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Abstract: Biological contextual information helps understand various phenomena occurring in the biological
systems consisting of complex molecular relations. The construction of context-specific relational resources vastly
relies on laborious manual extraction from unstructured literature. In this paper, we propose COMMODAR, a
machine learning-based literature mining framework for context-specific molecular relations using multimodal
representations. The main idea of COMMODAR is the feature augmentation by the cooperation of multimodal
representations for relation extraction. We leveraged biomedical domain knowledge as well as canonical linguistic
information for more comprehensive representations of textual sources. The models based on multiple modalities
outperformed those solely based on the linguistic modality. We applied COMMODAR to the 14 million PubMed
abstracts and extracted 9214 context-specific molecular relations. All corpora, extracted data, evaluation results, and
the implementation code are downloadable at https://github.com/jae-hyun-lee/commodar.
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Background

Complex biological systems are known to comprise the
coordination of molecular interactions and the relation-
ship between molecules will consequently determine the
behavior of the entire system. Molecular network models
are often considered to be valuable for elucidating the
organizing principles of biological systems and promot-
ing public health. For example, biological networks are
of pharmacological interest as an aid to the prediction of
the side effects or multi-targeting drug efficacy.

In the pursuit to develop network models, biomedical
researchers have increasingly depended on informatics
resources which serve various patterns of molecular rela-
tions [1]. Yoon et al. had integrated pathway resources
comprised of the relations between biological molecules
and substantiated that information from various
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resources were sometimes contradictory [2]. For in-
stance, one database supports that a protein A IN-
CREASES the activity of a protein B, whereas another
one supports that the protein A DECREASES the activity
of the protein B. Yoon et al. partially attributed these dis-
crepancies to the lack of the contextual information,
which specified the biological circumstance of the mo-
lecular relations. As a solution, this study enhanced the
resolution of context-free data and resolved the rate of
the information conflict. That is to say, if the protein A
has a positive influence on the protein B in HEALTHY
cases while negative in MELANOMA patients, two aug-
mented relations no longer are contradictory. The con-
text types considered in this study include cell type,
organ, disease, and drug.

dSysMap [3] and PinSnps [4] are examples of reposi-
tories of the protein interactions functionally perturbed
by pathological mutations. These resources ensure a
higher resolution of molecular interaction data
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mathematically structured from other public data re-
sources by specifying genetic conditions. TIMBAL [5],
2P2Idb [6], and iPPI-DB [7] house not only protein-
protein interactions (PPI) but also small molecules
which are putatively druggable and have been proven to
modulate associated protein interactant pairs. This
context-specific information has been collected from the
public databases (TIMBAL, 2P2Idb) or hand-curated
from the biomedical literature (iPPI-DB). In other words,
the aforementioned resources rely on laborious manual
curation or other structured resources which have been
manually prepared.

An enormous wealth of biomedical information re-
sides in unstructured written languages such as journal
articles, which has been unprecedentedly growing. To be
more specific, nearly 30 million references are available
in PubMed and has annually published more than one
million papers. As the number of biomedical publica-
tions continues to grow, such an exponentially growing
volume of literature has become infeasible to be struc-
tured. Thereby, the gap between published knowledge
and well-tailored information in databases has been
widening.

Previous work

To assist this situation, several text mining efforts [2, 8—10]
have been attempted. These approaches identified the con-
textual information corresponding to molecular pairs of
interaction from the specific publications reporting the
given molecular interactions. Poon et al. and Yu et al. used
the specific types of the medical subject headings (MeSH)
[11] terms annotated on each PubMed abstract provided by
MEDLINE whereas Lee et al. and Yoon et al. annotated
every context mention recognized in the abstract text.
While these efforts are capable to efficiently augment the
given information, the co-occurrence-based extraction gen-
erally suffers from low precision due to its greedy behavior.
Machine learning offers a much more attractive alternative
by effectively automating the elaborate pattern engineering.
Furthermore, natural language processing (NLP) based on
the machine learning approach automatically enables to
analyze textual sources and streamlines the extraction of
facts and knowledge to support biomedical database
curation.

Conventional machine learning frameworks for bio-
medical relation extraction often rely on linguistic infor-
mation, such as word n-gram or syntactic dependency,
directly derived from literature text. Quan et al. [12]
employed word embedding models based on word n-
gram proximity, also known as distributed representa-
tions to capture linguistic patterns from sentences and
predict drug-drug interactions (DDI). PPI. Zhao et al
[13] refined the n-gram model which numerically repre-

sents words by syntactic dependency information
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achieved by deep parsing and predicted DDI. These en-
deavors focused on linguistic information to analyze sen-
tences and extract the planar information of interactions
between two entities. On the contrary, the information
of interest in the present paper, i.e., context-specific mo-
lecular relation, includes the contextual modulator of
two molecular entities as well as the relation between
two molecules. Therefore, the extraction task for such a
meta-relation may be accelerated by extra features in
addition to canonical linguistic information based on
word n-gram and syntactic dependency. In the biomed-
ical domain, well-structured and comprehensive know-
ledge graphs such as MeSH or unified medical language
system (UMLS) [14] contain relational knowledge in
forms of the knowledge triplet represented as <subject,
predicate, object>. The biomedical domain information
from these knowledge resources can play a complemen-
tary role in the holistic representation of the unstruc-
tured text.

In the present paper, we propose a machine learning
approach COMMODAR, which extracts context-specific
molecular relations from biomedical literature. COM-
MODAR cooperatively uses three discriminative features
from multiple modalities, which includes linguistics
(word n-gram and syntactic dependency) and biomedical
knowledge (knowledge triplet). The overall process of
COMMODAR is illustrated in Fig. 1.

Method
The specification of the information to be extracted
from the literature is summarized below.

(i) Molecular type: Gene, Gene product

(ii) Context type: Disease

(iii) Relation type: Increase, Decrease, Regulate (sign
unknown), Binding (sign and direction unknown)

We considered the extraction of the context-specific
molecular relations as a sentence classification problem.
To solve the classification problem, we used a
supervised-learning paradigm based on the ground-truth
data.

Preprocessing

Abstract collection and sentence preparation

We downloaded PubMed raw files in an XML format
and retrieved abstract texts published until 2016
resulting in 14,891,354 abstracts. Collected abstracts
were segmented sentence-by-sentence by GENIA Sen-
tence Splitter [15]. All characters were lowercased
and a set of punctuation marks (parentheses, comma,
slash, hyphen, exclamation mark, question mark, and
quotation mark) was spared instead of being elimi-
nated due to following syntactic parsing. The spared
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Fig. 1 The overall process of COMMODAR

punctuation marks and general words were separated
by white space, e.g., (general words). Special charac-
ters other than the aforementioned punctuation marks
were eliminated.

Name entity recognition (NER) and normalization

To recognize molecular entities in the sentence,
BANNER [16], the most widely used NER tool for
gene, gene product, and disease entities, was
exploited. Afterward, UMLS terminology browser
API assigned UMLS concept unique id (CUI) in the
version of 2018AB with the ‘Exact Match’ search
type to the recognized entities for term
normalization. The CUI was specified by UMLS se-
mantic types as listed in the Table Al (See Add-
itional file 1) according to UMLS semantic group:
Genes & Molecular Sequences and Chemicals &
Drugs for molecular entities whereas Disorder for
context entities [17]. On one hand, the semantic
type Cell Component (celc) in the semantic group
Anatomy was included to cover protein complex en-
tities. On the other hand, the semantic type Finding
(fndg) in the semantic group Disorder was excluded
because Finding indicates not the disease concept
but the discovery or diagnosis of the disease. This
term normalization process for the recognized en-
tities establishes the bridge of multimodality so that
the given textual source can be represented by both
linguistic and biomedical knowledge.

Representation model

N-gram-based word embedding

N-gram-based word embedding is the distributed repre-
sentation of word to capture the semantic information
in the unsupervised manner. After sentence segmenta-
tion and tokenization of collected abstracts described in
the previous section, the skip-gram model [18] was
employed to train the word representation. The n-gram-
based word embedding model was implemented with
the open-source Python library GenSim [19]. The em-
bedding dimension size, window size, iteration, learning
rate, subsampling, and negative sampling size were 200,
16, 50, 0.05, 1le-5, and 10, respectively. These hyper-
parameters were determined according to Chiu et al’s
work especially for biomedical NLP and the rest
remained the default [20]. As a result, 1,960,501 of the
vocabulary was totally yielded after the training
procedure.

Dependency-based word embedding

In contrast to n-gram-based word embedding defining a
target word by the neighbor words of the target word in
sentences, dependency-based word embedding defines a
word by its syntactic dependency [21]. Syntactic depend-
ency refers to the syntactic relations between words in
the sentence. For example, a verb saw has a dependency
on its direct objective cat in a sentence I saw a cat and
it can be represented as saw-cat/dobj. Dependency-
based word embedding has been known to have different
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properties from n-gram-based word embedding and to
capture the functional properties of words [22]. Intui-
tively speaking, n-gram-based word embedding
considers the words co-occurring in the window of a
pre-defined size with the target words in sentences,
while dependency-based word embedding considers the
words functionally related to the target words regardless
of the distance. Syntactically parsed results distributed
by Hakala et al. consist of 8,934,832 abstracts, 55,092,
436 sentences, and 55,416,433 words [23]. The embed-
ding dimension was 200 and the rest of hyper-
parameters was stuck with the default.

Knowledge triplet-based concept embedding

The UMLS Semantic Network stratifies biomedical con-
cepts in the UMLS Metathesaurus and presents useful
relations between the sets of these concepts. The nodes
and edges in the network are the semantic types and the
relations between semantic types, respectively and
2018AB version offers 133 semantic types, 54 relation
types, and totally 6105 relations. To capture global rela-
tions and transitional characteristics between semantic
types, we employed ConvKB, a knowledge graph embed-
ding model based on convolutional neural networks
(CNN) [24]. ConvKB concatenates subject, predicate,
and object vectors into an m x 3 matrix, then feeds it
into a CNN with the 1 x 3 filters, where m is the dimen-
sion of the embedding vector. Thus, ConvKB is a gener-
alized version of the transitional knowledge graph
embedding framework TransE [25]. The dimension of
the embedding vector and the learning rate were set as
10 and 0.001, respectively, while the rest of the hyper-
parameters as the default.

Classification model

Corpus

Unfortunately, to our knowledge, any labeled sentence set
of context-specific molecular relations has never been de-
veloped for the public purpose. Therefore, we considered
a transfer learning scheme to manually generate a small
volume of completely labeled sentences and additionally
leverage the relatively sizable corpora for related tasks
[26]. Partially matched ground-truth data, i.e., the annota-
tion of context-free molecular relations, includes Genia
Task (GE11, GE13) and Pathway Curation (PC11, PC13)
distributed by the BioNLP Shared Task (BioNLP-ST)
workshop [27, 28]. The BioNLP-ST workshop is a decade-
long series of community-wide efforts toward structural
literature mining in the biomedical domain. Besides those
manually annotated corpora, EVEX also incorporates
context-free relational information computationally ex-
tracted by a machine learning framework, TEES [29]. The
detailed preprocessing procedure to prepare context-free
corpora is illustrated in the Appendix A.1 (See Additional
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file 1). The number of class labels is totally eight for both
context-free and context-specific corpora: Increase-
forward, Increase-backward, Decrease-forward, Decrease-
backward, Regulate-forward, Regulate-backward, Binding,
and False. The class labels are identical but there are dif-
ferences in the implication of the labels and the sentences
involved in each label between context-free and context-
specific corpora. Sentences in context-free corpora de-
scribe the generic relations between molecules without
any contextual specification, i.e., disease condition, while
sentences in context-specific corpora describe the
context-specific relations. Thus, class labels of context-
free corpora refer to generic relations whereas those of
context-specific corpora to context-specific relations. The
final volume of the corpora is enumerated in the Table A4
(See Additional file 1).

Model architecture
To fully capture the relational information implicitly
expressed in a sentence, we conducted automated fea-
ture learning with CNN obviating manual feature en-
gineering. The convolutional layers and the pooling
layers in CNN extract local features in a sentence and
merge local feature patterns, respectively. In addition,
the multi-group norm constraint CNN (MGNC-CNN)
architecture independently extracts features from the
multiple embedding sets and generates a final feature
vector by concatenating the extracted high-level fea-
tures at the penultimate layer [30]. MGNC-CNN
shows a higher degree of freedom than other CNN
architectures accommodating multiple embeddings
such as multi-channel CNN [12] because MGNC-
CNN can manipulate embeddings with various vector
sizes and regularization strategies. An architecture of
MGNC-CNN we equipped for the relation classifica-
tion is represented in Fig. 2. For relation classifica-
tion, relation entities such as molecule and context
keywords were marked along with entity tagging fea-
tures and the detailed description was illustrated in
the Appendix A.2 (See Additional file 1) [31].
According to the transfer learning scheme, the param-
eters in MGNC-CNN were initialized by pre-training
with context-free source corpora established by both the
manual review and computational inference and then,
fine-tuned by the context-specific target corpus which
had been manually generated for the present study. The
filters with the length of 21, 22, and 23 were applied for
the linguistic representation (both n-gram-based and
dependency-based embeddings) and the width was
dependent on the embedding vector size, therefore, 200.
Because the dimension of the filter for the biomedical
knowledge representation (knowledge triplet-based em-
bedding) was 3 x 10 which was congruent with the
knowledge matrix, the convolution operation over the
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Fig. 2 The architecture of MGNC-CNN

knowledge matrix was applied once without any stride.
The numbers of filters were 100, 100, and 100 for the
linguistic representation and 50 for the biomedical
knowledge representation, respectively. We set the learn-
ing rate of 0.001, the drop-out probability of 0.5, ADAM
optimizer, and early stopping (less than 10 epochs for all
cases) for both pre-training and fine-tuning. The size of
the mini-batches was set by 50 and 5 for pre-training
and fine-tuning, respectively.

Post-processing

After predicting class labels of putative context-specific
relations described in the sentences, we analyzed the fre-
quency of extracted relations to estimate the signifi-
cance. Based on the assumption that more frequently
reported the relation is at the research articles, the more
significant the relation can be considered, the rare rela-
tions reported less than the empirical threshold were
discarded. The empirical threshold was determined as
six times, the frequency of the relation which was the
top 1% (0.01) in the frequency distribution of the entire
extracted relations. The relations reported more than 14
times were grouped by the sequence of three CUIs of
one contextual and two molecular entities. The conflict
of relation classes in a group was resolved by voting, in
other words, the majority of relation classes. In case of
the tie, the relation classes were abstracted, for example,
Increase and Decrease with the same direction result in
Regulation whereas relation classes with contradictory
directions result in Binding.

Result

Performance of the classification model

The performance of MGNC-CNN model was evaluated
in the micro-average f-score because the class distribu-
tion in the context-specific corpus was highly skewed.

The context-free and context-specific corpora were re-
spectively separated into training and test datasets (2:1)
for 3-fold cross-validation. Figure 3 shows the result of
the ablation analysis across various representation com-
binations and filter sizes. N, D, and K stand for n-gram-
based, dependency-based, and knowledge triplet-based
representations, respectively. The models using the
knowledge triplet-based representation illustrated in
brown colors mainly boosted the performance by adding
biological background knowledge about relational en-
tities. Finally, the model using three different representa-
tions with filter size 21, 22, and 23 outperformed other
representation combinations and filter size ranges. The
statistical analysis about the putative optimal filter size is
illustrated in the Appendix A.3 (See Additional file 1).
The model solely based on the knowledge triplet repre-
sentation was excluded for the lack of the linguistic in-
formation spread across the sentence.

End-to-end inspection

We applied the context-specific model to the prepro-
cessed unlabeled sentences and inspected 177 randomly
sampled sentences with predicted labels to estimate the
end-to-end reliability of the proposed framework. 73
sentences were correctly predicted, while 104 sentences
were assigned wrong labels with various circumstances.
67 out of 73 correctly predicted sentences were False
sentences and the other 6 implied the specific relations.
30 out of 67 true negative sentences were describing
valid molecular relations while mentioned context words
were invalid. The model based on the co-occurrence as-
sumption is likely to classify these False sentences as
valid while COMMODAR was enabled to exclude. Fur-
thermore, these correctly classified False sentence sup-
port that COMMODAR is not fully biased on the pre-
trained model which extracts context-free molecular
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relations and is expected to classify these False sentences
as valid. 80 False sentences out of 104 failures incor-
rectly labeled as specific relations, the 7 relational sen-
tences were predicted to the wrong relation types or the
opposite directions, and the rest 17 sentences were false
negative. 80 False sentences include 13 with NER errors,
48 without any relation between molecular entities, 19
describing experimental designs or objectives rather than
unraveled facts or results. Because of the false discover-
ing behavior of the classification model extracting rela-
tions from False sentences, the conservative threshold,
0.01 was applied in the post-processing step.

Repository of context-specific molecular relations

After large-scale extraction and post-processing, we
yielded 9214 context-specific molecular relations (Bind-
ing 4864, Regulation 1475, Increase 1448, and Decrease
1427) previously reported in the literature. The most fre-
quent contextual concept was Neoplasm (C0027651)
and the 2030 relations were extracted to be specific to
Neoplasm. The example sentences for the end-to-end
inspection and all the extracted relations are download-
able in https://github.com/jae-hyun-lee/commodar.

Discussion

COMMODAR focuses on the context type of the disease
in the proposed research. However, it can be technically
extended to deal with alternative context types such as

medication or anatomy if only relevant NER tools and a
small volume of the completely labeled sentence set are
available. Thus, it can be utilized to build and maintain
databases containing various context types for molecular
relations. Moreover, molecular relations extracted by
COMMODAR can resolve the protein in the isoform
level thanks to the entity normalization according to
UMLS which distinguishes protein isoforms. This fine
resolution provides the extracted context-specific mo-
lecular relations with versatility.

COMMODAR, however, has some limitations to be
noted. Firstly, it requires the entity normalization step
which is mostly unnecessary for relation extraction. Two
molecule entities and one context entity should be nor-
malized with UMLS CUI to utilize background know-
ledge from the knowledge graph, ie. UMLS as well as
linguistic information. Secondly, COMMODAR showed
the false discovering behavior by producing 80 false
positive out of 177 sentences and we proposed the
frequency-based post-processing procedure. Neverthe-
less, it is partially attributed to the nature of the given
task, i.e. highly skewed true/false balance and the con-
ventional co-occurrence-based models may well produce
a larger number of false positives.

Conclusion
We have proposed COMMODAR, a literature mining
framework for context-specific molecular relations using
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multimodal representations. COMMODAR can utilize
multiple representations from multiple modalities so
that comprehensive information from various resources
can cooperate to analyze the unstructured text. The su-
periority of multimodal information in the relation ex-
traction task was substantiated by the outperformance of
the MGNC-CNN model using both linguistic and bio-
medical knowledge representations. The expansibility of
COMMODAR enables the biomedical database curators
to adopt various state-of-the-art and off-the-shelf em-
bedding models appropriate to the characteristics of the
data resources.
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