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Background
It is estimated that one quarter of the world population is infected with (TB). Although 
the disease is preventable and treatable, about one and a half million people die annually 
from it, effectively placing TB as the first infectious cause of death. Due to person to per-
son infection and treatment mismanagement, (MDR) TB continues to emerge, increas-
ing the complexity in treatment and thus potentially worsening the transmission rate. 
There is a growing awareness that TB can be effectively fought only working globally, 
starting from countries like India, where the infection is endemic [1].

Abstract 

Background:  The STriTuVaD project, funded by Horizon 2020, aims to test through a 
Phase IIb clinical trial one of the most advanced therapeutic vaccines against tuber-
culosis. As part of this initiative, we have developed a strategy for generating in silico 
patients consistent with target population characteristics, which can then be used in 
combination with in vivo data on an augmented clinical trial.

Results:  One of the most challenging tasks for using virtual patients is developing 
a methodology to reproduce biological diversity of the target population, ie, provid-
ing an appropriate strategy for generating libraries of digital patients. This has been 
achieved through the creation of the initial immune system repertoire in a stochastic 
way, and through the identification of a vector of features that combines both biologi-
cal and pathophysiological parameters that personalise the digital patient to reproduce 
the physiology and the pathophysiology of the subject.

Conclusions:  We propose a sequential approach to sampling from the joint features 
population distribution in order to create a cohort of virtual patients with some specific 
characteristics, resembling the recruitment process for the target clinical trial, which 
then can be used for augmenting the information from the physical the trial to help 
reduce its size and duration.
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Once a person is diagnosed with TB, one of the most critical issues is the duration 
of the therapy, because of the high costs involved, the increased chances of non-com-
pliance (which increase the probability of developing an MDR strain), and the time the 
patient is still infectious to others. One exciting possibility to shorten the duration of the 
therapy are novel host-reaction therapies (HRT), as an adjuvant for antibiotic therapy. 
Typical endpoints in the clinical trials for HRTs are time to sputum culture conversion, 
and incidence of recurrence. While for the first it is in some cases possible to have a 
statistically powered evidence for efficacy in a phase II clinical trial, recurrence almost 
always requires a phase III clinical trial with thousands of patients involved, and huge 
costs.

The in silico trials for tuberculosis vaccine development (STriTuVaD) project is an EU 
funded, multidisciplinary consortium testing the RUTI vaccine in a Phase IIb clinical 
trial. RUTI® antitubercular vaccine, provided by Archivel Farma S.L, is a polyantigenic 
liposomal vaccine containing fragments of Mycobacterium tuberculosis cells, currently 
being developed as therapeutic vaccine in patients with pulmonary tuberculosis. The 
vaccine, shown to be one of the most advanced therapeutic vaccines against drug sensi-
tive TB and MDR-TB, has already been studied in healthy volunteers and for the preven-
tion of active TB in patients with latent TB [2].

To help in this development, we extend Universal Immune System Simulator (UISS) [3, 
4] to include the relevant determinants of such clinical trial, we establish its predictive 
accuracy against the individual patients recruited in the trial, use it to generate digital 
patients, predict their response to the host-reaction therapy being tested, and combine 
them to the observations made on physical patients using a new in silico-augmented 
clinical trial approach that uses a Bayesian adaptive design. This approach, where found 
effective could drastically reduce the cost of innovation in this critical sector of public 
healthcare.

To reproduce biological the diversity of the subjects to be simulated, an appropriate 
strategy for the generation of libraries of digital patients is developed by identifying a 
vector of features involving both biological and pathophysiological parameters, facilitat-
ing the personalisation of the digital patient.

In this paper we sketch the strategy we adopt to generate the cohort of digital patients, 
and show some preliminary results about the dynamics of TB on a subset of these 
patients. First, we briefly describe UISS and its extension to TB.

Extending UISS to track TB

We will briefly describe here the UISS computational framework and its extension to 
model tuberculosis, UISS-TB. The interested reader can find more detail in [5].

UISS is a multi-agent framework for the simulation of the immune system dynam-
ics that can be extended to track specific diseases and related treatments. Unlike clas-
sical top-down approaches, where mean behaviours are modelled through systems of 
differential equations [6–8], agent based models and multi-agent systems track indi-
vidual entities. It is the interactions between these entities that can give rise to global 
nonlinear behaviours. UISS has been developed as a multi-scale computer simulator 
of the immune system, as it takes into account both cellular and molecular entities and 
processes.
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UISS has a proven track record, for instance it has been used for modelling the effects 
of a vaccine against the onset of mammary carcinoma [9, 10] and consequent lung 
metastases [11]; for the initial stages of atherosclerosis [12], for melanoma [3]; more 
recently, in the study of multiple sclerosis [4, 13] and for testing the efficacy of citrus-
derived adjuvants for influenza vaccines and human papilloma virus [14, 15]. For its use 
within STriTuVaD, we have extended UISS to include TB dynamics along with the artifi-
cial immunity induced by vaccination strategies as presented in [5].

In order to depict individuals, a vector of features comprising biological and patho-
physiological parameters has been identified. The list of parameters, their relative range 
and units are displayed in Table  1.

Methods
In order to create an in silico patient, one needs to provide a single value for each feature. 
These values could be taken from individual physical patients; however, if a cohort of 
digital patients is to be produced, one should have a mechanism for producing as many 
different input vectors as needed, that are biological/physiological plausible. Formally, 
this requires the characterisation of the joint distribution of the inputs in the popula-
tion. We have compiled typical values and standard deviations for each feature, provid-
ing a way to generate plausible values for each component at a time. Proceeding in this 
way would neglect the biological correlations between features and thus would not guar-
antee a physiologically plausible input vector. Hence, we must take into account these 

Table 1  Vector of 22 features for individualising virtual patients

Type (Discrete or Continuous), relative range with units of measure and notation used in the paper

Feature Range Units Type Notation

Bacterial load in sputum [0–10000] CFU D MtbSputum

MTB virulence [0–1] — C strain

CD4 T cell type 1 [0–100] cells/µL D Th1

CD4 T cell type 2 [0–100] cells/µL D Th2

Specific IgG titers [0–512] IgG titer C IGg

CD8 T cell [0–1134] cells/µL D TC

Interleukin 1 [0–235] pg/mL C IL1

Interleukin 2 [0–894] pg/mL C IL2

Interleukin 10 [0–516] pg/mL C IL10

Interleukin 12 [0–495] pg/mL C IL12

Interleukin 17 [0–704] pg/mL C IL17

Interleukin 23 [0–800] pg/mL C IL23

Interferon-α [0–148.4] pg/mL C IFN1A

Interferon-β [0–206] pg/mL C IFN1B

Interferon-γ [0–268.2] pg/mL C IFng

TNF- [0–49.4] pg/mL C TFN

LXA4 [0–3] ng/mL C LXA4

PGE2 [0–2.1] ng/mL C pgE2

Vitamin D [25–80] ng/mL C VD

Regulatory T cells [0–200] cells/µL D Treg

Age [10–80] years D Age

Body Mass Index [18.5–35] kg/m2 C BMI
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correlations. Given that we have 22 input variables, we should specify 22× 21/2 = 231 
correlations. Using relevant literature [16, and references therein] and expert opinion, 
we have qualified these correlations, determining that all correlations are positive, but 
the correlation of IL-10 with the rest of the features.

Formalising in silico profile generation

In theory, one could elicit the joint distribution of the features vector, i.e. describe math-
ematically how each feature relates to the others in a space of 22 dimensions; but this 
would be not only extremely difficult, but also time consuming and data demanding. 
Our approach is to rely on current mathematical biology consensus and use a Gaussian 
to represent the population distribution. The additional advantage of using this approach 
will be discussed in the next section.

Formally, we say that the vector f  = 
{

f1, . . . , fd
}

 follows a d-variate Gaussian distribu-
tion with joint probability density function,

with mean µ = {µ1, . . . ,µd} and covariance matrix,

where,

So, if we are able to elicit a measure of correlation between two inputs, we can calculate 
their covariance.

The elements in the diagonal, σ 2
i  are the marginal variances of each element, fi , and µi 

the corresponding marginal mean. As mentioned above, we already have compiled a list 
with these values, so we have elicited values for µ and the diagonal elements of � , σ 2

i .

Cohort generation

Once µ and � have been elicited, generating an in silico profile is a relatively trivial task: 
one must sample a point in the 22-dimensional space, consistent with N22(f |µ,�) . How-
ever, we can exploit the properties of the Gaussian distribution to produce a cohort con-
sistent with some specific characteristics. Say, for instance, that our target population 
has a particular range of BL, we would like then to produce digital patients consistent 
with that specific profile. Formally, let f1 represent BL and f −1 =

{

f2, . . . , f22
}

 , the rest 
of the features; we would like to sample from N21(f −1|f1,µ,�) , ie the conditional dis-
tribution of the rest of the features, given that BL has a specific value. This is a standard 
procedure, which can be readily implemented.

Nd(f |µ,�) =
|�|−1/2

(2π)d/2
exp

[

−
1

2
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]

,

� =











σ 2
1 σ12 . . . σ1d

σ21 σ 2
2 . . . σ2d

...
...

. . .
...

σd1 σd2 . . . σ 2
d











,

Cov
(

xi, xj
)

= σij related to the correlations by Cor
(

xi, xj
)

= ρij =
σij

√

σ 2
i σ

2
j

.



Page 5 of 8Juárez et al. BMC Bioinformatics 2020, 21(Suppl 17):449

We can go further and sort the list of features according to either their importance 
in determining the profile of a patient, or to the precision of their elicited mean, 
variance and covariance, and then proceed to sample from the conditional distribu-
tions. In general, let f s denote the vector of features with pre-specified values, so 
that f =

{

f s, f r
}

 , f s ∈ R
d−q , where f r ∈ R

q is the vector of free features.
The conditional distribution, p(f r |f s = a) = Nq(f r |ν,�) with

where

� the Schur complement of �rr in � . Judicious choice of f s and f r enables sampling 
sequentially, e.g. from least to most important feature.

Results
We created an R script [17] for the generation of digital patents, available from 
the corresponding author upon request. We report results from three groups of 
15 patients with different profiles, each with fixed (Age, BMI and MtbSputum) to 
roughly represent different profiles in the population and initial bacterial load. Pro-
file 1 has (35, 21.4, 15), Profile 2 (45, 28.2, 502), and Profile 3 (55, 31.8, 910), the 
full set of values can be obtained from the Additional file  1. These can be used as 
input to the UISS-TB web interface, available from www.strit​uvad.eu (accessed on 
28/07/20), by selecting the Tuberculosis disease model, hence accessible to any user 
with a conventional computer and access to the internet.

The GUI panel displays default values and admissible ranges for the vector of 
features parameters. Once the specific vector of features is completed, the user 
can click on the Submit button and a unique identification simulation number is 
assigned. The user can check the simulation status by clicking on the check status 
button, after selecting the appropriate simulation id. When the simulation is com-
plete, the user can visualise results of immune system dynamics. In our case, the 
progression of each patient was simulated 50 times for 1 year, with levels of the vari-
ous species recorded every 600 seconds. The data from each patient requires roughly 
100 MB of disk storage.

We use the total (Ab) to exemplify some characterisation of the output; e.g. Fig. 1 
shows the total Ab count for one simulation of the 15 patients in Profile 1. In order 
to characterise the mean behaviour, we average the 50 repetitions per patient. Fig-
ure 2 depicts the median and quartiles for a selection of patients (columns) for each 
profile (rows). It is clear there is an increased variability around the main and sec-
ondary peaks; while levels consistently fall back to nought after roughly 16 days 
(3500 h). The distribution of time at the peak level is illustrated in Fig. 3, it occurs 
consistently within 112–116  days for all profiles, while Profile  3 shows a slightly 
increased variability.

ν = µr +�rs�
−1
ss (a − µs) and � = �rr −�rs�

−1
ss �sr ,

� =

(

�ss �sr

�rs �rr

)

with sizes

(

(d − q)× (d − q) (d − q)× q
q × (d − q) q × q

)

.

http://www.strituvad.eu
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Conclusions
UISS-TB is a state-of-the-art agent based model capable of tracking the dynamics of 
TB infection in humans. Individual digital patients are defined by a vector features, 
known to be fundamental in TB infection dynamics and normally measured clinically, 
hence often readily available.

Fig. 1  Profile 1 antibodies count. Time traces of the antibodies count for the 15 virtual patients in Profile 1, 
using only one out of the 50 simulations

Fig. 2  Average antibodies count. Time traces of the average antibodies count for a sample of 3 virtual 
patients from each profile. The count has a main peak roughly at 4.5 hrs regardless of the profile
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Discussion
In order to produce virtual cohorts of patients, we propose a sequential approach based 
on a characterisation of the distribution of these features in the population of inter-
est; the approach allows to fix any combination of features, enabling mimicking patient 
selection criteria, thus yielding a method for setting up augmented in silico clinical trials.

Supplementary information
Supplementary information accompanies this paper at https​://doi.org/10.1186/s1285​9-020-03776​-z.

Additional file 1: Profile traces.
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