNAs are used to predict multiple proteins, the task can be 
formulated in a multi-label machine learning framework. These multi-label models 
reduce some cost of computation by extracting the general features from input data 
[6, 7].

Multi-label modeling, which uses one model to predict multiple labels at the same 
time, has been widely used in machine learning applications, such as image recogni-
tion [8] and text classification [9, 10]. Moreover, the multi-label models have been 
adopted for the prediction of the biological quantities such as the abundances of pro-
teins and RNAs. For example, Liang et al. [11] uses the Gaussian method to identify 
disease-associated candidate miRNAs; Chou [12] proposes a feature merging method 
to improve the multiple protein prediction by genomic data; Zou et al. [13] employs 
a hierarchical neural network for enzyme function prediction. In recent years, graph 
neural network (GNN) has been one of the most popular core frameworks of the 
multi-label models [14].

Graph neural networks have been widely applied to different fields, such as natural 
language processing [15, 16], computer vision [17, 18], and drug discovery [19, 20]. 
Knowledge graph is a particular application of GNN which introduces knowledge-
based information into predictions, boosting performance of GNN on various tasks, 
such as image classification [21, 22], recommendation systems [23], and dialogue sys-
tems [24].

Protein abundance is closely related to other types of molecules in cells, especially 
RNAs [25–27]. A variety of data sources have been used to predict protein abundance 
[28, 29]. With the published CITE-seq dataset, machine learning methods have been 
used to predict protein abundances from RNA expression levels, e.g. [6] proposed a 
toolkit to study the correlation between the abundances of RNAs and proteins.

Machine learning methods for RNA to protein abundance prediction based on 
CITE-seq dataset include cTP-net [7] and Random Forest [30]. Zhou et al. proposed 
cTP-net, using transfer learning to construct a multi-branch model, which predicts 
the abundances of multiple proteins using the same parameter values [7]. After 
extracting RNA features, Xu et al. applied the Random Forest models with different 
parameters for each protein [30] . They found that the Random Forest model achieved 
higher prediction performance than neural network methods (including cTP-net) on 
small datasets.

In this work, we propose a novel method called PIKE-R2P (Protein–protein Interac-
tion network-based Knowledge Embedding with graph neural network for single-cell 
RNA to Protein prediction). Given a sample of scRNA-seq data, the model predicts the 
abundances of multiple proteins. Our model mainly comprises two parts: a PPI-based 
GNN and prior knowledge embedding. We use the GNN to capture the relationships 
among target proteins in sharing some mechanisms of gene expression regulation from 
transcription to translation. Besides, we integrate the prior knowledge from the STRING 
database [31] with the model to constrain the protein correlations. PIKE-R2P performs 
better than existing methods for the protein abundance prediction, especially in terms of 
accuracy.
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Results
Dataset

To demonstrate the efficacy of the proposed PIKE-R2P model, we applied it on two 
CITE-seq datasets available from NCBI GEO database (GSE100866) [4]. The first data-
set includes single-cell gene expression of 36,280 mRNAs in 8617 cord blood mononu-
clear cells (CBMC) with simultaneous measurement of 13 surface proteins. The second 
dataset contains the expression levels of 29,929 mRNAs and 10 proteins in 7985 periph-
eral blood mononuclear cells (PBMC).

As these datasets are inherently noisy, we did quality control and noise reduction for 
them. First, we filtered out cells whose mitochondrial read rates are at least 20%. Then, 
cells with at most 250 genes expressed were deleted, following the guide of Seurat 
v3.0 [6]. Then, to denoise the data, we fed the data to SAVER-X, a toolkit implement-
ing an autoencoder combined with a Bayesian method for denoising cross-species data 
by transfer learning [32]. As a result, the final CBMC dataset contains 8552 cells with 
20,501 genes, while the PBMC dataset contains 7947 cells with 17,114 genes.

To train and test the machine learning models, we randomly divided the cells into two 
disjoint subsets with a 70:30 split for training and testing respectively. Thus, the CBMC 
training dataset has 5991 cells while the remaining 2561 cells are in the test set. Similarly, 
the PBMC training and test datasets contain 5567 and 2380 cells respectively. Details of 
the data are summarized in Table 1.

To incorporate PPI information in the GNN, we selected several PPI features from the 
STRING database [31] as prior knowledge, including empirically determined interac-
tion, annotated database, automated text mining, combined score, and gene co-occur-
rence. These features are encoded as floating point numbers.

Analysis of model prediction results

We compared the performance of the proposed PIKE-R2P method with cTP-net [7] 
and Random Forest [33]. We used the Random Forest available from the Scikit-learn 
(0.23.1) Python package [34], and the R code of cTP-net. Both PIKE-R2P and Random 
Forest were trained and tested on the data as summarized in Table 1 with the same input 
features. However, cTP-net does not provide any training API. Thus, we used the pre-
trained cTP-net model with a reduced number of gene expression features n = 12,363 , 
and the performance of cTP-net was evaluated on the testing set only. In addition, cTP-
net only predicts 10 proteins in the CBMC dataset, excluding three proteins (CCR7, 

Table 1 Data summary after noise reduction

CBMC PBMC

Number of molecular species

 RNA 20,501 17,114

 Protein 13 10

Number of cells

 Training set 5991 5567

 Testing set 2561 2380

 Total 8552 7947



Page 4 of 16Dai et al. BMC Bioinformatics  2021, 22(Suppl 6):139

CCR5, and CD10). Thus, in this section, we also analyzed these 10 proteins only. The 
performance of the models were evaluated using mean squared error (MSE) and Pearson 
Correlation Coefficient (PCC) between the ground truth values and the predicted val-
ues. For each protein, we picked the best result (i.e. smallest MSE and highest PCC) out 
of 5 runs. We calculated the means and standard deviations (SDs) for the values of MSE 
and PCC of the 10 proteins to show the stability of the model.

Table 2 shows the performance of the models on the two datasets. In general, all the 
models had lower mean MSE and PCC scores on the CBMC dataset than the corre-
sponding scores on the PBMC dataset (except that PIKE-R2P achieved a higher PCC 
on CBMC than on PBMC). Among the three models, PIKE-R2P got the lowest MSEs on 
both datasets, the highest PCC on CBMC, and the second highest PCC on PBMC.

When the PCC scores are similar, a lower MSE score means the model prediction is 
closer to ground truth measurement. For example, let us look at the performance of cTP-
net and PIKE-R2P on proteins CD14 and CD11c in PBMC. Interestingly, both models 
agreed that the PCC score of CD14 is 0.77 and that of CD11c is 0.91. However, for CD14, 
the MSE scores of PIKE-R2P and cTP-net are 0.19 and 4.43 respectively and similarly 
for CD11c. As shown in Fig. 1a, while the PCC scores are equal between the two mod-
els, the predictions of cTP-net deviate from the diagonal, which means the predicted 
abundance is higher than the ground truth. Using Seurat v3.0 [6], we divided the cells 
into different cell types based on RNA expression levels as shown in Fig. 1b. Further-
more, Fig. 1c, d show that CD14 and CD11c have high abundance values in Monocytes 
in the real measurement, which has been successfully captured by PIKE-R2P. However, 
the predictions by cTP-net have high values for the two proteins in almost all of the cells.

To test whether clustering based on the protein data can distinguish cell types more 
accurately than that based on RNA data, we compared cell clustering results based on 
the protein abundance values both of ground truth and predicted by PIKE-R2P to RNA-
based clustering, and the results are shown in Fig. 2. To cluster the cell types, we used 
the method of UMAP as implemented in the Seurat v3.0 package. UMAP reduces the 
dimensionality of data to visualize clustering results [35]. Besides, we calculated the Sil-
houette Coefficient (SC) scores as a quantitative metric to evaluate the performance of 
clustering. In Fig. 2a, we find that, when using the RNA data to cluster the cells, CD8+ 
T cells and CD4+ T cells are mixed in the same cluster, but when using the ground truth 
protein data to cluster the cells in Fig. 2b, CD8+ T cells and CD4+ T cells are in two dif-
ferent groups. Moreover, NK cells, Monocytes, and Pre-B cells in the CBMC dataset are 
difficult to distinguish with RNA-based clustering as shown in Fig. 2a. By contrasts, in 
the clustering result based on the ground truth protein data as in Fig. 2b, those three 
cell types are well separated. Using the protein abundances predicted by PIKE-R2P, the 

Table 2 Performance of different models

The bold numbers represent the best performance among the compared models

CBMC PBMC

MSE MSE SD PCC PCC SD MSE MSE SD PCC PCC SD

Random forest 0.6608 0.3844 0.5045 0.2675 1.1670 0.9187 0.7459 0.1391

cTP-net 3.1963 1.3963 0.4893 0.4675 3.5971 1.522 0.8294 0.1091

PIKE-R2P 0.2446 0.1703 0.8640 0.0636 0.4397 0.3360 0.8144 0.0999
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cell types can also be easily distinguished from each other, as shown in Fig. 2c. Using the 
protein abundances predicted by cTP-net, however, CD8+ T cells and CD4+ T cells in 
CBMC are still mixed, as shown in Fig. 2d.

Protein abundance levels from the ground truth and the predictions of two models 
are visualized on RNA-based cell clustering in Fig.  3. We find that, for most proteins 
predicted by PIKE-R2P, the distribution of protein levels across the cell clusters is similar 

Fig. 1 Visualization and comparison of results from cTP-net and PIKE-R2P on PBMC. The visualization results 
show that the lower the MSE scores, the closer the predicted protein abundances are to the ground truth. 
In c and d, from left to right are shown the ground truth, results of PIKE-R2P, and results of cTP-net of protein 
levels on RNA-based cell clusters in b 



Page 6 of 16Dai et al. BMC Bioinformatics  2021, 22(Suppl 6):139

to the ground truth. Each protein is highly expressed in its corresponding cell type anno-
tated based on RNAs. For example, in the ground truth, CD3 is highly expressed in T 
cells and monocytes, and CD8 is highly expressed in CD8+ T cells and NK cells. In this 
regard, our PIKE-R2P model is able to make predictions similar to the ground truth. 
However, it is not the case for cTP-net. For instance, cTP-net predicts that CD3 is highly 
expressed in NK cells and Pre-B cells, and so is CD8 in monocytes. The protein abun-
dances predicted by cTP-net tend to be high on most cell types, which makes it difficult 
to distinguish the cell types by the predicted protein abundances.

Module analysis

For noise reduction, we used the pre-trained model of SAVER-X to process the origi-
nal data. SAVER-X is a self-supervised learning model based on auto-encoder. The pre-
trained model of SAVER-X has somehow captured the distributions of RNAs among 
single cells, and thereby it could filter out some noise that could have made the data not 
fit the distributions well. Compared with the results without using SAVER-X, we found 
that the data pre-processing using SAVER-X significantly improved the performance of 
our model, and made our model converge faster (data not shown).

We further investigated the influence of prior knowledge on the PIKE-R2P model. 
Our experiment included seven conditions, i.e. no prior knowledge, adding empirically 
determined interaction, database annotated, automated text mining, combined score, 
gene co-occurrence, and merging with these five kinds of prior knowledge. To even out 
the fluctuations of result due to random initialization of the parameter values, we did 5 
repeated experiments in each case. Besides, to reduce the effect of overfitting, we ran 450 

Fig. 2 Visualizations of cell clustering results based on different data. The data predicted by PIKE-R2P 
disperses different cell clusters almost equally well as the ground truth protein data on the CBMC dataset. a 
cell clustering result based on RNA, SC = 0.069; b cell clustering result based on ground truth measurement 
of protein abundance, SC = 0.305; c cell clustering result based on PIKE-R2P prediction, SC = 0.309; d cell 
clustering result based on cTP-net prediction, SC = 0.135
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epochs in each case, and keep the minimum MSE value among the epochs as defined in 
Eq. 9. For all the experimental results of each group, we calculated the average between 
the maximum and the minimum values of the scores among the 5 runs and gave the dif-
ference between the maximum score and the average in each group of experiments.

Fig. 3 Protein levels on RNA-based cell clustering results on CBMC data. The results predicted by PIKE-R2P 
are more similar to the ground truth than cTP-net
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The results are shown in Table  3. In general, adding prior knowledge can slightly 
improve the model performance. For different features, if the prior knowledge reflects 
biological characteristics, such as combined score, empirically determined interac-
tion, and gene co-occurrence, the model improves more than others. When merging 
all the 5 types of prior knowledge features, the performance of the model improves 
the most. However, the scores are very close to each other among the conditions in 
Table 3. One reason could be that the knowledge information is far less rich than the 
RNA data, and thus the RNA data are in a dominant position.

To further illustrate the power of adding the prior knowledge, we conducted an exper-
iment by merging the two datasets (i.e. CBMC and PBMC) into one artificial dataset, 
comprising 16,603 types of RNA that overlap between CBMC and PBMC (i.e. the inter-
section). Then, we added the training sets from CBMC and PBMC together to get 11,558 
cells in the merged training set; likewise, we got 4941 cells in the merged test set. We ran 
PIKE-R2P 15 times for both the condition of using no prior knowledge and the condi-
tion of adding prior knowledge with all the 5 features. The box plots in Fig. 4 show that 
adding prior knowledge can significantly improve the performance of our model on the 
merged dataset. The results also show that the variances of both PCC and MSE of the 
model without prior knowledge are larger than the model with knowledge embedding.

Table 3 Impact of prior knowledge embedding on model performance of PIKE-R2P

The bold numbers represent the best performance. Note that on the CBMC dataset, for either PCC or MSE, the best and the 
second best scores are very close to each other, so both results are in bold

CBMC PBMC

PCC MSE PCC MSE

No prior knowledge 0.8452 ± 0.0020 0.1960 ± 0.0022 0.8119 ± 0.0049 0.4432 ± 0.0043

Empirically determined interaction 0.8464 ± 0.0011 0.1958 ± 0.0018 0.8159 ± 0.0038 0.4306 ± 0.0073

Automated text mining 0.8456 ± 0.0011 0.1953 ± 0.0014 0.8165 ± 0.0012 0.4337 ± 0.0055

Database annotated 0.8460 ± 0.0031 0.1957 ± 0.0018 0.8163 ± 0.0030 0.4320 ± 0.0068

Combined score 0.8459 ± 0.0029 0.1952 ± 0.0060 0.8162 ± 0.0020 0.4333 ± 0.0072

Gene co-occurrence 0.8442 ± 0.0012 0.1944 ± 0.0027 0.8165 ± 0.0019 0.4329 ± 0.0039

Merge 5 features 0.8462 ± 0.0037 0.1944 ± 0.0035 0.8181 ± 0.0013 0.4303 ± 0.0083

Fig. 4 The effect of the knowledge on the performance of PIKE-R2P on the artificial dataset merging CBMC 
and PBMC. a The PCC scores. The median and mean PCC scores are 0.8170 and 0.8214 with knowledge but 
they are 0.8008 and 0.7784 without knowledge. b The MSE scores. The median and mean are 0.5471 and 
0.5494 with knowledge but are 0.5631 and 0.6254 without knowledge. In each boxplot, the green triangle 
marks the position of the average value, and the orange line makes the median value
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Discussion
In our experiments, Random Forest was more computationally expensive than the neu-
ral network-based models (data not shown). This could be due to the sharing of RNA 
features among different proteins which are reused by neural network models so that 
some of the model retraining can be avoided, whereas the Random Forest method does 
the whole feature engineering for every target protein.

We have used the PPI network as prior knowledge. Similarly, several other sources 
of prior information are available in the literature, including gene ontologies and text 
mining databases. Each data source could provide additional information while reduc-
ing inherent noise in the data. As a future extension, the incorporation of multiple data 
sources in the model may provide a better prediction framework.

In our work, we predicted proteins using the CITE-seq dataset, where the measure-
ments were performed on blood samples. It has been shown that single-cell gene expres-
sion patterns tend to be tissue specific [7, 32]. A transfer learning framework may help 
train a model from a large known dataset of one tissue while predicting gene expressions 
in other tissues. A similar approach of transfer learning could also be used to compare 
different sequencing platforms (e.g. CITE-seq and REAP-seq). In both cases, a model 
based on graph neural networks incorporating prior knowledge may provide good 
model performance and biological insights.

Conclusion
Recently emerging single-cell multi-omics techniques can measure RNA and protein 
abundances simultaneously in the same cells. Based on such data, machine learning 
models have been proposed to predict protein abundances based on RNA abundances at 
the single-cell level. However, their performances can be further improved.

In this paper, we proposed PIKE-R2P, a machine learning method based on graph 
neural network (GNN) and knowledge embedding. The key idea is that target proteins 
often share mechanisms of gene expression regulation from transcription to translation. 
PIKE-R2P captures such relations by embedding the prior knowledge of protein–protein 
interactions into a GNN. Through information propagation among nodes of the GNN, 
the model can make better use of information from the RNA-seq data, and thereby 
improve its prediction performance. Our results on real CITE-seq data demonstrated 
that PIKE-R2P significantly out-performed existing methods, indicating the value of 
adding knowledge to neural network models. In the future, more sources of knowl-
edge and more modalities of single-cell data can be integrated through GNN, not only 
improving prediction performance, but also paving the way for interpretable machine 
learning in bioinformatics.

Methods
Overview

The main idea of our method is to integrate the PPI-based information as prior 
knowledge into a graph neural network, to capture the relationships between proteins 
and RNAs as well as among proteins, and thereby to improve the accuracy of protein 
abundance prediction. The whole pipeline is described in Fig.  5a and Algorithm  1. 
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Fig. 5 The method of PIKE-R2P. a is the whole pipeline and the model structure. The pipeline includes data 
denoising, model training, and testing. The green matrix represents denoised RNA data; the blue matrix is 
the high-dimensional representation of the RNA data; the orange vectors are the features of proteins and the 
orange lines correspond to the edges in the PPI network; the purple vectors are representations of the prior 
knowledge. b The knowledge embedding structure. The prior knowledge of each protein is mapped into a 
high-dimensional feature matrix. Then the attention mechanism is used to select the features. After that, the 
weights of protein interaction pairs linked to the same protein are adjusted. Finally, these feature vectors are 
concatenated together into one matrix as the prior knowledge embedding
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After noise reduction by SAVER-X, we divide the cells into two disjoint datasets, i.e. 
a training set and a test set. For training, we feed the training set to the model for 
parameter estimation and save the parameter values that correspond to the minimum 
MSE loss among all the epochs that have been computed. During the test, the model 
loads these parameters, and predicts the protein abundances of the cells in the test set 
directly.

Our model mainly consists of two modules. The first one is adding the PPI-based 
graph neural network to the dataset, shown as the “PPI-based graph neural network 
part” in Fig.  5a. These protein–protein interactions provide a way for information 
transmission between proteins, which means the proteins jointly promote specific 
biological functions, e.g. by inhibiting or promoting each other [31]. Intuitively, we 
encode the PPIs with a graph structure, where the nodes are proteins, and edges 
represent the interactions. Thus, we use the graph neural network to compute the 
result of information transmission through these interactions between proteins. The 
other module is the embedding of prior knowledge, such as co-expression and gene 
co-occurence, etc., which is described in Fig.  5a. Since PPI relationships tend to be 
conserved across different cell types [31], the PPI in large-scale databases such as 
STRING can be used for the knowledge embedding.

The whole structure of the model is shown in Fig. 5a. The input is the denoised data 
from SAVER-X. Then, similar to cTP-net [7], we extract the RNA representation from 
the input RNA data using a neural network for feature extraction, which includes two 
fully-connected layers, shown as the blue part in Fig. 5a. After that, to represent the 
features of N proteins in the high-dimensional space independently, we used N 1-layer 
forward networks to map the RNA representation to N protein feature vectors, and 
combined all the feature vectors of the proteins into matrix Vr ∈ R

N×dr , where dr is 
the number of dimensions of the protein representations, shown as the orange vec-
tors in Fig. 5a. Besides, the prior knowledge from different sources is embedded into 
matrix Vk ∈ R

N×dk , where dk is the number of dimensions of the target vector space of 
the knowledge embedding, shown as the purple matrices in Fig. 5a. By concatenating 
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the column vectors from the two matrices that correspond to the same protein, the 
high-dimensional representation of each protein is

where vi ∈ R
1×d , i = 1, 2, . . . ,N  , d = dr + dk and ⊕ is the concatenation opera-

tion. Thus, the PPI network has the set of nodes V = {v1, v2, . . . , vN } , and V ∈ R
N×d . 

Moreover, the interactions between the proteins are represented as the set of edges 
E ⊆ V × V  . Therefore, graph G = (V ,E) represents the PPI network, as shown in the 
PPI-based Graph Neural Network part in Fig. 5a. To model the information transmis-
sion in the PPI network, we apply algorithms of graph neural network on G. After that, 
to map the N representations in d dimensions to the abundance values Ŷ ∈ R

N×1 , we 
reduce the dimensions of the node vectors from d to 1 through the predictor which is a 
1-layer feed-forward network.

PPI‑based graph neural network

In this paper, we assume that the proteins whose abundances are to be predicted have 
some relations with each other. Such relations could be due to physical interactions, 
crosstalk between signaling pathways, shared mechanisms of gene regulation from 
transcription to translation, or some other functional relationships. For convenience, 
we consider such relations as “protein–protein interactions” (PPIs) in the general 
sense, i.e. the PPIs include both direct and indirect interactions. A PPI network is nat-
urally represented as an undirected graph denoted by G = (V ,E) , where each node in 
V corresponds to a protein and each edge in E corresponds to the interaction between 
two proteins.

To represent the edges in set E, we use a weight matrix W ∈ R
d×d to capture 

the relations among the features of the proteins and we use an adjacency matrix 
A ∈ R

N×Ncontaining edge weights to describe the connectivity among the proteins. 
The values in both matrices are initialized randomly and will be adjusted when the 
model is trained, according to the definition of graph neural network in [36]. During 
the training, the nodes transmit feature information to each other, and the result is:

(1)vi = vri ⊕ vki ,
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where matrix V e ∈ R
N×d contains the node vectors transformed from the node vec-

tors in V through A, W and the sigmoid function σ(x) = 1
1+e−x , which is applied to 

each element of matrix AVW. After that, we use a Feed-Forward (FF) layer to reduce 
the dimensions of the node features from N × d to N × 1 , where N is the number of 
proteins. Different from cTP-net [7], which fits the Centered Log-ratio Range of protein 
abundance [4] by the ReLu function ReLu(x) = max(0, x) , we use the PReLu function 
PReLu(x) = max(0, x)+ 0.25×min(0, x) in the last layer to ensure that the model can 
predict values less than 0. Note that, in the CITE-seq data, the protein abundance values 
are log-transformed and thus could be negative sometimes. Thus, the output is

Prior knowledge

In the previous section we mainly built a PPI network from a specific dataset, but 
there is additional prior knowledge about PPI from other datasets. The STRING data-
base collects information on PPI from different anngles such as co-expression and gene 
co-occurrence, etc. Therefore, we use this superset of PPI information to improve the 
model performance. To represent these features, we embed this prior knowledge into dk 
dimensions, which adds constraints to the protein predictions in the graph neural net-
work. The structure is shown in Fig. 5b and the algorithm is described in Algorithm 3.

We use M independent features C = {C1,C2, . . . ,CM} of the PPIs in the STRING 
database [31]. Each feature Ci is represented by a graph with N protein nodes and 
N × N  edges represented by the interaction scores, where N is the number of pro-
teins. We transform every Ci into an N × N  adjacency matrix Ci

′ ∈ R
N×N×1 . When 

a protein is missing in the prior knowledge database, which means the connections 
of the protein with others are absent. We set the weights of the connections to 0. In 
order to obtain the high-dimensional features of each adjacent matrix, each column 
vector in matrix Ci

′ is encoded by N 1-layer fully-connected networks with dc dimen-
sions and the result is Aci ∈ R

N×N×dc . Then, through the attention mechanism defined 
in [37], the importance scores of the features are merged into matrix Ac ∈ R

N×N×dc,

(2)V e = σ(AVW ),

(3)Ŷ = PReLu(FF(V e)).
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where aci is the normalized attention coefficient, Wai is the weighted matrix for the i-th 
coefficient, and elu(x) = max(0, x)+min(0, exp(x)− 1).

To combine the prior knowledge with each protein node to constrain the information 
transmission, we divide Ac into N submatrices Acj ∈ R

N×dc , where 0 < j ≤ N  , and each 
submatrix corresponds to one of the N proteins. To reflect different degrees of impor-
tance of the protein pairs, we need to re-weight all the relationships. In the following, 
Akj ∈ R

N×dc represents the re-weighted relationships:

where akj is the normalized attention coefficient for the different constrained features. 
Because a pair of proteins may be influenced by multiple intermediate proteins, we con-
catenate all the prior knowledge of protein interactions for each node into a feature vec-
tor, as follows:

where Vk ∈ R
N×dk , dk = N × dc , and ⊕ is the concatenation operation.

Model training

Before training, we set the parameters for the model. In the fully connected layers, the 
hidden sizes are 1024 and 128 for the numbers of output neurons of the two hidden lay-
ers for the RNA representation and 32 hidden neurons in the connected layer for the 
prior knowledge embedding. In the feed-forward network, we set dr to 64, dc to 32 and 
dk to dc × N  . The number of nodes N in our graph neural network depends on the data-
set, i.e., N = 10 for PBMC and N = 13 for CBMC. Thus, dk = 320 , d = dr + dk = 384 
for PBMC, and dk = 416 , d = dr + dk = 480 for CBMC.

For the training, we set the number of epochs to 350 and batch size to 32. For the 
optimization of loss function based on mean squared error (MSE), we first set the global 
MSE′

loss to an infinite value. In each epoch, if the current MSEloss is smaller than the 
global MSE′

loss , we update MSE′
loss to MSEloss , and save the model parameters of this 

epoch. We assume that all proteins have equal weights in the MSE loss:

(4)Ac = elu
1

M

M

i=1

(aciWaiAci) ,

(5)aci =
exp(elu(Aci))

∑N
e=1 exp(elu(Ace))

,

(6)akj =
exp(elu(Akj))

∑N
e=1 exp(elu(Ake))

,

(7)Akj = elu(akjWkjAcj ),

(8)Vk = Ak1 ⊕ Ak2 ⊕ · · · ⊕ AkN ,

(9)MSEloss(Y , Ŷ ) =

N
∑

i=1

(ŷi − yi)
2,
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where Y contains the ground truth measurements and Ŷ  is the set of the predicted 
protein abundances. The initial learning rate is set to 10−6 . The model parameters are 
estimated based on the minimization of MSE loss and the Adam optimizer by back 
propagation.
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