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Background
The task of automatically analyzing raw text to determine the syntactic structure of input 
sentences and generating representations of those structures in some established formal-
ism is known as syntactic analysis or parsing. Parsing is a core task in natural language 
processing (NLP) and a required component of many information extraction and text 
mining systems, which make use of syntactic structures to determine e.g. which rela-
tions involving specific named entities, such as protein-protein interactions, are stated 
in text. Parsing research was for long dominated by constituency (or phrase structure) 
formalisms due in part to the influence of resources such as the Penn Treebank [1] and 
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tools such as the Stanford [2] and BLLIP [3] parsers. However, many systems making use 
of syntactic analyses for information extraction tasks in biomedicine [4–6] as well as in 
other domains [7, 8] have preferred dependency representations of syntax, which capture 
relations between words more explicitly [9, 10]. In recent years, there has been a con-
siderable shift toward dependency representations also within parsing research, driven 
in part by the success of Universal Dependencies (UD), a broad collaborative project to 
introduce cross-linguistically consistent dependency annotation for many languages [11, 
12]. The UD effort has to date led to the introduction of more than 150 treebanks in 90 
languages (https​://unive​rsald​epend​encie​s.org/) and its resources served as the basis of 
the popular Conference on Computational Natural Language Learning (CoNLL) shared 
tasks on multilingual dependency parsing in 2017 and 2018 [13, 14]. While the UD effort 
and these tasks have served to substantially advance the available resources and the state 
of the art in highly multilingual dependency parsing, there has been comparatively little 
effort focusing on dependency parsing for specialized domains such as biomedicine. In 
2019, a shared task on biomedical dependency parsing was organized as the CRAFT-SA 
(Structural Annotation) subtask in the CRAFT shared tasks  [15], a set of community 
challenges building on the data of the Colorado Richly Annotated Full Text (CRAFT) 
corpus [16, 17]. Our group (TurkuNLP) participated in this task, achieving the highest 
performance in the task  [18]. We build further on the data and other resources of the 
shared task in this paper, applying models and methods reflecting the latest develop-
ments in neural dependency parsing.

Along with an increased focus on dependency representations of syntax, there have 
recently been notable methodological shifts in parsing, mirroring general trends in 
machine learning. First, methods have moved from statistical approaches [2, 19, 20] and 
machine-learning approaches building on explicitly defined features [21–24] toward 
deep neural methods employing dense features learned from data [25–27]. In an associ-
ated trend, there has been substantial recent interest on transfer learning, which in the 
context of this paper refers to using models pre-trained on large unannotated text cor-
pora, and subsequently fine-tuned for the specific task at hand. Initially, the focus was on 
shallow approaches generating context-free representations of word meaning, such as 
word2vec [28] and GloVe [29], and in the last few years increasingly on deep contextual-
ized models of meaning such as ULMFiT [30], ELMo [31], and BERT [32]. Of these, the 
BERT model has been particularly influential, notably advancing on the state of the art in 
several NLP tasks [33] and serving as the basis for many recent studies in deep transfer 
learning [34, 35]. The best-performing system in the CoNLL 2017 shared task was a deep 
learning model using context-free word representations induced from billions of words 
of raw text [36]; in 2018, many CoNLL participants built on this approach, including in 
a top-performing system for many metrics specifically through integrating information 
from deep contextualized word vectors [37]. In the original CRAFT-SA shared task, we 
participated with the Turku Neural Parser Pipeline [38], a retrainable full parser pipeline 
based on the winning CoNLL’17 parser [36] and a top ranking system in CoNLL’18. In 
this paper, we extend on our previous work in two primary ways: (1) we replace a sub-
stantial part of the parser pipeline with the recent deep neural parser UDify [39], which 
is based on the BERT model and, (2) we explore a broad range of alternative BERT mod-
els to use for initializing UDify, replacing the multilingual model that the parser uses by 
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default. We demonstrate that both of these modifications substantially improve on the 
best performance achieved at the original shared task, together achieving a 15% reduc-
tion in the error rate of the previous state of the art for the standard labeled attachment 
score (LAS) metric.

In the following, we first introduce the CRAFT-SA task data and the BERT models 
considered in this study. We then present the baseline approaches and the previous state 
of the art model from the original shared task, and introduce the updated version of 
our parsing pipeline proposed for biomedical dependency parsing in this paper. We then 
present and discuss the results and conclude with a discussion of future work.

Data
We make use of a single manually annotated resource in this work: the syntactic anno-
tations of the CRAFT corpus. We additionally use a selection of deep language models 
pre-trained on unannotated texts. We introduce these resources in this section.

CRAFT corpus

The CRAFT corpus consists of 97 full-text articles that have been manually annotated 
for multiple layers of information, including normalized mentions of concepts such as 
entity names, coreference, and sentence syntax [16, 17]. In this work, we only consider 
the syntactic annotation of the corpus.

For the purposes of the shared task, the 97 documents of the CRAFT corpus were 
divided into a visible subset of 67 articles that were made available to participants with 
full annotation and a blind subset of 30 articles for which annotations were held out and 
participants were only provided with the raw, unannotated texts of the articles. As there 
is no pre-defined division of the data into training and development sets, we split the 
provided visible dataset randomly in terms of documents into 57 training documents 
and 10 development documents that were used only for early stopping during training. 
The statistics of this split are shown in Table 1.

The dependency annotation of the data is automatically created by conversion from 
the Penn Treebank constituency representation [1] used in the CRAFT corpus. This 
conversion is based on the implementation by Choi and Palmer  [40], followed by fur-
ther custom post-processing by the shared task organizers. The resulting dataset con-
forms to the CoNLL-U data format, but the syntactic annotation is not fully in line 
with the Universal Dependencies guidelines [18]. Rather, it more closely resembles the 
Stanford Dependencies (SD) representation, a predecessor of the Universal Dependen-
cies scheme [41, 42]. Most importantly, while the UD scheme consistently assigns rela-
tions between content words, with function words being dependents, this principle is 
enforced to a lesser degree in SD. A typical difference in the analysis of prepositional 
phrases is illustrated in Fig. 1. There are also a number of other consistent differences 

Table 1  CRAFT corpus structural annotation statistics

Train Devel Test

Documents 57 10 30

Sentences 18,563 3168 9099

Tokens 477,825 83,207 232,619
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between SD and UD, such as the attachment of coordinating conjunctions to the first 
conjunct in SD and to the nearest right-hand conjunct in UD.

These differences do not represent complications from the point of view of the parser 
pipelines considered in this work, which are fully based on machine learning and agnos-
tic to the details of the representation. However, they prevent, or at least make consider-
ably harder, treebank pooling and other techniques that combine multiple resources to 
improve parsing performance, a limitation we have previously discussed in further detail 
in our original shared task study [18].

BERT models

Deep language models, especially recent models based on the Transformer neural net-
work architecture  [43] have had a major impact in natural language processing, lead-
ing to a new state of the art performance on a large number of established reference 
tasks. Arguably the model with the broadest impact to date is the BERT model of Dev-
lin et al. [32]. These language models are pre-trained on a large amounts of raw, unan-
notated text, and subsequently fine-tuned with annotated task-specific data to create 
models for specific downstream tasks such as parsing. Since pre-training such models 
frequently involves fitting hundreds of millions of parameters to examples derived from 
billions of words of text through millions of minibatch training steps at a non-trivial 
computational cost, pre-trained models are typically distributed publicly, and the ability 
to choose the correct pre-trained model for the task at hand from among the large and 
fast-growing set of published models is an important factor for success.

One major difference between pre-trained language models is the text domain from 
which the pre-training data is drawn, which affects e.g. the vocabulary known to the 
model. Similarly to how the previous generation of context-free word representations 
benefit from initialization on in-domain data [44, 45], deep contextual models such as 
BERT should generally be pre-trained using data that reflects the domains that the mod-
els will be fine-tuned for to maximize performance [46–48]. In addition to the pre-train-
ing data, the models can also differ in the various training and model size parameters. 
Two common sizes for BERT models are Base, with 12 Transformer layers and approx. 
110 million parameters, and Large, with 24 layers and approx. 340 million parameters, 
where the exact parameter count varies based on the vocabulary size. While more 
demanding of computational resources in pre-training, fine-tuning, and prediction, 

Fig. 1  Illustration of Stanford Dependencies (top) and Universal Dependencies (bottom) analyses for an 
example sentence. The CRAFT dependency annotation follows the former representation. (Example from 
PMCID:15207008, figure adapted from [18])
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Large models generally provide for better performance, and we here focus on Large vari-
ants of BERT models whenever available.

In order to assess the impact of the choice of the pre-trained model on parsing perfor-
mance, we here evaluate performance initializing the parser with each of the following 
BERT models:

Google BERT Large  a BERT Large model introduced by Devlin et  al.  [32] trained 
on 2.5B words of the English Wikipedia and 0.8B words of BooksCorpus [49] texts, 
this model represented the state of the art in many general English NLP tasks when 
published.

Google mBERT  a BERT Base model trained on the Wikipedias of over 100 differ-
ent languages. This model was used as the basis for fine-tuning in the study introduc-
ing the UDify parser that substantially advanced the state of the art in multilingual UD 
parsing [39].

SciBERT Base scivocab uncased a BERT Base model pre-trained by Beltagy et al. [46] 
on scientific text from the Semantic Scholar resource, and one of the first BERT models 
specifically including biomedical domain scientific publications in its pre-training data.

BioBERT Large v1.1. custom vocab a BERT Large model pre-trained by Lee et al. [48] 
on the combination of English Wikipedia, BooksCorpus, PubMed, and PubMed central 
texts. Fine-tuning the model was shown to improve on previously published results on 
several biomedical NLP tasks.

BlueBERT Base P+M  (previously named NBCI-BERT) a BERT Base model trained 
on the combination of PubMed abstracts (90% of the pre-training data) and MIMIC-III 
clinical notes (10% of pre-training data) by Peng et al.  [47] and shown to advance the 
state of the art across a range of NLP tasks in related domains.

The evaluated models thus include two that are pre-trained on “general” language 
(primarily Wikipedia) and three including scientific domain texts, with BioBERT and 
BlueBERT specifically targeting the biomedical domain. The models also represent both 
Base and Large BERT variants. Table 2 summarizes the key statistics of these models. 
We note that in addition to being pre-trained on the largest corpus among these models, 
BioBERT has the largest vocabulary size and, hence, as a BERT Large model also the 
largest number of parameters.

Methods
We next introduce our parser pipeline, the reference methods, and the evaluation crite-
ria applied in the original CRAFT-SA task as well as in this study.

Table 2  BERT model statistics: model parameters, vocabulary size in  wordpieces, 
and number of English language words in the pretraining data

Model Params (M) Vocab (K) Words (Eng.) (B)

Google BERT large 340 29 3.3

Google mBERT 180 120 2.5

SciBERT base scivocab uncased 110 31 3.2

BioBERT large v1.1. custom vocab 360 59 21.3

BlueBERT base P+M 110 31 4.5
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Turku Parser

The primary parser used in all experiments as well as in our original Shared Task submis-
sion is the Turku Neural Parser Pipeline [38], a full parser pipeline capable of sentence 
and word segmentation, part-of-speech and morphological tagging, syntactic parsing, 
and lemmatization. The pipeline thus produces fully parsed, tagged and lemmatized out-
put from a raw, plain text input. The Turku Parser was ranked second on labeled attach-
ment score (LAS) and morphology-aware labeled attachment score (MLAS), and first on 
the bilexical dependency score (BLEX) metric in the CoNLL-2018 Shared Task [14], first 
by all primary metrics in the original CRAFT-SA task [15, 18], and first by all primary 
metrics in the recent IWPT 2020 shared task [50, 51], demonstrating its highly competi-
tive performance. In this study, we integrated a new parsing component into the parser 
pipeline, replacing the parser of Dozat et al. [36] with the more recent UDify parser [39], 
enabling us to fine-tune this component on BERT models.

In our revised version of the pipeline, text segmentation is realized using UDPipe, 
which predicts token and sentence boundaries jointly, using a single-layer bidirectional 
GRU neural network  [52]. Part-of-speech tagging, morphological feature assignment, 
and dependency parsing are performed jointly using the UDify parser [39]. This parser 
is primarily based on encoding the input text with the BERT language model encoder, 
followed by several task-specific prediction layers that carry out tagging and depend-
ency parsing based on the BERT representation. The main strength of the model is in 
the BERT encoder, as the task-specific layers are comparatively simple. Finally, we use 
the universal lemmatizer of Kanerva et  al.  [53], a sequence-to-sequence model where 
the lemma is generated one character at a time from the given input word form and its 
morphological features.

The Turku parser pipeline integrates all these individual components into a single sys-
tem, where each of its components is individually retrainable and in no way restricted to 
the UD scheme, allowing the pipeline to be easily trained on the CRAFT corpus, even 
though it departs from the UD representation in various details.

Reference systems

We compare the performance of our proposed approach to all systems for which perfor-
mance on the CRAFT-SA task data was reported in the original shared task [15], namely 
the following:

Baseline  is a baseline system constructed by the shared task organizers. The system 
applies the punct segmentation method implemented in the Python Natural Language 
Toolkit (NLTK) library [54] for sentence segmentation and tokenization, and the neural 
SyntaxNet model [55] for POS tagging and dependency parsing. The baseline does not 
implement lemmatization.

SpaCy a system based on the SpaCy dependency parser [56] was applied by the group 
identified as T013 in the original CRAFT-SA shared task [15]. While we are not aware of 
a detailed published description of this system, we provide for reference results for the 
better of the two runs submitted for this system to the task.

TurkuNLP-ST the version of the Turku Neural parser pipeline applied by our group in 
the original shared task, in which we were identified as T014 [15, 18]. As for the SpaCy 
system, we repeat here for reference results for our best-performing submission to the 
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original shared task. We also include new results for the system using gold segmentation 
as a point of comparison for our newly proposed approach.

Evaluation criteria

To maintain direct comparability with the results of the original CRAFT-SA task, we 
apply identical criteria for evaluating the performance of the various methods. Per-
formance in the CRAFT-SA task was evaluated using the 2018 version of the CoNLL 
shared task evaluation script (conll18_ud_eval.py), and performance was com-
pared primarily in terms of the same three metrics as in the CoNLL’18 shared task, 
namely the labeled attachment score (LAS), the morphology-aware labeled attachment 
score (MLAS), and the bi-lexical dependency score (BLEX). In brief, these metrics are 
defined as follows:

Labeled attachment score (LAS) is the ratio of tokens for which the syntactic head and 
the dependency relation are predicted correctly. LAS is a widely-applied standard metric 
for evaluating the performance of dependency parsers, and we used it as the primary 
metric for assessing our methods during development.

Morphology-aware labeled attachment score (MLAS) is a variation of LAS for content 
words where in addition to the head and dependency relation also the universal POS tag, 
selected morphological features, and particular functional dependents must be correctly 
predicted.

Bilexical dependency score (BLEX)  is likewise a variation of LAS focused on content 
words, requiring the lemmas of related words to be correctly predicted in addition to the 
head and dependency relation.

In addition to these primary metrics, we report performance for metrics assessing 
the correct prediction of universal part-of-speech tags (UPOS), universal word features 
(UFeats), the base forms of words (Lemmas), as well as the unlabeled attachment score 
(UAS), which only evaluates the dependency structure without labels, and the con-
tent-word labeled attachment score (CLAS), which disregards functional words whose 
attachment is comparatively easy to resolve. We refer to the studies introducing these 
metrics and their use in the shared tasks for full details on the definitions of these estab-
lished metrics [13–15].

Both the CoNLL and CRAFT shared tasks take as their starting point raw text rather 
than text that has been correctly segmented into sentences and tokens. It is thus possi-
ble for the boundaries of sentences and tokens in the analyses predicted by the systems 
to differ from those in the gold data. To account for such differences, for all the metrics 
discussed above, a correct prediction is only measured for predicted tokens that exactly 
match gold tokens, and performance is measured in terms of precision and recall, the 
ratio of correct predictions to the number of predicted and gold tokens (respectively). 
These results are then summarized using the F1 score, the balanced harmonic mean of 
precision and recall. The quality of the sentence segmentation and tokenization are eval-
uated using the Sentences and Tokens metrics, which similarly measure the precision, 
recall, and F1 score for predicting the boundaries of sentences and tokens.
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Results
We next present the results of our experimental evaluation, first comparing the perfor-
mance of the previous iteration of our system with the newly proposed version with ini-
tialization using the various BERT models, and then contrasting the performance of the 
best-performing variant with previous results on the CRAFT-SA task.

Table 3 summarizes results for variations of our pipeline for all relevant metrics imple-
mented in the evaluation script. To focus on the impact of the model, we here applied 
gold sentence segmentation and tokenization rather than predicted segmentation. We 
find that replacing the core parsing components with UDify initialized with the BioBERT 
model achieves the best results for all but one metric, ranking 2nd on Lemmas by the 
trivial margin of 0.01% point.

We note that BERT-Large outperforms the Base models mBERT, BlueBERT, and 
SciBERT across nearly all metrics (again falling trivially behind SciBERT on Lemmas), 
showing that the benefits of a large model can outweigh those of in-domain training. 
UDify initialized with BioBERT, which features in-domain training data as well as a 
Large model shows remarkably strong performance, notably improving on the previ-
ous iteration of our parser in the key LAS metric by 2% points over the already very 
strong result of 90.28%, reflecting an over 20% relative reduction in LAS error. Based 
on these results, we focused on the variant using UDify initialized with the BioBERT 
model in our comparison against previous results using predicted segmentation.

Table 3  Comparison of  F1 results for  previously proposed parser variant (TurkuNLP-ST) 
and newly proposed approach initialized with various BERT models

All experiments performed using gold segmentation

Maximum score in bold

Metric Method

TurkuNLP-ST mBERT BERT-large BioBERT BlueBERT SciBERT

UPOS 98.54 98.75 98.76 98.79 97.70 98.72

UFeats 98.63 98.76 98.77 98.79 97.54 98.75

Lemmas 99.44 99.44 99.45 99.46 99.21 99.47
UAS 91.54 92.66 93.16 93.45 91.34 92.93

LAS 90.28 91.38 91.97 92.31 89.42 91.67

CLAS 87.96 88.80 89.69 90.04 86.10 89.20

MLAS 85.93 86.88 87.77 88.22 82.76 87.22

BLEX 87.31 88.08 88.98 89.36 85.17 88.51

Table 4  Comparison to  previously published results using CRAFT-SA test data 
with predicted segmentation

Maximum score in bold

Method Metric

LAS MLAS BLEX

Baseline 56.68 44.22 0.0

SpaCy 69.32 0.0 54.80

TurkuNLP-ST 89.70 85.55 86.63

Ours 91.21 86.63 87.68
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Perhaps somewhat surprisingly, we find that UDify initialized with BlueBERT fails to 
outperform the “general English” Base mBERT model as well as the BERT-Large model 
and the previous version of our neural parser. This is likely at least in part due to the 
combination of BlueBERT being a Base model in size (although this holds also for 
mBERT) and the fact that it is trained on a comparatively smaller corpus (see Table 2). 
Our results demonstrate that the choice of the pre-trained model is important for 
achieving state-of-the-art performance and that in-domain pre-training does not guar-
antee competitive results.

Table 4 contrasts the performance of the newly proposed variant of our parser using 
UDify and BioBERT initialization (Ours) on the CRAFT-SA test data with raw text input, 
matching the original shared task evaluation setup. We find again a notable improve-
ment in LAS performance over the previous state of the art, with a 1.5% point difference 
(approx. 15% reduction in error), confirming the advantage that this model has over the 
former iteration of the system in terms of core parsing performance. This is reflected 
also in the MLAS results, which incorporate also information on the performance on 
predicting part-of-speech tags and morphological features, as well as on the BLEX met-
ric, which requires correct lemmas.

Discussion and conclusions
In this paper, we have proposed and evaluated a number of approaches incorporating 
the latest advances in deep transfer learning using contextualized models and neural 
parsing to dependency parsing of biomedical text. We found that by incorporating the 
recent UDify neural parser building on the BERT model and initialization using the in-
domain Large BioBERT model, the performance of our neural parser on the CRAFT-SA 
task data could be substantially improved, achieving a LAS of 91.2% and thus reducing 
LAS error by approximately 15% from the best result achieved in the original shared 
task. A comparison of various pre-trained BERT models also found that both a Large 
BERT model as well as appropriate in-domain training data are key to allowing competi-
tive performance at the task and demonstrated the use of a parser and parsing task as a 
criterion for evaluating and choosing between different BERT models.

Deep transformer-based models such as BERT were introduced comparatively 
recently, and much of their potential for natural language processing in general and 
specific tasks such as dependency parsing for biomedical text remains unexplored. A 
natural extension of the efforts building up to our work would be to explore the use of 
alternative transformer-based and other deep learning models as well as ways of com-
bining state-of-the-art models and adapting them to better handle texts in the biomedi-
cal and other specialized domains. In addition to high-quality pre-trained models, the 
success of deep transfer learning approaches such as ours also depends critically on the 
data used for fine-tuning. We have here focused exclusively on the CRAFT corpus syn-
tactic annotation for fine-tuning data, but believe that there remains potential for fur-
ther improving parsing performance by combining this corpus with other syntactically 
annotated biomedical and general domain resources, a suggestion we raised also in our 
previous work [18]. We hope to explore these and related avenues in future work.

We release the newly improved system and all models introduced in this study under 
open licenses from https​://turku​nlp.org/Turku​-neura​l-parse​r-pipel​ine/model​s#craft​.

https://turkunlp.org/Turku-neural-parser-pipeline/models#craft
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