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Introduction
Cancer is one of the leading causes of morbidity and mortality in the globe. Annually an 
estimated 14.1 million are diagnosed, and 8.2 million die from cancers around the world. 
In the United States alone, 1.7 million cases are diagnosed, and about six hundred thou-
sand die from the disease [1–3]. Cancer is a multifactorial disease with known genetic 
and environmental etiologies. Microbiological infections account for up to 20% of the 
total global cancer burden [4, 5]. Viruses are commonly attributed and are responsible 
for at least 10% of all human cancers [6]. Multiple studies have evaluated viral content 
and its influence on cancer pathogenesis utilizing advanced technologies and bioinfor-
matics approaches.

Meanwhile, recent limited evidence exists proposing relationships between bacterial 
species and disease either as effector or consequence of tumorigenesis. While much 
effort has gone into characterizing cavity organs microbiota, that of solid tumors is less 
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explored. The characterization of tissue-associated microbiota is challenging as well as 
computationally intensive. Next-generation sequencing technologies provide an oppor-
tunity to explore better bioinformatics approaches to detect microbial agents and can 
assist in the interpretation of not only viral but bacterial species impact in tumor tissue. 
The examination of microbial species is pivotal to developing new prevention and treat-
ment strategies.

Relationship of microbiota with cancer pathogenesis
The human microbiome, defined as the aggregation of microorganisms that live in and 
on our bodies, contributes to our broader genetic portrait [7, 8]. The microbiota within 
each organ system is distinct, which can drive functionally relevant inter-individual vari-
ations and determinants of disease [7, 9–12]. Microbial community variations, produc-
tion of bacterial metabolites, and microbial interactions with the human host have been 
attributed to detrimental and beneficial tumoral effects since the eighteenth century [13, 
14]. This highlights the unique agonistic and antagonistic effects of the human microbi-
ome in cancer progression and has become an area of intense exploration. While contri-
bution by some viral pathogens is firmly established, the role of the bacterial community 
remains controversial. The mechanisms by which viral agents contribute to pathogenesis 
have been reviewed in detail and are not covered here [15–18]. Mechanisms by which 
bacteria contribute to the alterations and the carcinogenic process are not all well under-
stood. It is known, however, that similar to viruses, persistent and chronic infections may 
initiate the process or promote established cancers [14, 19–22]. Alteration of the bacte-
rial community could also result in beneficial effects on the tumor microenvironment. In 
fact, according to the literature, any agent capable of stimulating host immune defenses 
can minimize the incidence and be advantageous to established tumors. Modification 
of the immune cascade in response to infection or dysbiosis is one of the most criti-
cal aspects of tumor-microenvironment cross-talk [23, 24]. Altered host-dynamics can 
increase bacterial translocation as a direct consequence of changes in microbial com-
position, resulting in increased inflammation. Bacterial products and bacterial metabo-
lites may have protective effects on survival, reduced growth of cancer cells, or modulate 
anticancer immunosurveillance at local or distant sites [10]. Butyrate for example, which 
has anti-inflammatory properties, is thought to be protective while secondary bile acids 
are considered carcinogenic [25, 26]. These variations in the microbial composition may 
be directly or indirectly responsible for the carcinogenic process in susceptible popula-
tions, alter the course of established cancer, or influence therapeutic response and can 
assist in understanding patient inter-variability [27, 28].

New microbial (viral, bacterial, and other pathogens) contributions to cancer, whether 
beneficial or detrimental, are being discovered. Improved techniques and integrated 
data networks facilitate discoveries and have become the focus of multiple studies 
[29–37]. Recent studies have found that specific bacterial taxa are consistently identi-
fied in tumor tissue [38]. Compared to adjacent or control tissue, Fusobacteria, Alistipes, 
Porphyromonadaceae, Coriobacteridae, Staphylococcaceae, Akkermansia, and Metha-
nobacteriales are found at increased levels in tumor, while Bifidobacterium, Lactobacil-
lus, Ruminococcus, Faecalibacterium, Roseburia, and Treponema are at decreased levels 
[38–46] (Table 1). Also, viral and bacterial co-occurrence is thought to modulate tumor 
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aggressiveness [47–49]. Based on epidemiological and geographic correlations analy-
ses, it is suggested that viral agents interact with bacteria resulting in more aggressive 
tumors. For example, stomach tumors infected with Epstein Barr virus are recognized to 
be molecularly distinct. Meanwhile, Epstein Barr virus is thought to interact with Helico-
bacter pylori driving aggressiveness, however insufficient evidence exists. In hepatocel-
lular carcinoma viral co-infection with HBV or HCV and the interaction between the 
proteins, HBx HCV core and NS5a, can also lead to more aggressive tumors. Interaction 
with other exposures, alcohol consumption, smoking, co-morbidities, betel nut chewing 
can act as co-factors altering the tumor microenvironment in cancers of the head and 
neck [50].

Competitive interaction between viral-bacterial species and other exposures may 
be more apparent at broader taxonomic levels. Taxonomic level analyses of the gut, 
oral, and other cavity organ microbiomes reveal bacterial candidates associated with 

Table 1 Known and suspected microbial association with cancer pathogenesis

Common cancer types listing known and suspected microbial (viral, bacterial, and other) agents associated with cancer 
pathogenesis or that have been identified as common causes of infection in cancer patients, which may play a role in 
patient inter‑variability

Cancer type Known microbial 
associations

Suspected agents References

Breast
Triple-negative, HER2+, ER+

None Epstein–Barr virus, human 
papillomaviruses

Alistipes spp.
Bacteroides fragilis, Sphingo-

bium yanoikuyae, Microbial 
dysbiosis

[35, 36, 39, 40]

Prostate
Prostate adenocarcinoma

None Cutibacterium acnes
Bacteroides massiliensis
Streptococcus spp.
Staphylococcus spp.
Microbial dysbiosis

[37, 41, 42]

Stomach
Stomach adenocarcinoma

Helicobacter pylori,
Epstein Barr Virus

Microbial dysbiosis [57, 70]

Liver
Liver and intrahepatic bile duct

Hepatitis viruses,
Parasitic infections

Helicobacter pylori [43]

Cervical
Cervical squamous cell and 

endometrial carcinoma

Human papillomaviruses Chlamydia trachomatis, micro-
biome dysbiosis

[63]

Head and Neck
Oropharyngeal and laryngeal

Epstein Barr Virus,
Human papillomaviruses

Fusobacterium nucleatum, 
microbiome dysbiosis

[56, 58]

Colon and rectum
Colorectal adenocarcinoma

Microbial dysbiosis
Fusobacterium nucleatum

Human papillomavirus
Helicobacter pylori, Streptococ-

cus bovis, E. Escherichia coli, E. 
Bacteroides fragilis, Campylo-
bacter spp.

[10, 31, 32, 55]

Kidney
Renal cell carcinoma and clear 

cell carcinoma

None Hepatitis C virus
Epstein Barr Virus
Urinary tract infection-associ-

ated pathogens

[44]

Lung
Lung squamous cell and 

adenocarcinomas

None Epstein Barr Virus
Molluscum Contagiosum virus
Microbial dysbiosis
Chlamydia pneumoniae

[45]

Bladder
Bladder squamous cell carci-

noma

Schistosoma haematobium Human papillomavirus
Epstein–Barr Virus

[46]
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pathology of disease [33, 35, 51]. These findings could be applied to preventive or com-
plementary therapies. Questions remain, whether microbial composition findings 
derived from surrogate material, like stool and saliva within these cavity organs, directly 
relate to the microbial composition within the solid tumor tissue and surrounding tumor 
microenvironment. Further, whether the tissue-associated tumor microbial composition 
can be consistently derived from existing human sequencing data and how to best dis-
cern microbial roles in inter-population variability. Identification of microbial composi-
tion directly from tumor tissue human sequences enables not only the study of microbial 
changes and cancer pathogenesis but microbial genomic integration [34]. Integration of 
microbial DNA into the human genome may prove key in the identification of passager 
versus driver bacteria in cancer pathogenesis.

Microbiome detection in high throughput sequencing data
Next-generation sequencing (NGS) technologies, also known as high-throughput, pro-
vide a powerful tool for the evaluation of the role of microbes in cancer development 
and progression as well as differences across populations. NGS is a useful and unbiased 
tool that can be used for the identification of previously undetected or unsuspected 
causative microorganisms in molecular diagnostics [52]. It has become vital and nec-
essary for the integrative analysis of cancer biology, enabling description of the muta-
tional and molecular landscape of cancer for both direct and indirect taxonomic studies 
[53]. These techniques take advantage of NGS production of short reads and the pre-
dominance of host-derived sequences to examine pathogen-host interaction, including 
their correlation with metabolic and regulatory mechanisms in cancer [30, 32, 54–58]. 
Although the establishment of a causal relationship requires a more detailed characteri-
zation of the tumor microbiota and microbial population dynamics, integration of host 
sequencing data with clinical and epidemiological data can provide valuable informa-
tion to the understanding of the role bacteria play in cancer pathogenesis and population 
differences. Given the close interaction between microbes and the host responses, it is 
essential to identify the compositional structure and clinically relevant functional path-
ways with an integrated approach.

Computational frameworks and tissue‑associated bacteria detection in cancer
Bioinformatics computational frameworks are methods and pipelines able to accommo-
date user-defined parameters and deliverables to understand the basis of biological con-
cepts [59]. Mining NGS data using bioinformatics computational frameworks provide 
great opportunities in understanding the role of bacteria in cancer pathogenesis. Numer-
ous state-of-the-art bioinformatics tools and methods are available today that support 
the identification of microbial novel targets in cancer diagnostics, treatment, prevention, 
and control. Several studies have demonstrated that pathogenic and commensal bacteria 
composition can be derived from human tumor tissue utilizing various bioinformatics 
computational approaches by sequential filtering and matching steps [52, 60–63]. Patho-
gen detection derived from human sequences has been primarily completed by com-
putational subtraction with one of three approaches, reference-based, reference-free, or 
mixed methods with one primary core pipeline involving the removal of human-host 
sequences to characterize remaining sequencing reads (Fig.  1). Pathogen detection 
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algorithms may be classified by (1) their methodology, (2) the order in which human 
sequencing reads are identified and removed, and (3) what happens with the remain-
ing sequences (whether these go through de-novo assembly or are filtered out). Here, 
we discuss ten computational frameworks, PathSeq, SRSA, CaPSID, PathoScope 2.0, 
SURPI, VirusScan, MetaShot, ConStrains, RINS, and GRAMMY, designed to identify 
microbiota (virus, bacteria, and other) derived from human sequences with applications 
in human cancer (Table 2). Computational frameworks that strictly match sequencing 
reads to pathogen libraries or those designed for direct metagenomics analyses are not 
included (see Nooij et al. 2018 for a recent in-depth review of these tools [64]).

In NGS, about 10% of the sequencing reads are flagged unmapped to the human 
genome after alignment [65]. Under the assumption that the sequenced tissue contains 
both host and microbial information, the bacterial composition can then be detected 
after the computational subtraction of human content [61–63]. Computational sub-
traction methods for microbial identification and discovery derived from human tissue 
were first introduced by Weber et al. and Xu et al. [61, 62]. These early approaches were 
computationally intensive and involved creation of a cDNA library with subsequent sub-
traction of human-expressed sequence tags [61, 62]. Newer methods take advantage of 
NGS data repositories’ unmapped-to-human sequences and have lower computational 
requirements. Frameworks that consider unmapped-to-human sequencing reads as 
input data can lower computational costs while facilitating novel discoveries.

Most computational subtraction frameworks are reference-based approaches [60, 63, 
66, 67]. Reference-based, by definition, requires mapping to a reference, in this case, 
human host genome, then allocating all leftover unmapped-to-human reads to pathogen 
target genomes. PathSeq, for example, combines alignment and de novo assembly with a 
two-pass subtraction process [63]. It aligns the sequencing reads to target genomes and 
quantify their abundance based on the total number of aligned sequencing reads and the 
genome coverage, enabling identification of both commensals and pathogens whether 
known or novel. However, the two-pass filtration process may eliminate a high num-
ber of sequences, which may increase filtration costs and limit identification. PathSeq 
has been utilized in pathogen identification for various infection-associated and inflam-
mation-associated cancers, notably the emerging association of Fusobacterium nuclea-
tum in colorectal cancer [68]. SRSA, short RNA subtraction, and assembly utilize short 
RNA mapping and assembly to identify pathogens in relation to host-sequencing reads 
[60]. SRSA has the capability for use in microbial identification in infection-associated 
cancers. However, initial work was limited to mycoplasma detection in HIV-1 cell lines, 

(See figure on next page.)
Fig. 1 Generic pipeline comparing three basic computational frameworks designed to identify 
microbial reads from human sequences. Generic pipelines can be summarized into three general stages, 
pre-processing (blue), processing (yellow), and analyses post-processing (green). During pre-process, most 
methodologies trim and quality filter sequencing reads. Quality reads are mapped and aligned during the 
processing steps to either human or pathogen reference sequences or key identifying factors before making 
a final identification call. Once species have been identified, their composition is characterized in detail, 
depending on the methodology being used. Finally, having taxonomic classification and compositional 
structure permits downstream correlation analyses and functional-relevant identification of molecular 
pathways. Differential functional prediction and patient inter-variability aid in the identification of novel 
microbe based prevention and treatment strategies
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and its computational methods are also not freely available. Unlike SRSA, CaPSID (com-
putational pathogen sequence identification) is a web-based open-source platform that 
similar to PathSeq, performs mapping and de novo assembly [67]. CaPSID differs in its 
single-pass alignment and filtration process, where both human and pathogen reads are 
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aligned to reference genomes while separating those that do not match either for de novo 
assembly simultaneously. Its potential in cancer was demonstrated by Borozan et al. in 
stomach adenocarcinoma samples from TCGA and other cancer networks [49]. Borozan 
et al. evaluated human herpesvirus 4 (HHV-4) variants to determine oncogenic poten-
tial differences among samples from different country origins providing evidence of the 
potential of such frameworks in future population studies [49]. Unlike PathSeq, SRSA, 
and CaPSID, PathoScope 2.0 does not perform de novo assembly; instead, it utilizes 
penalized statistical mix-model and probabilistic pathogen identification [69]. It also 
provides detailed reports with core and optional module format that enable user cus-
tomization. On the downside, the target reference genome must be present for precise 
identification of microbes. PathoScope 2.0 is designed to identify low abundant strains, 
making it an ideal tool for host-derived microbial analyses due to the low abundance of 
microbial reads in relation to host reads found in sequencing data. Zhang et al. incor-
porated PathoScope 2.0 methods with its WGS PathSeq-based methods for microbial 
relative abundance estimation of gastric cancer clinical samples and existing sequencing 
data [70]. SURPI, sequence-based ultra-rapid pathogen identification, was also designed 
for pathogen detection from clinical samples for surveillance similar to PathoScope 2.0. 
One of the advantages of SURPI is the capacity for quantitative and semi-quantitative 
simultaneous identification, meaning it can perform mapping and de novo assembly 
for divergent microbial analyses [71]. SURPI has been validated against samples from 
colon and prostate cancer-derived datasets. Unlike those before mentioned that were 
designed to identify various microorganisms, VirusScan is a referenced-based compu-
tational subtraction approach designed to profile the viral composition. It also calculates 
abundance and integration sites within human tumors utilizing unmapped-to-humans 
and poorly mapped to human genome reads [72]. This approach was used to identify 
population viral differences in TCGA’s liver and stomach cancer cohorts [72]. The inclu-
sion of bacterial libraries could assist in future co-occurrence and tumor microbiome 
analyses. MetaShot is similar to prior mentioned reference-based approaches in that it 
shares a two-step filtration method to identify candidate pathogens; however, it is a bit 
more stringent in its taxonomic assignment [73]. This feature enables functional anno-
tation with great potential in tissue-associated bacterial composition analyses. On the 
other hand, its rigorous approach comes with higher computational costs and has yet to 
be validated in cancer datasets.

Other methods may utilize pre-defined target genomic markers like k-mers, single 
nucleotide polymorphisms (SNP), or unique sequence tag libraries to identify and retain 
pathogen information while removing human host sequences from further considera-
tion. These approaches can be described as marker-based methods and are mostly con-
sidered reference-free. Reference-free, marker-based approaches such as ConStrains, 
conspecific strains rely on the creation of SNP profiles to predict pathogen strains 
contained within the sequencing sample [74]. However, methods such as this are not 
wholly reference-free, rather minimally reference-dependent [74]. ConStrains works by 
inferring microbial abundance of conspecific strains utilizing SNP patterns and de novo 
assembly with microbial prediction estimation based on Metropolis-Hasting Markov 
Chain Monte-Carlo model. Although ConStrains has not been used in cancer genomic 
data, it has the capability for functional analyses, which are pivotal in understanding 
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different microbial effects in cancer pathogenesis, particularly those of infectious 
etiology.

Computational frameworks may also take advantage of mixed approaches which can 
be reference-free or reference-based. Reference-Free Mixed or mixture-model approach 
utilizes intersection analyses, while mixture-model approaches take advantage of 
both reference and marker-based methods. RINS, rapid identification of non-human 
sequences, uses intersection analysis. Similar to ConStrain is not completely reference-
free. It employs a pre-defined query reference that includes genomes of viruses, bacte-
ria, or other pathogens to find the intersect, rather than mapping and subtracting the 
human reference genome [66]. RINS has been validated in prostate cancer and has low 
computational requirements. However, it can only detect pathogens that are explicitly 
defined within the query reference [66]. By only being able to identify defined references 
expressly, it risks the removal of unknown sequences, hindering novel pathogen discov-
ery. Mixture-model approaches differ from traditional computational subtraction in that 
these either maps against a pre-determined pathogen reference in series [66, 73], against 
both human and pathogen in parallel [75], or some combination of these before filtering 
out human-host sequences. Mixture-model approaches like GRAMMy, genome relative 
abundance estimation framework using mixture model theory, utilize expectation–max-
imization algorithms to calculate microbial genome relative abundance at different taxo-
nomic levels [76]. GRAMMy is designed to use either mapping or de novo assembly in 
the absence of a reference genome [76].

Computational pipelines and functional prediction of microbial differences
Recent works in the gut microbiome revealed the utility of taxonomic differences, epi-
genetic, heritable, and co-occurrence patterns in the understanding of cancer patho-
genesis [77]. Microbial compositional differences and population variations have been 
thoroughly reviewed in [78]. From these and other works, we understand that accurate 
interpretation of microbial impact cancer pathogenesis involves more than compo-
sitional differences. Functional annotation and prediction of molecular processes are 
equally important in the identification of clinically relevant microbial interactions within 
the human host.

Post-processing pipelines have been developed to translate microbial composition 
outputs into predicted mechanisms through which bacteria may influence host immune 
responses, gene, and protein expression within the tumor microenvironment. For exam-
ple, pipelines such as PICRUSt [79], Tax4Fun [80], and ShortBRED [81] can assist in the 
identification of functional annotations and subtle differences across populations within 
and across tumor types. Although these pipelines are designed to predict functional 
profiles derived from 16S rRNA sequencing data, they have application in host-derived 
microbial profiles when used in integrated approaches. For example, PICRUSt (Phylo-
genetic Investigation of Communities by Reconstruction of Unobserved States) infers 
microbial community host-associated functional composition based on gene annota-
tion databases such as the Kyoto Encyclopaedia of Genes and Genomes (KEGG) or the 
Clusters of Orthologous Group (COGs) [82]. Tax4Fun (Taxonomy functional commu-
nity profiling) on the other hand, predicts the functional capabilities of microbial com-
munities based on 16S rRNA datasets. Tax4Fun provides an excellent approximation 
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to functional profiles obtained from metagenomic shotgun sequencing approaches and 
has been successfully used to identify signs of ethnic acculturation in oral microbiota 
[80]. Both methods, in combination with computational frameworks designed to deter-
mine the microbial composition, provide insight into tumor-microbial associations and 
enable the discovery of new associations, the identification of patterns of co-occurrence, 
and possible host interaction effects. Gene and protein expression within the tumor and 
surrounding tissue information in conjunction with microbial composition may pro-
vide much-needed information on differential analyses. ShortBRED (Short, Better REad 
Dataset) is one that quantifies the abundance of functional gene families to predict pro-
tein profiles within the sample [81]. It can predict antibiotic resistance genes and vir-
ulence factors protein families that are pivotal in understanding therapeutic response. 
A combination of microbial detection and functional prediction approaches is critical, 
especially given the potential use in microbe-based prevention strategies and targeted 
therapies.

Conclusions
There is a great diversity present in the human tumor microenvironment that makes 
identification of the microbial community challenging. Next generation sequenc-
ing technologies and the use of these computational tools permit the discovery of new 
microbes that are non-culturable and would otherwise remain undiscovered [83]. Pro-
filing and characterization of the bacterial community and functional annotations can 
provide information on the effects of microbiota on colonized tissue, the progression 
of inflammation, alteration of cellular processes, and impact on tumor-promoting genes 
within the tumor microenvironment. Computational frameworks for microbial detec-
tion evaluated here are broadly classified as reference-based or reference-free, or mixed 
methods and mainly utilize computational subtraction that has been used or have the 
potential for such microbial diversity evaluations. These methodologies could help shed 
light on the role of the microbiota in cancer pathogenesis. Further, the output from these 
workflows combined with phylogenetic and protein-functional predictions from bio-
informatics pipelines such as PICRUSt, Tax4Fun, and ShortBRED, among others, pro-
vide important clues in the understanding of microbial differences and commonalities 
and the potential impact on differential outcomes, therapeutic response, and popula-
tion inter-variability. Recent works [84–86] demonstrate the utility of tissue-associated 
microbial detection derived from existing human sequencing data and the computa-
tional tools to characterize them. Differences may highlight effectors that impact the 
treatment decision making process and potential for targeted therapies. Their use should 
be promoted as first approach to the identification or confirmation of known, suspected, 
and novel pathogen associations in cancer.
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