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Abstract

Background: The increasing use of whole metagenome sequencing has spurred the
need to improve de novo assemblers to facilitate the discovery of unknown species
and the analysis of their genomic functions. MetaVelvet-SL is a short-read de novo
metagenome assembler that partitions a multi-species de Bruijn graph into single-
species sub-graphs. This study aimed to improve the performance of MetaVelvet-SL
by using a deep learning-based model to predict the partition nodes in a multi-
species de Bruijn graph.

Results: This study showed that the recent advances in deep learning offer the
opportunity to better exploit sequence information and differentiate genomes of
different species in a metagenomic sample. We developed an extension to
MetaVelvet-SL, which we named MetaVelvet-DL, that builds an end-to-end
architecture using Convolutional Neural Network and Long Short-Term Memory
units. The deep learning model in MetaVelvet-DL can more accurately predict how
to partition a de Bruijn graph than the Support Vector Machine-based model in
MetaVelvet-SL can. Assembly of the Critical Assessment of Metagenome
Interpretation (CAMI) dataset showed that after removing chimeric assemblies,
MetaVelvet-DL produced longer single-species contigs, with less misassembled
contigs than MetaVelvet-SL did.

Conclusions: MetaVelvet-DL provides more accurate de novo assemblies of whole
metagenome data. The authors believe that this improvement can help in furthering
the understanding of microbiomes by providing a more accurate description of the
metagenomic samples under analysis.

Keywords: Metagenome analysis, de novo assembly, Deep learning, de Bruijn graph,
Long short-term memory, Convolutional neural network
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Background
Recent advances in metagenome sequencing technologies and computational tools have

allowed us to begin understanding how microbial communities can affect and be af-

fected by their environment. With the improvement of high-throughput sequencing

technologies, whole genome sequencing (WGS) has become an important tool for

metagenomics analysis. It has several advantages over traditional 16S rRNA analysis, in-

cluding more reliable species identification and gene prediction [1]. WGS data can be

assembled with the help of reference genomes when the species are well presented in

genome databases. However, metagenomic samples typically have large numbers of

species of unknown identity and thus, the reference genome-based approach may fail

to discover novel species or important variations within a species. De novo assembly,

which does not require a reference genome, is useful in such cases. Figure 1 shows a

typical workflow of de novo metagenome assembly. The metagenomics sample, con-

taining large numbers of various bacterial species, is sequenced. Then the sequence

reads are assembled into contigs in a de novo manner, typically using some graph-

based approaches. Finally, the assembled genome is used for downstream analysis, such

as binning and functional analysis. However, the assembly of multiple genomes from

mixed sequence reads is challenging because the number of genomes and the coverage

of each genome are initially unknown, and the coverage distribution is nonhomoge-

neous and potentially skewed.

To address this challenge, MetaVelvet [2] was developed as an extension to the

de Bruijn graph (dBG)-based de novo assembler Velvet [3], for the assembly of

short-read metagenomic WGS data. MetaVelvet constructs a dBG for the mixed

sequence reads of the multiple species, which is then partitioned into subgraphs

for the single species. The multispecies dBG is partitioned at certain nodes, called

chimeric nodes. A chimeric node corresponds to a stretch of nucleotide sequence

in common between two evolutionarily similar species, and has two incoming and

two outgoing nodes, representing the diverging sequences [2]. A graph containing

such a chimeric node is partitioned into two subgraphs with one pair of incoming

Fig. 1 Workflow for de novo metagenome assembly
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and outgoing nodes each (Fig. 2). To pair up the incoming and outgoing nodes,

MetaVelvet uses node coverage differences.

State-of-the-art approaches to WGS metagenomic data assembly includes several

dBG-based approaches, such as metaSPAdes [4] and Megahit [5]. MetaSPAdes is an ex-

tension to the original SPAdes [6] with modifications and new functions to support

metagenome assembly. Megahit uses succinct dBGs [7] for assembly to handle the in-

creasingly large and complex metagenomic datasets produced by the latest sequencing

technologies. Based on Burrows-Wheeler Transform [8] succinct dBGs require less

memory; e.g., 300 GB of human genome data can be stored in as little as 2.5 GB of

memory. Megahit also implements a multiple k-mer strategy where an initial succinct

dBG of order k is built from the reads, and the contigs are assembled based on the suc-

cinct dBG of order k-d, with d being the k-mer step size.

While this work focuses on de novo assemblers for short-read sequencing, recent ad-

vances in long-read sequencing technologies from companies such as Pacific Biosci-

ences and Oxford Nanopore have enabled long-read sequencing of metagenomic

samples [9, 10] and present a promising development in metagenomic analysis. How-

ever, short-read sequencing still has many advantages, including higher accuracy,

higher throughput, lower cost, and well-established data analysis pipelines.

While MetaVelvet does not have the disadvantage of requiring reference genomes,

the partitioning of chimeric nodes, i.e., how to determine which incoming and outgoing

edge pairs represent sequences from the same species when there are two possible pair-

ings, poses a key challenge (Fig. 2). As mentioned above, MetaVelvet considers node

coverage, but not sequence information. Afiahayati et al. [11] developed MetaVelvet-

SL, an extension to MetaVelvet using supervised learning, to improve the accuracy of

Fig. 2 Assembly strategy for MetaVelvet
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node partitioning prediction. In MetaVelvet-SL, read coverage as well as sequence in-

formation (dinucleotide frequencies) on the incoming and outgoing nodes and the can-

didate chimeric node (Fig. 2) are used as features for a support vector machine (SVM)

classifier that is trained to determine how to partition the dBG at the candidate

chimeric node. While the consideration of dinucleotide frequencies does improve the

chimeric node prediction accuracy, dinucleotide frequencies alone do not convey all se-

quence information that may help with chimeric node prediction as they do not cover

patterns that exist over a range longer than two nucleotides.

Genome sequences contain species-specific patterns, and in particular, microbial

DNA is known to show long-range correlations and patterns [12, 13]. For a machine

learning algorithm to utilize long-range patterns that exist in microbial DNA to help

partitioning a multi-species dBG into single-species subgraphs, transformation tech-

niques for sequence data [14, 15] can be applied to the node sequences to engineer fea-

tures that incorporate patterns at various scales. However, the kind of transformation

and scale of sequence patterns that would be the most suitable to train a machine

learning algorithm for the partitioning of a dBG remains unclear. To avoid the difficult

task of determining suitable features for the machine learning model, we can allow ma-

chine learning algorithms to themselves discover appropriate features or representa-

tions. Deep learning, one of the latest developments in the field of machine learning,

has been shown to outperform most traditional approaches [16], especially in tasks

where spatial relationships exist in the data, such as images and text. One of the key

benefits of deep learning models is that they can automatically extract suitable repre-

sentations from raw data for a given problem, eliminating the need for handcrafting

features based on expert knowledge in traditional supervised learning approaches.

In this study, we aimed to improve the performance of the metagenome assembler

MetaVelvet-SL in predicting the partitioning of a dBG at chimeric nodes by using a

deep learning-based model. The algorithm, which we termed MetaVelvet-DL, predicts

the incoming–outgoing node pairs of a chimeric node that are from the same species

based on raw nucleotide sequences of the chimeric and incoming and outgoing nodes,

and their read coverage information. We designed a deep learning architecture that

consists of embedding, convolutional, max-pooling, and bidirectional long short-term

memory (LSTM) layers. LSTM is a type of recurrent neural network [17], where input

data are fed sequentially to an LSTM unit. At each timestep, there are three important

values to the LSTM unit: 1) input at the current timestep, 2) output of the LSTM at

the previous timestep, and 3) the previous cell state. The cell state is responsible for re-

membering the spatial dependencies of neighboring inputs, the input and forget gates

update the cell state, and the output gate controls the extent to which the output at

each timestep is affected by the cell state. These mechanisms allow LSTM to remember

longer-range interactions and avoid the vanishing and exploding gradient problems

often encountered in traditional recurrent neural networks. LSTM has shown great

promise in applications where data are sequential in nature, such as in speech recogni-

tion, protein homology detection, and protein subcellular localization [18–20]. As

WGS metagenomics data generally cover complete genome sequences and spatial cor-

relation and patterns can occur in concert with upstream or downstream sequences,

we utilized bidirectional LSTM (biLSTM) [21] to incorporate up- and downstream se-

quence information in the output of a biLSTM unit. Finally, we compared assembly
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performance of MetaVelvet-DL with that of MetaVelvet-SL and the state-of-the-art as-

semblers Megahit and metaSPAdes, using datasets from Critical Assessment of Meta-

genome Interpretation (CAMI) [22]. The results showed that MetaVelvet-DL produces

assemblies that have a lower rate of chimeric assembly and longer contigs.

Results and discussion
We first present the accuracy of the deep learning classification model compared to the

SVM model used in MetaVelvet-SL, followed by a comparison of the assembly results

between MetaVelvet-DL, MetaVelvet-SL, MetaVelvet-DL-Kraken, and Megahit, and

metaSPAdes, all with a k-mer size of 31 bp. MetaVelvet-DL-Kraken is a MetaVelvet-DL

model trained on bacterial species predicted by the taxonomic identification software,

Kraken [23]. A comparison of the assembly results of MetaVelvet-DL-Marmoset and

SL-Marmoset are presented to show the robustness of the DL models, and finally, the

results of MetaVelvet-DL and MetaVelvet-SL and Megahit on the CAMI medium-

complexity dataset are also presented.

Classification model performance

The prediction results of the trained MetaVelvet-SL and MetaVelvet-DL models for the

validation dataset are provided in Table 1. MetaVelvet-DL showed higher sensitivities

and specificities than MetaVelvet-SL for all three classes. When considering only true

chimeric nodes and the rate at which they were incorrectly partitioned, i.e., true class 1

predicted as class 2 and true class 2 predicted as class 1, MetaVelvet-DL has a class 1

➔ class 2 error rate of 14.8% and a class 2 ➔ class 1 error rate of 6.8%, whereas

MetaVelvet-SL has the error rates 19.7 and 18.5%, respectively.

CAMI low-complexity dataset assembly

The MetaVelvet-DL and SL predictions were compared to the true labels (Table 2).

The overall prediction accuracy on the CAMI low-complexity dataset was 55.6% for

MetaVelvet-DL and 46.1% for MetaVelvet-SL. MetaVelvet-DL performed better than

MetaVelvet-SL in all measures (sensitivity, specificity, and balanced accuracy) for each

class, except for class 1 sensitivity, for which the two methods were comparable.

We processed the CAMI low-complexity dataset assemblies generated by

MetaVelvet-gold standard, MetaVelvet-DL, MetaVelvet-DL-Kraken, MetaVelvet-SL,

Megahit, and metaSPAdes with MetaQUAST. We present the Total Contig Length,

Number of Contigs (> 500 bp), N50 (contigs > 500 bp), Misassembled contig length

Table 1 Validation dataset accuracy for MetaVelvet-DL and MetaVelvet-SL

MetaVelvet-DL MetaVelvet-SL

Accuracy 78.3% 57.5%

Class 1 Sensitivity 75.5% 64.3%

Class 1 Specificity 90.0% 80.7%

Class 2 Sensitivity 85.4% 66.8%

Class 2 Specificity 86.2% 71.0%

Class 3 Sensitivity 73.9% 41.4%

Class 3 Specificity 91.3% 84.7%
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ratio (Misassembled contigs length / Total length), and Genome fraction (%) calculated

by MetaQUAST in Table 3. The full MetaQUAST report can be found in Supplemen-

tary A. We BLASTed the assemblies to the gold standard reference genomes and in-

cluded in Table 3 to obtain the total chimeric contig length and chimeric contig length

ratio, as well as the candidate chimeric node prediction accuracy (not for Megahit and

metaSPAdes).

Of all the assemblers, metaSPAdes had the highest N50 values from contigs of > 500

bp and the smallest number of contigs over 500 bp. However, metaSPAdes also has the

highest misassembled contig length ratio (0.0736) that is an order higher than the other

assemblers and the highest total chimeric contig length and ratio (0.516). Megahit had

the largest number of contigs over 500 bp, total contig length, and genome fraction, but

had the second highest total chimeric contig length and ratio (0.279). The MetaVelvet-

based assemblers in general had much lower total contig lengths, and N50, and genome

fraction than either Megahit or metaSPAdes but had much lower total chimeric contig

lengths and ratios, with MetaVelvet-DL-Kraken having the lowest ratio at 0.194. They

also had comparable misassembled contig length ratios to that of Megahit and much

lower than that of metaSPAdes.

Within the MetaVelvet-based assemblers, MetaVelvet-gold standard had the largest

N50 and the lowest misassembled contig length ratio as expected for a model using the

Table 2 MetaVelvet-DL and -SL prediction accuracies on the CAMI low-complexity dataset

MetaVelvet-DL MetaVelvet-SL

Accuracy 55.6% 46.1%

Class 1 Sensitivity 35.9% 26.2%

Class 1 Specificity 82.9% 87.7%

Class 1 Balanced Accuracy 59.4% 56.9%

Class 2 Sensitivity 64.5% 54.5%

Class 2 Specificity 75.5% 63.6%

Class 2 Balanced Accuracy 70.0% 59.1%

Class 3 Sensitivity 60.1% 51.2%

Class 3 Specificity 70.1% 63.1%

Class 3 Balanced Accuracy 65.3% 57.2%

Table 3 CAMI low-complexity dataset assembly results for the assemblers evaluated

MetaVelvet-
gold standard

MetaVelvet-
DL

MetaVelvet-
DL-Kraken

MetaVelvet-
SL

Megahit metaSPAdes

N50 (> 500 bp) 5153 4130 4858 3830 5533 31,230

# Contigs (> 500
bp)

21,111 24,781 23,123 26,029 31,995 19,701

Total contig length 61,955,806 62,484,115 61,458,347 61,695,311 93,724,510 82,094,551

Misassembled
contig length ratio

6.26e-3 8.52e-3 8.79e-3 8.66e-3 5.72e-3 7.36e-2

Genome fraction
(%)

36.1 38.9 36.8 39.8 64.6 60.4

Total chimeric
contig length

12,452,954
(20.1%)

12,750,152
(20.4%)

11,904,987
(19,4%)

12,417,820
(20.1%)

26,182,872
(27.9%)

42,291,210
(51.6%)

Chimeric class
accuracy

26,315/26,315
(100%)

14,622/26,
315 (55.6%)

15,493/26,315
(58.7%)

12,143/26,
315 (46.1%)

NA NA
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gold standard labels. MetaVelvet-DL had the next lowest misassembled contig length

ratio, followed by MetaVelvet-SL and then MetaVelvet-DL-Kraken. However, the trend

is not as clear with total chimeric contig length, where MetaVelvet-DL-Kraken had the

lowest ratio of total chimeric contig length and MetaVelvet-DL had the highest ratio,

although all ratios for the MetaVelvet-based assemblers are very similar to each other.

For chimeric class accuracy, the DL models also had much higher accuracy than that of

the SL model. MetaVelvet-DL-Kraken, however, does have slightly higher prediction

accuracy than that of MetaVelvet-DL.

As discussed earlier, looking only at N50 value does not reflect the total length of

contigs assembled. For a more unbiased comparison of assembly quality, we removed

the chimeric contigs and plotted the N-len(x) scores for all six assemblies from x = 1e7

bp to x = 3.5e7 bp (Fig. 3).

When compared based on N-len(x) scores, Megahit produced significantly longer

contigs than the MetaVelvet-based assemblers and metaSPAdes at all values of x, with

metaSPAdes having the lowest N-len(x) scores at all x among all the assemblers. N-

len(x) scores for MetaVelvet-DL were higher than those for MetaVelvet-SL at all values

of x, and closely approximated those of MetaVelvet-gold standard, even having longer

length in some regions of x. It should be noted that while MetaVelvet-DL-Kraken had

the lowest N-len(x) values among all MetaVelvet assemblers, it still had higher N-len(x)

values than metaSPAdes at all values of x, and this was achieved while having incom-

plete information on the bacterial species in the CAMI dataset based on predictions by

Kraken.

The bacterial families in the CAMI low-complexity and the marmoset rectal datasets

are shown in Table 4, and the MetaVelvet-DL-Marmoset and SL-Marmoset assembly

results using the mismatched marmoset training data are shown in Table 5. We can

see that the classification accuracies are lower than those models using either gold

Fig. 3 N-len(x) plots for MetaVelvet-DL, MetaVelvet-DL-Kraken, MetaVelvet-SL, MetaVelvet-gold standard,
metaSPAdes, and Megahit
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standard-generated or Kraken-generated species. However, the deep learning model

still had much higher accuracy than that of the SVM model. As expected, MetaVelvet-

DL-Marmoset had higher total chimeric contig length and misassembled contig length

ratio than those of MetaVelvet-DL and MetaVelvet-DL-Kraken. When compared with

metaSPAdes, MetaVelvet-DL-Marmoset still showed more accurate results in terms of

the proportion of chimera contigs length and misassembled contig length ratio, show-

ing the robustness of the deep learning model to variations in the training dataset.

CAMI medium-complexity dataset assembly

To test the proposed DL models on more complex datasets, we trained from the gold

standard species list a DL and an SL model and assembled the CAMI medium com-

plexity dataset. The MetaQUAST and BLAST statistics can be found in Table 6. The

full MetaQUAST report can be found in Supplementary B. From Table 6, we can see

that both MetaVelvet-based assemblers outperformed Megahit in terms of lower total

chimeric contig lengths. However, Megahit has much higher N50, total contig lengths,

misassembled contig length ratio, and genome fraction. Comparing the two

MetaVelvet-based assemblers, the N50 values and total chimeric contig lengths were

very comparable, with MetaVelvet-DL having slightly higher N50 values and longer as-

sembled contigs. MetaVelvet-DL had slightly higher total chimeric contig length and

ratio but have a much lower misassembled contig length ratio according to Meta-

QUAST. It should be noted that the reason for the poor comparison to Megahit is that

despite using 200GB memory, the MetaVelvet-based assemblers could build their de

Bruijn graphs with only part of the reads in the CAMI medium complexity dataset due

heavy memory requirements. Furthermore, it should be noted that with the same

Table 4 Family-level comparison of bacterial contents in the CAMI low-complexity and marmoset
rectal datasets

CAMI Marmoset

Anaeroplasmataceae Actinomycetaceae

Chitinophagaceae Bacteroidaceae

Clostridiaceae Clostridiaceae

Chromobacteriaceae Coriobacteriaceae

Comamonadaceae Corynebacteriaceae

Desulfobacteraceae Enterobacteriaceae

Flavobacteriaceae Erysipelotrichaceae

Intrasporangiaceae Lachnospiraceae

Oxalobacteraceae Lachnospiraceae

Peptostreptococcaceae Oscillospiraceae

Proteinivoraceae Peptostreptococcaceae

Pseudomonadaceae Porphyromonadaceae

Rhodobacteraceae Prevotellaceae

Thermosporotrichaceae Rikenellaceae

Veillonellaceae Ruminococcaceae

Xanthomonadaceae Streptococcaceae

Veillonellaceae
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amount of memory, metaSPAdes was unable to assemble the CAMI medium complex-

ity dataset, failing to produce any output based on partial reads.

In Fig. 4, we present a comparison of the distributions of true, DL, and SL-predicted

class labels for the candidate chimeric nodes in dBG constructed from the CAMI low-

complexity data. Based on the true labels, 3/4 of the candidate chimeric nodes were not

chimeric, but repeat nodes. Class 1 true chimeric nodes were nearly 5 times more fre-

quent than class 2 true chimeric nodes. As for MetaVelvet-DL, class 1 labels were the

same amount as in the true labels, whereas class 2 labels were close to 6 times higher

and class 3 labels nearly 30% less than those in the true labels.

It should be noted that the training datasets may contain some mislabeled samples.

From Table 3, we can see that MetaVelvet-gold standard assembly, which used the true

class labels for the partitioning of candidate chimeric nodes, also has chimeric assem-

blies. Besides rare cases of higher-connectivity nodes, partitioning the candidate

chimeric nodes according to the true labels obtained by BLAST should have drastically

reduced the chimeric rate. However, as can be seen from Table 3, the chimeric rate of

MetaVelvet-gold standard is comparable to those of the other MetaVelvet assemblies.

For MetaVelvet-DL, we used the same labeling scheme as used in MetaVelvet-SL.

However, this scheme only looks at the highest scoring hit and does not consider any

other BLAST hits, i.e., one or more of the HCI, HCO, LCI, LCO, and candidate

chimeric nodes may be in fact be chimeric nodes. To show this, we created a dBG from

a small set of reads simulated from the CAMI low-complexity reference genomes, with

a total of 9247 samples of candidate chimeric nodes. The samples were labeled accord-

ing to the MetaVelvet-SL labeling scheme and for each sample, we checked the

chimeric status of the candidate chimeric, HCI, LCI, HCO, and LCO nodes. Out of the

9247 samples, 512 contained at least one node with a chimeric sequence, 401 of which

Table 5 CAMI low-complexity dataset assembly results with MetaVelvet models trained with a
dataset generated from mismatched reference genomes

MetaVelvet-DL-Marmoset MetaVelvet-SL-Marmoset

N50 (> 500 bp) 6732 6599

# Contigs (> 500 bp) 23,188 23,299

Total contig length 66,787,785 66,053,025

Misassembled contig length ratio 2.17e-2 1.11e-2

Genome fraction (%) 40.5 42.1

Total chimeric contig length 15,671,826 (23.5%) 17,648,716 (26.7%)

Chimeric class accuracy 11,543/26,315 (43.9%) 7784/26,315 (29.6%)

Table 6 CAMI medium-complexity dataset assembly result with MetaVelvet models trained with
training dataset generated from Kraken-predicted species genomes

MetaVelvet-DL MetaVelvet-SL Megahit

N50 (> 500 bp) 997 991 2682

# Contigs (> 500 bp) 47,931 47,917 106,769

Total contig length 77,284,835 77,094,128 242,383,239

Misassembled contig length ratio 8.69e-3 1.10e-2 2.39e-3

Genome fraction (%) 14.6 14.6 45.3

Total chimeric contig length 9,796,796 (12.7%) 9,606,278 (12.5%) 13,140,546 (18.0%)
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are labeled as class 3. Since class 3 candidate chimeric nodes are not partitioned, this

leads to chimeric contigs in the final assembly. While some of the chimeric node se-

quences in the samples are the results of the original Velvet assembly and cannot be

eliminated without overhauling the entire Velvet implementation, we may be able to

use the additional BLAST hits to reduce the chimeric sequences contributed to the

final assembly for other samples. For example, using the original MetaVelvet-SL label-

ing scheme, if the highest-scoring hits for each of the four incoming and outgoing

nodes of a sample would be mapped to the same species, this sample would be labeled

as class 3. However, if the remaining hits for the HCI and HCO nodes contain a match

to a different species, whereas all hits for the LCI and LCO nodes point to the same

species, the candidate chimeric node can be relabeled as class 1, so that the subgraph

containing the LCI and LCO nodes would be from the same species. In the training of

the deep learning models, we used a balanced training set with equal numbers of all

three classes. However, Fig. 4 shows that in an actual assembly for a metagenomic sam-

ple, the distribution can be dominated by class 3 nodes and class 2 nodes can be few.

Furthermore, Fig. 4 also shows that MetaVelvet-DL does recognize the large proportion

of class 3 nodes in the test dataset and has a class distribution closer to the true distri-

bution than does MetaVelvet-SL.

In Fig. 5, we selected the top 500 contigs by length from each assembler and looked

at the proportion of chimeric contigs in the top 500 contigs for the CAMI low-

complexity dataset assemblies. The Velvet-based assemblers all had similar proportions

of chimeric assembly at approximately 60%, as well as that of Megahit. MetaSPAdes

had the highest proportion of chimeric contigs in the top 500 contigs at 87%. The dif-

ference between the Velvet-based assemblers and metaSPAdes becomes even more ap-

parent when looking at the chimeric-to-total length ratio for the top 500 contigs, which

are almost at 70% for the Velvet-based assemblers, but 93% for metaSPAdes. For CAMI

medium-complexity dataset, the MetaVelvet-DL assembly produced 273 chimeric con-

tigs in the top 500 contigs, with 5,547,178 bps out of the 10,081,697 bps (55.0%) total

top 500 contig lengths being chimeric. For the MetaVelvet-SL assembly, 269 of the top

500 contigs were chimeric, with 5,452,132 bps of the 9,967,149 bps (54.7%) total top

500 contig lengths being chimeric.

Fig. 4 Distributions of true, DL, and SL-predicted labels of candidate chimeric nodes for the CAMI
low-complexity dataset
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It should be noted that the deep learning model can lead to overfitting, as evident

from the decrease in accuracy between the validation set (Table 1) and the test set

(Table 2). However, as shown in Table 3, even with overfitting, MetaVelvet-DL pro-

duced the best assembly in terms of low chimeric assembly. Furthermore, the DL

model trained with unrelated marmoset metagenomic data also produced a better as-

sembly than its SL counterparts and Megahit. This indicates that the DL model may

have found some non-species-specific sequence features that could be generalized to

other datasets with different bacterial species content.

While MetaVelvet-DL was shown to produce accurate assemblies and to be robust to

mismatches between training and test metagenome data, this model still has some limi-

tations, and we would like to further improve the assembler in future. Because of the

increasing size of metagenomic data, memory usage in Velvet-based assemblers has be-

come a bottleneck. The adoption of more memory-efficient indexing methods is ur-

gently needed to improve the ease of use of MetaVelvet-DL on systems with fewer

resources. While MetaVelvet-DL outperformed well despite the exclusion of higher-

order connectivity nodes, the inclusion of such nodes is another approach for further

improving the metagenomic assembly quality. One way to treat a node with higher

connectivity is to decompose it into all possible incoming and outgoing pairs. The clas-

sifier can then be used to predict the label of each possible pair, and the resulting labels

can be aggregated to make a final decision on how to partition the higher-connectivity

node. Finally, we adopted the MetaVelvet-SL approach to label candidate chimeric

nodes in the training data. The MetaVelvet-SL labeling scheme considers only the best

BLAST hit and ignores any additional hits to other species, which may be a cause of

chimeric contigs in the MetaVelvet-gold standard assemblies. We would like to explore

other labeling schemes in future.

Methods
In the following sections, we will first provide a brief review of MetaVelvet-SL to estab-

lish the framework MetaVelvet-DL is built upon and reformulate the dBG partitioning

problem as a three-class classification problem where the classes represent possible

ways of partitioning a dBG. The proposed deep learning architecture uses a one-

dimensional convolutional neural network (1D CNN) and biLSTM networks to predict

class labels of candidate chimeric nodes.

Fig. 5 Proportion of top 500 contigs that are chimeric, and chimeric-to-total contig length ratio for the top
500 contigs for MetaVelvet-gold standard, MetaVelvet-DL, MetaVelvet-DL-Kraken, MetaVelvet-SL, Megahit,
and metaSPAdes
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Overview of MetaVelvet-SL

MetaVelvet-SL first constructs a dBG with Velvet, and performs simplification and error

removal of tips, bubbles, and erroneous connections using Velvet functions [3]. However,

typically, there remain nodes with multiple incoming and outgoing edges that could not

be resolved to a single path. These chimeric nodes represent possible repeat regions that

occur at multiple locations in a genome and are confirmed based on the actual read

coverage and the expected coverage. However, in the assembly of multispecies genomic

data, such chimeric nodes do not necessarily represent repeat regions, but may represent

a stretch of nucleotide sequence that is evolutionarily conserved in different species.

In MetaVelvet and MetaVelvet-SL, the dBG constructed in Velvet is assumed to be

composed of subgraphs that represent the individual species in a metagenomic sample.

Therefore, one only needs to partition the multi-species dBG at the correct nodes to

construct subgraphs and single-species contig assemblies. In MetaVelvet, partitioning is

performed by identifying read coverage peaks, where each peak is assumed to represent

one species in the microbial community. Each node is then assigned to a species, and a

subgraph is formed by partitioning adjacent nodes having the same species assignment.

Repeat nodes are distinguished from chimeric nodes by pair-end read mapping and

coverage differences. In MetaVelvet-SL, a candidate chimeric node is defined as a node

with two incoming and two outgoing nodes, which are labeled as higher- and lower-

coverage incoming and outgoing nodes. There are three classes of possible arrange-

ments at each candidate chimeric node as shown in Fig. 6: class 1, where the candidate

node is chimeric, and the higher-coverage incoming and outgoing nodes belong to one

species and the lower-coverage incoming and outgoing nodes belong to another spe-

cies; class 2, where the candidate node is chimeric, and the higher-coverage incoming

and lower-coverage outgoing nodes belong to one species and the lower-coverage and

higher-coverage outgoings node belong to another; and class 3, where the candidate

node is not chimeric, but a repeat node. MetaVelvet-SL uses a three-class SVM to pre-

dict the class labels of candidate chimeric nodes; in addition to the pair-end mapping

and coverage information, which is also used in MetaVelvet, node sequence informa-

tion in the form of dinucleotide frequencies is included in the SVM feature vector.

MetaVelvet-SL performs metagenome assembly using the following steps:

1. Construct a dBG that consists of multi-species genomes using Velvet functions.

2. Generate a list of candidate chimeric nodes from the dBG constructed in step 1

and obtain the nucleotide sequences as well as pair-end mapping and coverage in-

formation for these nodes and their incoming and outgoing nodes.

3. Train a three-class classification SVM model and predict the class labels of candi-

date chimeric nodes using dinucleotide frequencies and pair-end mapping and

coverage information as input features.

4. Partition the multi-species dBG into subgraphs at candidate chimeric nodes that

have been classified as classes 1 and 2 in step 2.

The MetaVelvet-DL algorithm developed in this study followed the same steps as

MetaVelvet-SL, but replacing the SVM model in step 3 with a deep learning architec-

ture, taking advantage of the latter’s automatic feature extraction ability to consider

long-range patterns in same-species sequences with the aim to resolve the graph
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partition problem. It should be noted that while candidate chimeric nodes with more

than two incoming and outgoing nodes do exist, these account for only 1.79% of the

candidate chimeric nodes in human gut microbiome [11]. Thus, in this study we fo-

cused on the modeling of nodes with two incoming and outgoing nodes. Another po-

tential source of chimeric nodes is horizontal gene transfer between different species.

While this phenomenon is not considered in this work, it is a future direction for the

extension of this algorithm.

Deep learning classification model

We designed a deep learning architecture, illustrated in Fig. 7, to predict whether a

candidate chimeric node is a true chimeric or a repeat node. The architecture follows

directly from the structure of the problem itself: there are two incoming and two out-

going nodes, and we need to predict the incoming–outgoing nodes that form a correct

pair, or whether none of the nodes do. To this end, we used one 1D convolutional layer

and four biLSTM layers on each node sequence, except for the candidate node. The

structure then combined the outputs of the biLSTM layers to represent both possible

pairings and uses a series of fully connected layers to determine the correct partition

method. Hereafter, the higher-coverage incoming node, lower-coverage incoming node,

higher-coverage outgoing node, and lower-coverage outgoing node are denoted as HCI,

LCI, HCO, and LCO nodes, respectively.

Fig. 6 The three-class classification problem for graph partition in MetaVelvet-DL
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Input

The input to the deep learning architecture includes the sequences for a candidate

chimeric node, the two incoming nodes, and the two outgoing nodes, and coverage in-

formation that includes:

1. Number of reads connecting the HCI and HCO nodes.

2. Number of reads connecting the HCI and LCO nodes.

3. Number of reads connecting the LCI and HCO nodes.

4. Number of reads connecting the LCI and LCO nodes.

5. Coverage ratios of the incoming nodes to the candidate chimeric node.

6. Coverage ratios of the outgoing nodes to the candidate chimeric node.

7. Coverage of the candidate chimeric node.

8. Length of the candidate chimeric node.

The coverage features are included as additional evidence for graph partitions. A

higher number of pair-end reads mapped to a certain pair of incoming–outgoing nodes

gives stronger evidence for partitioning. In cases where the incoming or outgoing nodes

have highly similar sequences, coverage features can be weighted higher in the decision

process. For each of the eight coverage features, a histogram is computed and divided

into 10 equally spaced quantiles. The pair-end and coverage feature values of each can-

didate chimeric node are then one-hot-encoded according to their respective quantile

and concatenated to form a binary vector. For sequence data, instead of assigning the

four nucleotides ‘A’, ‘G’, ‘C’, and ‘T’ the numbers 1, 2, 3, and 4, or using one-hot encod-

ing, we assigned all possible hexanucleotides a unique integer between 1 and 4096, e.g.,

‘AAAAAA’ = 1, ‘AAAAAG’ = 2, and ‘TTTTTT’ = 4096. Accordingly, a 6-bp sliding win-

dow is slid from the 5′ to the 3′ end of a sequence at 1-bp step size, at each step

assigning the observed hexanucleotide its corresponding integer to obtain a numeric

representation of the nucleotide sequence. Using this representation allows us to in-

clude short-range patterns in the input data, while leaving sufficient freedom for the

Fig. 7 Deep learning architecture for candidate chimeric node classification in MetaVelvet-DL
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deep learning model to find an optimal representation for the classification problem.

As input to the deep learning architecture, we extracted 250 bp from the 3′ end of the

incoming nodes and 250 bp from the 5′ end of the outgoing nodes and converted the

nucleotide sequences to integer sequences as described above. In case the length of a

node was less than 250 bp, the integer sequences were padded with zeros so that all se-

quences have the same length.

Embedding layer

The first layer of the deep learning architecture proposed here is an embedding layer.

The embedding layer is applied only to the integer-transformed nucleotide sequences

of the candidate chimeric and incoming and outgoing nodes. In natural language pro-

cessing, word embedding is a dense representation of words in the form of a numerical

vector [24] and serves as a method for dimension reduction from the original word

space and to encapsulate co-occurrence information [25]. In our architecture, we chose

to implement an embedding layer that embeds each integer into a numerical vector of

length 64, and the embeddings are learned during the training process.

Convolutional layers

After embedding, the dense representation of each of the incoming and outgoing nodes

of a candidate chimeric node is passed through a 1D CNN layer. A nucleotide sequence

is 1D data where spatial relationships exist on various scales. The 1D CNN is used to

learn features present within the nucleotide sequences, taking advantage of its strength

in identifying spatial patterns that exist within input data [26]. The 1D CNN filter is a

sliding window that moves across the input data with a step size of 1, convolving the

values of the window with the input within the window at each step and producing a

1D feature map as output. In the architecture proposed here, each of the four 1D CNN

layers has 32 filters of size 64 × 12, where 64 is the size of the embedding layer output

and 12 is the window length.

Batch normalization

Each 1D CNN layer is subjected to batch normalization, which transforms each activation

in the output feature map from the 1D CNN layers such that they have zero mean and

unit variance. This step can speed up the learning by using large learning rates [27].

Maxpooling

Maxpooling is applied to the batch-normalized feature maps. Maxpooling with 1D in-

put is simply a moving window that takes the maximum value within the window at

each step. Such an operation downsizes the input and reduces dimensionality, but still

allows the most prominent features in each window to be observed [28]. In the archi-

tecture proposed here, we set the maxpooling size to 4.

BiLSTM

For each of the incoming and outgoing nodes, the output from the maxpooling layer is

used as input to four consecutive biLSTM layers. As WGS metagenomics data generally

cover complete genome sequences and spatial correlations or patterns can occur in
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concert with upstream or downstream sequences, we utilized biLSTM [21] to

process each maxpooling output both forward and backward to incorporate up-

and downstream sequence information in the output of a biLSTM unit. We

stacked four biLSTM layers, where the input to the first layer is the output of the

maxpooling layer, and the input of the subsequent layers is the output of the re-

spective previous layers. Each subsequent layer will learn sequence patterns at a

larger scale than the previous one. In the architecture proposed here, we used

biLSTM layers of sizes 128, 64, 32, and 16.

Fully connected layers

Fully connected layers where all neurons in one layer are connected to all neurons in

the next are used to aggregate all previous layers and to generate a nonlinear combin-

ation of the features learned in the previous layers. Let us first denote the network

stacks described above from the integer sequence inputs to the embedding layer to the

output of the final biLSTM layer for the HCI, LCI, HCO, and LCO nodes as MHCI,

MLCI, MHCO, and MLCO, respectively. We then concatenate pairs of network stacks to

obtain the following:

1. M1A: the concatenation of MHCI and MHCO

2. M1B: the concatenation of MLCI and MLCO

3. M2A: the concatenation of MHCI and MLCO

4. M2B: the concatenation of MLCI and MHCO

and the output of each concatenation is connected to a separate single layer of 512

neurons. The outputs of the single layers are further concatenated as follows:

1. M1: the concatenation of M1A and M1B

2. M2: the concatenation of M2A and M2B

where M1 and M2 correspond to class 1 and 2 pairings, respectively. The outputs of M1

and M2 are again each connected to a single layer of 512 neurons. The one-hot-

encoded features of pair-end and coverage information are next used as inputs to a sin-

gle layer of 512 neurons. The three layers are then concatenated and used as input to

three fully connected layers of sizes 512, 256, and 128. The output of the final fully

connected layer is then fed into a softmax layer with three outputs corresponding to

the three classes.

The deep learning architecture presented above reflects two design goals. First, in

dBGs constructed from metagenomic samples, we observed that node sequence

lengths can range from tens to thousands of base pairs. To accurately capture se-

quence patterns at various resolutions, we included four biLSTM layers, each layer

capturing increasingly longer-range patterns. Second, the architecture contains two

large subnetworks that are concatenated in the fully connected layers, where each

subnetwork represents one possible partition of a chimeric node. The fully con-

nected layers then combine the subnetworks and read coverage information to de-

cide on which is the most probable partition for a candidate chimeric node.
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Data

To compare the performance of the MetaVelvet-DL, MetaVelvet-SL, Megahit, and

metaSPAdes assemblies, we used low- and medium complexity datasets from the first

Critical Assessment of Metagenome Interpretation (CAMI) challenge, which is an effort

to provide a standardized benchmark for comparing metagenomic data analysis tools.

The low-complexity dataset comprises approximately 50,000,000 pair-end reads with

Illumina HighSeq error profile from 40 microbial and viral genomes and 20 circular el-

ements simulating a single sample, for a total of 15 Gb. The medium-complexity data-

set covers 132 genomes and 100 circular elements simulating two samples, for a total

of 40 Gb. In both datasets, the pair-end reads have read length of 150 bp, a mean inser-

tion length of 270 bp, and a standard deviation of 27 bp.

Training strategy for unknown bacterial species in a metagenomic sample

We generated a training set of candidate chimeric nodes, using gold-standard bacterial

species genomes for the CAMI low-complexity dataset. A dBG was constructed at a k-

mer size of 31 bp using 150-bp pair-end reads with a 270-bp insertion length and 50×

coverage. The processing pipeline we used is as follows:

1. Use the gold standard list of bacterial species for CAMI low-complexity dataset.

2. Generate simulated pair-end reads from the reference genomes of the gold stand-

ard species using DWGSIM (https://github.com/nh13/DWGSIM).

3. Construct a dBG from the simulated data and identify the candidate chimeric

nodes.

4. BLAST the candidate chimeric, incoming, and outgoing node sequences to the

reference genomes to determine the partition class label for each candidate

chimeric node.

5. Train the deep learning model with the simulated dataset.

6. Construct a dBG for the unknown metagenomic sample and identify the candidate

chimeric nodes.

7. Predict the partition classes of the candidate chimeric nodes in the unknown

metagenomic sample and partition the dBG accordingly.

From the above pipeline we created a training set of candidate chimeric nodes from

dBGs that were constructed at a k-mer size of 31 bp, using 50 × −coverage, 150-bp

pair-end reads with an insertion size of 270 bp simulated from the gold standard spe-

cies list for CAMI low-complexity dataset. Based on the strategy used in MetaVelvet-

SL, we BLASTed the node sequences to the reference genomes of the gold standard

bacterial species to obtain the true labels of the candidate chimeric nodes for the train-

ing set. In MetaVelvet-SL, we considered the highest-ranking match for each of the in-

coming/outgoing node sequences. When the HCI and HCO nodes had the same

highest-ranking match and the LCI and LCO had the same highest-ranking match dif-

ferent from that of HCI and HCO, we labeled the candidate chimeric node as class 1.

When the HCI and LCO had the same highest-ranking match and the LCI and HCO

had the same highest-ranking match different from that of HCI and LCO, we labeled

the candidate chimeric node as class 2. All other candidate nodes were labeled as class
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3. For the training set, 50,000 candidate chimeric nodes from each of classes 1, 2, and 3

were selected to create a training set of 150,000 samples. Another 1000 candidate

chimeric nodes from each class were selected to create a validation set of 3000 samples,

with a batch size of 100 samples over 256 epochs. The generated datasets are used to

train and validate a deep learning model and an SVM model, and their resulting assem-

blies are denoted as MetaVelvet-DL and MetaVelvet-SL in the discussion. For compari-

son, we also performed an assembly of CAMI low-complexity dataset where we did not

use either the SL or DL model predictions, but the true labels for the candidate

chimeric nodes to partition the dBG. We refer to this as the MetaVelvet-gold standard

in the discussion.

In real-world applications, a workflow to train a model for chimeric node prediction

would first use a phylogenetic analysis software to predict the bacterial species in the

unknown sample. Then, a training dataset would be created using simulations with the

reference genomes of the predicted species. Here we trained a deep learning chimeric

node prediction model using simulated read data generated from the genomes of a set

of bacterial species predicted to be present in the CAMI low-complexity dataset by

Kraken [28], which we will refer to as MetaVelvet-DL-Kraken. The training set contains

20,000 samples of each class, and the validation set contains 1000 samples of each class.

The models were trained with a batch size of 100 samples over 100 epochs.

To demonstrate the robustness of MetaVelvet-DL, we also trained a deep learning and

an SVM model using a highly mismatched training dataset generated from an unpub-

lished microbial community found in a marmoset (Callithrix jacchus) rectal sample. The

bacterial species families in the CAMI and marmoset datasets are shown in Table 4. It

can be seen from the table that the two lists are mismatched, with very few common fam-

ilies in the two datasets. The training set has 20,000 samples of each of classes 1, 2, and 3,

and 1000 samples of each class for validation. The models were trained with a batch size

of 100 samples over 100 epochs. Hereafter, these models are referred to as MetaVelvet-

DL-Marmoset and MetaVelvet-SL-Marmoset.

Finally, to evaluate the performance of MetaVelvet-DL on more complex datasets, we

took one of the CAMI medium-complexity samples and trained DL and SL models

with the same steps used to generate the MetaVelvet-DL model.

Assessment

To bring focus to the quality of metagenome assemblies with respect to chimeric as-

sembly, we used MetaQUAST [29] to provide a quantitative evaluation of various

MetaVelvet-based assemblers with models trained with different training datasets, to-

gether with metaSPAdes and Megahit. In addition to providing standard quality statis-

tics such as N50 and mapped genome fraction, MetaQUAST also includes metrics such

as number of interspecies translocations and number of misassembled contigs [29],

which are important in metagenome assembly.

We also BLASTed the assembled contigs to the gold standard reference genomes. If

non-overlapping parts of a contigs are found to have hits in different species, then that

contig is considered as a chimeric contig. By identifying the chimeric contigs through

BLAST, we compared total chimeric contig lengths and proportions of chimeric contig

length of each of the assemblers as a metric for assembly quality.
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Another common metric for comparing genome assemblies is the N50 score, which is

the length of the shortest contig where if all contigs longer than N50 summed together

would account for 50% of the total assembly. However, comparing N50 of different as-

semblies is biased because of the differing total contig lengths in different assemblies.

Therefore, we used the following generalized score, termed the N-len(x) score:

N‐len xð Þ ¼ Sij j∋
Xi

j¼1
S j

�� ��≥xand
Xi − 1

j¼1
S j

�� ��≤x; ð1Þ

where L is the total length of all contigs, Sj denotes the j-th contig in the total set of contigs

sorted by length in a decreasing order, and | Sj | denotes its length. Based on this formulation,

the N50 measure is simply a special case of the N-len(x) score where x=L/2 [2]. Using the

N-len(x) score, we can compare the length of the shortest contig in the smallest set of contigs

whose total length just exceeds the same value among all assemblers.

Conclusion
We developed a dBG-based short-read de novo assembler that is an improvement over

existing algorithms by introducing a deep learning model for a more accurate partition

of multi-species dBGs into single-species subgraphs. The assembler, called MetaVelvet-

DL, was shown to produce a lower ratio of misassembled contig length than those of

MetaVelvet-SL and metaSPAdes, one of the state-of-the-art metagenome assemblers.

MetaVelvet-DL assemblies also had higher N-len(x) scores than those of MetaVelvet-

SL and metaSPAdes assemblies across a large range of assembly lengths, and closely ap-

proximated those of the gold-standard MetaVelvet assembly. While the proposed algo-

rithm does not outperform the state-of-the-art algorithms in all aspects, we feel that

the novel use of deep learning methods to learn representations directly from sequence

data for dBG partitioning holds promise for future improvements.

Availability and requirements
Project name: MetaVelvet-DL

Project home page: http://www.dna.bio.keio.ac.jp/metavelvet-dl/

Operating system: Platform independent

Programming language: Python 3

Other requirements: Tensorflow > = 1.0, Keras > = 2.0.5

License: GNU General Public License v2.0

Contact: yasu@bio.keio.ac.jp

Availability: The Python source code of MetaVelvet-DL is available at http://www.

dna.bio.keio.ac.jp/metavelvet-dl/.
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