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Abstract
Background: Resolution estimation is the main evaluation criteria for the
reconstruction of macromolecular 3D structure in the field of cryoelectron microscopy
(cryo-EM). At present, there are many methods to evaluate the 3D resolution for
reconstructed macromolecular structures from Single Particle Analysis (SPA) in cryo-EM
and subtomogram averaging (SA) in electron cryotomography (cryo-ET). As global
methods, they measure the resolution of the structure as a whole, but they are
inaccurate in detecting subtle local changes of reconstruction. In order to detect the
subtle changes of reconstruction of SPA and SA, a few local resolution methods are
proposed. The mainstream local resolution evaluation methods are based on local
Fourier shell correlation (FSC), which is computationally intensive. However, the
existing resolution evaluation methods are based on multi-threading implementation
on a single computer with very poor scalability.

Results: This paper proposes a new fine-grained 3D array partition method by
key-value format in Spark. Our method first converts 3D images to key-value data (K-V).
Then the K-V data is used for 3D array partitioning and data exchange in parallel. So
Spark-based distributed parallel computing framework can solve the above scalability
problem. In this distributed computing framework, all 3D local FSC tasks are
simultaneously calculated across multiple nodes in a computer cluster. Through the
calculation of experimental data, 3D local resolution evaluation algorithm based on
Spark fine-grained 3D array partition has a magnitude change in computing speed
compared with the mainstream FSC algorithm under the condition that the accuracy
remains unchanged, and has better fault tolerance and scalability.
(Continued on next page)
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Conclusions: In this paper, we proposed a K-V format based fine-grained 3D array
partition method in Spark to parallel calculating 3D FSC for getting a 3D local
resolution density map. 3D local resolution density map evaluates the
three-dimensional density maps reconstructed from single particle analysis and
subtomogram averaging. Our proposed method can significantly increase the speed of
the 3D local resolution evaluation, which is important for the efficient detection of
subtle variations among reconstructed macromolecular structures.

Keywords: 3D local Fourier shell correlation, 3D local resolution map, Key-value data,
Spark, 3D array partition

Background
Macromolecular complexes are nano-machines involved in a wide range of biological
cellular processes. The biological functions of macromolecular complexes are deter-
mined by their 3D structures. Therefore, it is important to know the structures of these
macromolecule complexes to fully understand these cellular processes [1].

In recent years, electron cryomicroscopy (cryo-EM) has played an increasingly impor-
tant role in 3D structure recovery of macromolecular complexes. 3D structures of
biological macromolecules and complexes can be further studied to reveal their spe-
cific function, which may lead to major breakthroughs in biological cellular mechanisms,
pharmacy and disease treatment, etc.

The single particle analysis (SPA) techniques in cryoelectron microscopy (cryo-EM)
and subtomogram averaging (SA) techniques in electron cryotomography (cryo-ET) are
widely applied to obtain 3D density maps of macromolecular complexes [2, 3]. The qual-
ity of reconstructed 3D density maps needs to be evaluated normally in terms of the
structural resolution. The resolution can be directly utilized to interpret the extent of the
structural details in the density map. A number of different methods have been proposed
on resolution evaluation, among which popular ones are Fourier shell correlation (FSC)
[4–6], spectral signal-to-noise ratio (SSNR) [7], R measure [8], likelihood-ratio hypothesis
testing (ResMap) [9], and monogenic signal transformation (MonoRes) [10].

In this paper we focus on FSC, the most widely used resolution evaluation method
[6, 11, 12]. It is normally employed in the SPA and SA for resolution evaluation. The
golden standard procedure is to divide the data into two independent halves and recover
separately. Then the normalized cross correlation between the two results with different
shell in Fourier space is calculated.

In such resolution estimation, all particles are considered structurally homogeneous
under ideal conditions in the SPA technique and SA technique, save for different orienta-
tions and positions, so the FSC can measure resolution of density maps of reconstruction.
However, in practice, particles of a macromolecular complex can often be structurally
heterogeneous [13–15]. The traditional global FSC measure cannot be used to accurately
detect the subtle structural variations in the reconstructions of SPA and SA. In order to
evaluate local structural heterogeneity, a local resolution evaluation has been proposed [6,
9, 10]. The first 3D local resolution evaluation method is blocres [6], which employed win-
dowed FSC to calculate local density maps. The method utilizes a density map of windows
to calculate corresponding FSC value. The blocres method extends 2D FSC evaluation
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to 3D local FSC evaluation. Implementation of blocres utilizes Open Multi-Processing
(OpenMP) to parallelize calculation on a single compute node.

The existing methods of FSC-based local resolution evaluation are single-node multi-
threaded implementation. Part of the reason is that single-node multi-threading imple-
mentation can satisfy local resolution evaluation, but multi-threaded implementation
often considers thread security and is not scalable. Although it is relatively accurate to
obtain 3D local resolution map by calculating 3D local FSC, the computations are enor-
mous, mainly due to a large number of coupled 3D small windows calculated. For volume
density map of 300 × 300 × 300 voxel with 0.982Å resolution, computational time is
123.5 minutes for the most accurate algorithm, blocres, at criterion of FSC 0.5 [10].
Hence, it is necessary to develop a distributed parallel method of calculating 3D local FSC
for 3D local resolution evaluation. Specifically, by applying distributed computing algo-
rithms, one can quickly chalk up 3D local resolution map through parallel computing on
a cluster, not just on one compute node. Nevertheless, the main challenge for distributed
algorithms design and development is how to effectively divide a 3D array (volume
density map) into 3D sub-arrays (sub-volume density map), distribute them on the com-
puter cluster, and result of each pair 3D sub-array’s calculation is not influenced by
other threads.

In this paper, we present a Spark-based parallel method to calculate 3D local FSC
for 3D local resolution estimation. Our method converses 3D images to K-V data.
It then performs fine-grained 3D array partition by K-V format of Spark in mem-
ory. This method utilizes Spark [16] to implement parallel and distributed computa-
tion on a cluster. Our method can obtain the 3D local resolution map significantly
faster than blocres method without losing accuracy. With a sufficiently large num-
ber of compute nodes, even in a few seconds, the 3D local resolution map can
be computed. In order to divide 3D array into plenty of 3D sub-arrays for parallel
computation, we propose a K-V format based basic fine-grained 3D array parti-
tion method in Spark. To further reduce memory space, data shuffling and trans-
fer, we propose a K-V format based optimized fine-grained 3D array partition
method in Spark. The 3D density map is essentially a 3D gray image represented
as a 3D array. The 3D array partition method can be easily extended to other
3D array operations. A detailed comparison of different local resolution methods
are performed to illustrate the advantages of our Spark-based 3D local resolution
algorithm.

Our Spark-based 3D local resolution estimation algorithm can achieve completely auto-
matic calculation of 3D local FSC values and resolution with suitable window size and
specified FSC threshold, and is significantly faster than the blocres algorithm. In addition,
our algorithm is flexible and can be run on a single compute node with specified number
of cores.

Related work
The 3D local resolution evaluation methods [6, 9, 10] can inspect the subtle changes dur-
ing reconstruction of particles in SPA and SA, however, these methods can only be used
on a single compute node (Table 1), and cannot quickly compute the 3D local resolution
results. Some of these methods are based on the FSC method, while others are based on
hypothesis testing.
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Table 1 Introduction of different 3D local resolution evaluation methods

Methods Characteristics Is distributed?

blocres based on FSC, window sampling no

ResMap based on 3D sinusodial wave, hypothesis testing no

MonoRes based on monogenic signal, hypothesis testing no

FSC-based methods for 3D local resolution estimation

blocres algorithm: For the blocres [6] algorithm, the moving window is used to traverse
the half-map respectively, and the area of two 3D windows is calculated using FSC to
gain local resolution. Finally, the local resolution is filled into the new 3D density map
corresponding to coordinate, and the new 3D density map is the same size of half-maps.
Because FSC measures are calculated without any transformation on the original density
maps, blocres is the most accurate algorithm in calculating local resolution. In the blocres
method, many windows will be generated, and it is very time-consuming to calculate these
windows using FSC and acquire local resolution. This poses an issue when coupled with
the fact that the blocres method runs on a single compute node.

Hypothesis testing based methods for 3D local resolution estimation

Besides local FSC, another kind of local resolution evaluation is based on likelihood-ratio
hypothesis testing of density map approximated by basis function versus noise or signal
transformation, such as ResMap [9] and MonoRes [10].

ResMap algorithm: For ResMap [9] algorithm, the following conditions need to be
followed: if a 3D local sinusoid of wavelength λ can be detected statistically higher than
noise at this point, then there exists a λ-Å characteristic at this point in the volume. The
likelihood ratio hypothesis testing of the local sinusoid curve and noise is employed to
detect the feature when P value is 0.5. The local resolution at this point is the minimum λ

that can detect the local sinusoid curve. A set of the second-order Hermite polynomials
function expresses the local sinusoids of wavelength λ. However, the ResMap algorithm
has some limits, such as the need for an initial step and running on single compute node.

MonoRes algorithm: MonoRes [10] is the intensity map of the signal, which is con-
verted by the initial electron density map at that location, and also called monogenic
magnitude map. The transformation of signal is Riesz transform (or Hibert transform of
1D signals). Riesz transform is a generalization of Hibert transform’s multidimensional
(N-D), defined only for 1D signals. The map generated by MonoRes algorithm is the same
size as the original map, where each voxel participates in the local resolution estima-
tion. For each voxel of the mask volume, MonoRes algorithm use hypothesis testing to
detect whether the local monogenic amplitude is greater than the 1 - α percentile of the
monogenic amplitude in noise. MonoRes algorithm runs on a single compute node.

Since the hypothesis testing is used in ResMap and MonoRes algorithms, the density
map approximated by transformation is faster in calculation, but still costs a few min-
utes for density maps of size 2003 voxels [10]. Generally, the density map approximated
by transformation is constrained with various factors, and one of the key factors is reso-
lution of density map. Due to the low signal-to-noise ratio (SNR), using transformation
to approximate density map of reconstruction cannot improve the local resolution esti-
mation under low resolution conditions. The method of local resolution evaluation based
on FSC directly employs two half-maps to calculate, and doesn’t need to approximate the
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density map using specific basis functions, so that the details of the reconstructed density
map can be evaluated more accurately. Although the calculations of local resolution eval-
uation used in FSC are larger, these methods reflect the resolution of density map more
objectively and are more suitable for the resolution evaluation of SA in cryo-ET.

Distributed computation frameworks

Due to the low SNR of particles in SPA and SA, FSC is still widely applied [17] for 3D
local resolution estimation to assess the details during reconstruction of SPA and SA. In
order to gain 3D local resolution map faster, a distributed version of 3D local resolution
evaluation algorithm is implemented. Currently, there exist many mainstream distributed
computation frameworks, such as Message Passing Interface (MPI), Hadoop MapReduce
and Apache Spark.

Message Passing Interface (MPI): MPI [18] is a standardized portable messaging
standard, which can be used in various parallel computing architectures. MPI defines
the grammar and semantics of the library routines’ core, and is also a communication
protocol of programming parallel computers, and styled for supporting point-by-point
and collective communication. MPI is an application programming interface of mes-
saging, together with the protocols and semantic specifications that its features must
represent in any implementation. MPI has the features of high performance, scalabil-
ity and portability. MPI remains the main model in high performance computing [19],
but it is not easy to implement and has no fault-tolerant mechanism and redundancy
mechanism.

Hadoop MapReduce: MapReduce [20] is a programming model. It is a related imple-
mentation of using parallel distributed algorithms to process and generate large data sets
in a cluster. MapReduce programs consist of map processes that perform filtering and
sorting, and reduce processes that perform summary operations. MapReduce combines
the distributed serves, runs the different tasks in parallel, manages all communication
and data transmission in a different system, and provides redundancy and fault tolerance
[21, 22]. MapReduce processes K-V data. MapReduce framework handles data (e.g input
and output data) from disk.

Apache Spark: Apache Spark [16] is a generic open source distributed cluster com-
puting framework. Spark provides an interface to implement data parallelism and pro-
gramming on a cluster. Spark is based on the resilient distributed datasets (RDD), which
is a read-only multi-set data item distributed on a set of machines and maintained in a
fault-tolerance manner. The Dataframe Application Programming Interface (API) is pub-
lished as an abstraction over RDD, followed by the Dataset API. RDD technology remains
the foundation of the Dataset API, and the operations of RDD rely on K-V data. Spark
framework only deals with data in memory. Spark framework is better suited for fast data
processing and iterative processing [23].

A 3D local resolution evaluation algorithm based on FSC needs a large number of
sub-volumes to participate in calculation, which contains iterative processes [24, 25].
Hence, Spark framework is better suited for fast data processing and iterative process-
ing. Because Spark is only a coarse-grained distributed framework, for a specific task
such as local FSC computation, we need to design a K-V form based novel fine-grained
3D data partition and transformation algorithm for distribution parallel computing
in Spark.
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Results and discussions
To inspect the performance of our Spark-based optimized 3D local resolution estimation
algorithm, this method was applied to two experimental density maps, and compared
with other methods in computing time and accuracy.

Comparison of time cost between different methods of 3D local resolution evaluation

First, we compare time cost between our Spark-based optimized 3D local resolution
estimation algorithm and blocres [6] algorithm. In order to objectively evaluate both
algorithms, we followed the same parameter conditions with two experimental data sets
respectively.

To gain 3D local resolution map faster, our Spark-based optimized 3D local resolution
estimation method can extend compute node freely until all tasks can parallel work simul-
taneously. But blocres method only works under single compute node. For distinguishing
time cost, we just employ four compute nodes and eight compute nodes for Spark parallel
algorithm.

Under two 3D local resolution methods, we used windows size of 643 and FSC of 0.143
criteria to traverse the half-maps (EMDB:EBD-3802), and calculated 3D local FSC and
resolution respectively. From Fig. 1, blocres method consumed about 106 minutes for 3D
local resolution estimation during two half map of the human TFIIH (EMDB: EMD-3802),
however, our Spark-based optimized 3D local resolution estimation method only utilized
25 minutes and 13 minutes under the four and eight computing node respectively.

The above observations indicate that our Spark-based optimized 3D local resolution
estimation method is significantly faster than the blocres method. Assuming more com-
puting nodes, even virtual machine nodes, our Spark-based optimized 3D local resolution

Fig. 1 The time cost of Spark-based optimized 3D local resolution estimation method and blocres method
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estimation method can perform all tasks simultaneously, whereas the blocres algorithm
cannot be implemented.

Comparison of accuracy between different method of 3D local resolution evaluation

In order to compare accuracy of 3D local resolution map resulting from blocres method
and Spark-based optimized 3D local resolution estimation method, we tested two exper-
imental data: one is half map from SPA, one is half map from SA.

First, through applying two half-maps of cryo-EM structure of β-galactosidase, the 3D
local resolution maps gained by our Spark-based optimized 3D local resolution estimation
method and blocres method are shown in Fig. 2. Distribution by histogram, 3D local reso-
lution estimation of Spark-based optimized 3D local resolution estimation method range
from 4.4 to 26.2Å, and 3D local resolution estimation of blocres method range from 4.4
to 26.2Å. Because a large number of resolution values were 0Å in the edge of the volume,
the median of 3D resolution of our Spark-based optimized 3D local resolution estimation
method and blocres method were 0 and 0Å respectively. The color range of slice of our
Spark-based optimized 3D local resolution estimation method and blocres method were
a little different, which were 4.4 to 26.2Å and 4.4 to 8.0Å respectively. The color range of
slice and histogram in our Spark-based optimized 3D local resolution estimation method
was almost the same. The original resolution of cryo-EM reconstruction of human TFIIH
published in [26] was 4.4Å. All methods were under the FSC of 0.143 criterion.

Through the histogram of our Spark-based optimized 3D local resolution estimation
method and blocres method, we can found that the resolution value distribution of Spark-
based optimized 3D local resolution estimation method was similar to that of the blocres
method. So combining the histogram and slice of two methods, the two 3D local res-
olution maps were almost similar, and from the 3D local resolution maps, the detail

Fig. 2 Spark-based 3D local resolution density map. Spark-based, blocres and ResMap slices, and histogram
for experimental maps. a Spark-based 3D local resolution density map. b Spark-based method resolution
slice and histogram for the cryo-EM structure of human TFIIH (EMDB: EMD-3802). c blocres method
resolution slice and histogram for the cryo-EM structure of human TFIIH. d ResMap method resolution slice
and histogram for the cryo-EM structure of human TFIIH
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of cryo-EM reconstruction of human TFIIH can be reflected. We also utilized ResMap
method to obtain 3D local resolution map, which were colored by Chimera with the final
reconstruction (EMDB: EDB-3802) in Fig. 2d, 3D local resolution estimation of ResMap
method range from 2.9 to 100Å, the median of ResMap was 100Å. Although the his-
togram of our Spark-based optimized 3D local resolution estimation method and ResMap
method was different, the color range of slice of our Spark-based optimized 3D local
resolution estimation method was similar to that of ResMap method.

Next, using two half-maps of SA of Sar1-Sec23-Sec24 (EMDB: EMD-0044), the 3D local
resolution maps were obtained by our Spark-based optimized 3D local resolution estima-
tion method and blocres method respectively (Fig. 3). Distribution by histogram, the 3D
local resolution range estimated by our Spark-based optimized 3D local resolution esti-
mation method and the blocres method was between 0 and 23.4Å with the median of
0.0Å. By using the tool Surface Color in Chimera, the color range of slice of Spark-based
optimized 3D local resolution estimation method was 0 to 23.4Å, and the color range of
slice of the blocres method was 0 to 7.0Å. Although the color range of two methods were
a little different, the histograms of the two methods were almost the similar. The cov-
ered resolution of the SA of Sar1-Sec23-Sec24 was 4.9Å [27]. From the Fig. 3. The 3D
local resolution map of our Spark-based optimized 3D local resolution estimation method
achieved similar results compared with the 3D local resolution map of blocres method,
and our Spark-based optimized 3D local resolution map had the same resolution on the
boundary.

Conclusion
In this paper, we focus on reducing the time cost of the local FSC calculation for macro-
molecule 3D structure local resolution estimation. The traditional 3D local resolution
algorithm by calculating 3D FSC are computationally intensive and normally only execute
under single compute node, therefore we consider distributed 3D local resolution estima-
tion algorithm in order to significantly increase the speed of obtaining 3D local resolution
map.

Fig. 3 Spark-based 3D local resolution density map. Spark-based and blocres slices, and histogram for
experimental maps. a Spark-based 3D local resolution density map. b Spark-based method resolution slice
and histogram for SA of Sar1-Sec23-Sec24 (EMDB: EMD-0044). c blocres method resolution slice and
histogram for SA of Sar1-Sec23-Sec24
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By analyzing the mainstream distributed architecture, we choose Spark architecture for
efficient K-V data processing to design a distributed 3D local resolution evaluation algo-
rithm. Specifically, Spark architecture is more suitable for iterative algorithm because K-V
data operations are implemented in memory, which does not need frequent IO exchange.
Also, Spark structure has strong extensibility and fault tolerance.

In this paper, we propose two kinds K-V format based fine-grained 3D array partition
algorithms in Spark for computing 3D FSC in parallel. Compared with the K-V format
based basic fine-grained 3D array partition algorithm, the K-V format based optimized
fine-grained 3D array partition algorithm is more memory-saving, faster in calculation
and more concise in expression. The K-V format based optimized fine-grained 3D array
partition algorithm in Spark as the core of the Spark-based optimized 3D local resolution
estimation method. Spark-based optimized 3D local resolution estimation method can
quickly get the 3D local resolution map and evaluate the details of single particle analysis
reconstruction in cryo-EM and average reconstruction of subtomogram in cryo-ET.

Through the calculation of experimental data, Spark-based optimized 3D local resolu-
tion estimation method are faster than blocres method to gain 3D local resolution map,
but still lack some optional functions, such as filtering and mask etc. We plan to develop
more full-featured algorithms in the future. Integrating graphics processing unit (GPU)
into our current framework may further accelerate computation. Spark-based optimized
3D local resolution estimation method can be applied in cloud services and cluster envi-
ronments. When users are computing 3D local resolution in a cloud server or cluster with
multiple idle computing nodes, Spark-based optimized 3D local resolution estimation
method can make full use of these computing nodes to quickly calculate 3D local reso-
lution. Spark-based optimized 3D local resolution estimation method can also support
on-line fast calculation of 3D local resolution and avoid the user’s online waiting time. In
the future, we will optimize the scheduling algorithm, through analyzing the size of the
three-dimensional volume submitted by the user, and reasonably allocate the calculation
nodes, so as to quickly realize the calculation of the 3D local resolution.

Methods
In this section, we first introduce the resolution, the 3D FSC, the 3D local FSC and 3D
local resolution estimation method. Then, we describe two kinds of K-V format based
fine-grained 3D array partition algorithms for 3D local resolution evaluation. We use
Spark’s efficient K-V data batch processing platform to realize the distributed parallel
computing of 3D local FSC. This algorithm extends the multithreading of a single comput-
ing node to the distributed parallel computing in spark. Finally, we depict the algorithm
implementation and experimental datasets.

The resolution and 3D fourier shell correlation

Resolution in the electron density expresses a measure of electron density resolvability.
In cryo-EM, resolution is a comparison of frequency space correlation of two density
maps of the data divided into two halves. Resolution is typically measured by the spatial
frequency correlation function in cryo-EM.

The method of 3D FSC, initially proposed by Harauz and van Heel [5] in 1986, is fre-
quently applied as quantitative evaluation of the reconstruction volume resolution in
SPA and SA. The 3D FSC method mainly obeys the following process: two density maps
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of 3D volumes are reconstructed with one half data set in SPA or SA respectively, two
3D volumes are transformed from real space into Fourier space and form a series of
shells, and then the corresponding two series of shells in Fourier space are calculated
and gained normalization cross correlation coefficient. Hence, the 3D FSC effectively
evaluates the resolution of reconstruction density maps with the normalization cross cor-
relation coefficient between two series of shells, which are generated by 3D volumes in
Fourier space.

The 3D FSC [6] between the two density maps in Fourier space, F1 and F2, is represented
by

FSC1,2(s) =
∑

si∈s F1(si) · F2(si)�
√∑

si∈s |F1(si)|2 · ∑
si∈s |F2(si)|2

(1)

where si is corresponding a series of shells s in Fourier space, F(si) is complex structure
factor at radial frequency si in Fourier space,

∑
si∈s is summation over all Fourier space

voxels si in shell s. F(si)� denotes a conjugate complex of F(si).
The 3D FSC method extends the pristine two-dimensional Fourier Ring Correlation

(FRC) algorithm [4], and obtains density map of 3D FSC to evaluate the resolution of
reconstructed density map more visually and scientifically.

3D local fourier shell correlation and 3D local resolution map estimation

To better evaluate details of resolution of reconstructed density map from SPA in cryo-
EM and SA in cryo-ET, the 3D local resolution evaluation method based on 3D FSC has
been proposed in [6], which is implemented by 3D local FSC.

For given two half-maps (3D density maps), two small cube windows are used to tra-
verse their respective 3D density maps. Each time a small cube window accesses the 3D
density maps, the 3D density map of the corresponding region of the two small cube
windows are calculated to generate 3D FSC value, and then are converted to the cor-
responding resolution value by specified FSC threshold and voxel value. The resolution
value is filled into the corresponding center position of the small cube window in the new
3D volume, and the corresponding other position of the small cube window in the new
3D volume does not fill in the value, and then operate in turn until the small cube window
ends traversing the 3D density map. In the new resolution 3D, the corresponding center
position of traversing small cube window will be filled in the value in turn, so that the
new resolution 3D (the size and the 3D density map are the same) generate discrete reso-
lution values, and then 3D cube interpolation methods are used to interpolate coordinate
positions without values in turn. When the new resolution 3D volume is filled completely
with resolution values, this resolution 3D volume is called 3D local resolution map.

On the 3D local resolution map, the size of the accessed small cube window and the
step size of traversal are the pivotal factors affecting the 3D local resolution map. If the
size of the small cube window is too small, the calculation of smaller FSC threshold (e.g.
FSC = 0.143) cannot be performed for local resolution estimation. Similarly, if the size of
the small cube window is too large, 3D local resolution map will not be veritable. The step
size of traversal also influences the 3D local resolution map. The larger the step size of
the traversal, the fewer the 3D local resolution values to be calculated, which need to be
interpolated in the new 3D resolution volume map and cannot veritably reflect the res-
olution situation. The smaller the step size of the traversal, the more the calculated 3D
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local resolution values, and thus this is closer to the real 3D local resolution map, How-
ever, the amount of computation is too large. As a result, it is highly prudent to determine
the appropriate size of the small cube window and the step size of the traversal.

However, 3D local resolution evaluation method not only calculates 3D FSC in small
windows, but also considers global resolution calibrating the average value of all local
resolutions for accurate estimating local resolution. Hence, 3D local resolution evaluation
method is influenced by windows side length, step of the traversal, threshold of the FSC,
global resolution and so on.

Spark-based parallel calculation of 3D local FSC for estimation of 3D local resolution

To significantly reduce the time used for computing 3D local FSC, we propose a Spark-
based distributed 3D local resolution evaluation method with a parallel and distributed
computing architecture.

In our 3D local resolution evaluation algorithm, the K-V format based fine-grained 3D
array partition can facilitate the distributed parallel computing of 3D FSC, so as to obtain
the 3D local resolution map quickly. As discussed in Distributed computation frame-
works Section, Apache Spark has more advantages than MPI and MapReduce, processes
K-V data in memory, owns redundancy mechanism and fault tolerant mechanism, and is
suitable for high frequency data exchange and large iterative processing.

Based on Apache Spark distributed framework, we design two methods of fine-grained
3D array partition algorithms by K-V format in Spark. Two methods can calculate 3D local
FSC in parallel, so as to acquire 3D local resolution estimation map faster. This algorithm
can be applied not only to SA and SPA, but also to other 3D image operations.

The work flow for evaluation of 3D local resolution on Spark framework is shown in
Fig. 4. Our Spark-based parallel computing algorithm adopts the standalone cluster mode.
The cluster manager is the Master. The Master is responsible for allocating resources, the
Worker is responsible for monitoring the memory, CPU and other conditions of its own
node and reporting to the Master. The Master allocates resources to Workers and mon-
itors the resource status of the Workers at any time. Program Spark, package submitted
to the Driver side, constitutes a Driver. When Spark program runs, the Driver requires
resources from the Master. All tasks will be calculated in parallel by the Workers node
and the results will be returned to the Master by K-V format.

K-V format based basic fine-grained 3D array partition algorithm in Spark for parallel

calculating 3D local resolution

To get the 3D local resolution map faster, 3D array partition is a key factor. K-V for-
mat based fine-grained 3D array partition algorithm theoretically confirms the maximum
number of parallel execution of the algorithm. Therefore we design a K-V format based
basic 3D array partition algorithm for parallel calculating 3D local FSC and estimating 3D
local resolution map. The K-V format based basic 3D array partition algorithm in Spark
is as follows:

Step 1: Each voxel of 3D array (3D volume density map) is transformed quadruple block
(QB=(x,y,z,value)) in list.

Step 2: List containing quadruple block are transformed RDD.
Step 3: All data in RDD are added key in order to get correct partition, such as <key,

QB>.
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Fig. 4 Spark-based parallel calculating 3D local FSC for 3D local resolution estimation work flow. The green
arrow indicates the normal transmission and distribution of data. The red arrow indicates that the Worker
node cannot connect to the Master node. The gray dotted arrow indicates that the tasks originally assigned
to the crash node are reassigned to other Worker nodes

Step 4: Two RDDs are run two times operation of mapPartition and partionBy for
getting the max parallel number.

Step 5: Two RDDs which should have the same number of partitions and the same
number of elements in each partition, are zipped as new RDD.

Step 6: Data in each partition are transformed two 3D array, which is calculated for 3D
local FSC and 3D local resolution.

Step 7: The FSC calculation results of each pair of 3D sub-volumes are filled into cor-
responding coordinates of the new volume, and the coordinates without filling values in
the new volume is interpolated by cubic interpolation algorithm.

Here, since data in RDD is K-V pair format, in which condition all data can realize par-
tition, 3D volume density map (3D array) must be transformed into a list of K-V format.
In order to gain K-V format, all voxels in 3D volume density map must be transformed
quadruple block, such as (x,y,z,v), where x, y, z is coordinate of the voxel, v is value of
voxel. Then all voxels become quadruple block in list.

We show the K-V format based basic 3D array partition work flow for 3D local reso-
lution estimation in Fig. 5. Our K-V format based basic 3D array partition algorithm in
Spark requires that all values of the 3D array participate in each RDD operation, so these
consume a large amount of memory space.

The details of the K-V format based basic fine-grained 3D array partition algorithm in
Spark are shown in Fig. 6. Values of 3D array (voxels) transforming into quadruple block
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Fig. 5 The workflow of K-V format based basic fine-grained 3D array partition algorithm in Spark for 3D local
resolution estimation. Two 3D density maps are transformed RDD in Spark. K-V data in RDD are shuffled and
transferred, data in each partition are transformed 3D array, which is calculated for 3D local resolution using
3D FSC. A resolution map is filled into and interpolated with calculation results according to corresponding
coordinate

are a pivotal part of 3D array partition. When 3D array becomes a list of quadruple block,
the 3D array partition algorithm can exploit key and quadruple block (e.g. <key, value>
pair) to operate data shuffle and partition. Finally data in each partition is converted into
3D arrays again to realize 3D array partition. In each pair 3D array, the FSC value and local
resolution value are calculated, and the local resolution value is filled into corresponding
coordinates of 3D local resolution map.

K-V format based optimized fine-grained 3D array partition algorithm in Spark for parallel

calculating 3D local resolution

Although the K-V format based basic fine-grained 3D array partition algorithm can
achieve maximum parallelization in Spark, it incurs plenty of data shuffle and trans-
fer. So the K-V format based basic fine-grained 3D array partition algorithm results in
data redundancy and consumes a large memory space in each computing node (Fig. 7).
Those actions lower parallel performance in Spark. So we conceive a K-V format based
optimized fine-grained 3D array partition algorithm in Spark for calculating 3D local res-
olution. The K-V format based optimized fine-grained 3D array partition algorithm can
reduce data redundancy and shuffle in Spark.

First, the K-V format based optimized fine-grained 3D array partition algorithm in
Spark reads two density map into memory; second, it gains all start coordinates of win-
dow traversing density map, and transforms K-V pair in a list; third, it transforms the
list into RDD, and partition RDD; fourth, for each partition, it acquires 3D sub-array pair
from 3D array, and calculates FSC and resolution with two sub-array.

From the Algorithm 1, the optimized fine-grained 3D array partition method is more
concise than the basic fine-grained 3D array partition method in K-V format of Spark. The
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Fig. 6 The K-V format based basic 3D array partition algorithm for 3D local resolution estimation in Spark. QB
stand for quadruple block, QB=(x,y,z,v), where x, y, z is coordinate, v is voxel value. In the figure, n is volume
side length, 0, c, d, k are partition number, and 0≤ c ≤ d ≤ k, k is the largest partition number. 3D array
partition are realized by K-V data shuffle and transformation in Spark. Each 3D array pair are calculated for 3D
local resolution estimation

K-V format optimized fine-grained 3D array partition method in Spark doesn’t transform
values of 3D array into RDD. Each RDD only contains start coordinates of partition array
relative to original 3D array.

Fig. 7 For 3D local resolution evaluation, the memory size of K-V format based basic and optimized
fine-grained 3D array partition algorithm in spark
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Algorithm 1 The K-V format based Optimized fine-grained 3D array partition algorithm
in Spark for parallel calculation 3D local resolution

Input:
V1 =[ aijk] , 1 ≤ i, j, k ≤ n → The input half density map1
V2 =[ aijk] , 1 ≤ i, j, k ≤ n → The input half density map2
size → windows side length
inc → step size

Output:
R =[ aijk] , 1 ≤ i, j, k ≤ n → The output resolution map

pid = 0
for z = 0, z < n − size, inc do

for y = 0, y < n − size, inc do
for x = 0, x < n − size, inc do

L1 = (pid, (x, y, z))
pid + +

end for
end for

end for
RDD ← L1
partition RDD
for i, j, k ∈ RDD do

v1, v2 ← cut 3D sub array pair from V1, V2
R ← calculate FSC and resolution of v1 and v2 for each partition

end for
R ← interpolation

The details of the K-V format based optimized fine-grained 3D array partition algo-
rithm in Spark are shown in Fig. 8. The total operation of the K-V format based optimized
fine-grained 3D array partition algorithm is much less than that of the K-V format based
basic fine-grained 3D array partition algorithm, and each RDD does not include the coor-
dinate and values of 3D array. The two 3D arrays are cut for gaining 3D sub-array in the
final operation.

The K-V format based optimized fine-grained 3D array partition algorithm in Spark
highlights mainly as follows:

• Reduce total memory space
• Lessen data shuffle and transfer
• Enlarge parallel number
Relative to the K-V format based basic fine-grained 3D array partition algorithm in

Spark, the K-V format based optimized fine-grained 3D array partition algorithm does not
require many operations of data shuffle, reduces data redundancy and only needs limited
memory in Spark. Hence it calculates all the tasks quickly. So we choose the K-V format
based optimized fine-grained 3D array partition algorithm in Spark as the Spark-based
optimized 3D local resolution estimation algorithm.
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Fig. 8 The K-V format based optimized fine-grained 3D array partition algorithm in Spark for 3D local
resolution estimation. TB stand for triple block, TB=(x,y,z), where x, y, z is start coordinate of window
traversing density map. 0, c, d, k are partition number, and 0 ≤ c ≤ d ≤k, k is the largest partition number. List
of sequence numbering and start coordinates of window traversing are transformed into RDD. 3D sub-array
pair are acquired by cutting 3D array using each partition data and side length of window, and calculated for
gaining 3D local FSC and resolution

Implementation

In this paper, the 3D local resolution evaluation based on fine-grained 3D array partition
method with K-V format of Spark has been implemented in Python and C++ language,
and referred to PyTom [28] in part. The input parameters of 3D local resolution evalua-
tion algorithm based on K-V fine-grained 3D array partition in Spark mainly include two
half-maps, windows side length, step size, FSC threshold, and global resolution. To fur-
ther reduce the computing time, a mask and no-zeros edge length can be specified, which
are optional. The global resolution value is order to calibrate the average value of all local
resolution on underestimating resolution. The output is a 3D local resolution map. The
3D local resolution map can be colored with final reconstruction density map to visualize
representation of reconstruction density map, where subtle change of local detail of den-
sity map can be inspected during homogeneity or heterogeneity complex reconstruction.
The color tool used is Chimera [29].

Our Spark-based optimized 3D local resolution estimation code can be executed in
a distributed cluster containing eight compute nodes. Configurations of each compute
node include, two 1.70GHz Intel Xeon Bronze 3104 CPUs with 12 physical cores, one
Gigabi ethernet card and 30GB Random Access Memory (RAM).

Deployment of Spark cluster adopt stand alone mode comprising a Master node and 4
or 8 Worker nodes. Master node mainly assigns application to Work node and maintains
the status of Worker node, Driver and application. Worker nodes mainly execute tasks
assigned by Master node. Our code is implemented in Spark 2.0 and Python 2.7.14.

Experimental datasets

The two experimental density maps were acquired from the Electron Microscopy Data
Bank (EMDB) to calculate 3D local resolution respectively.

The first experimental density map is the structure of human transcription factor IIH
(EMDB: EMD-3802) [26], which have two half maps (single particle analysis map from
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independently aligned half dataset 1 and 2), the resolution is 4.4Å, FSC threshold is 0.143,
the number of grid points is 256 × 256 × 256, the voxel size is 1.32 × 1.32 × 1.32Å.

The second experimental density map is the structure of SA of Sar1-Sec23-Sec24
(EMDB: EMD-0044) [27], which have two half maps (average map from independently
aligned half dataset 1 and 2), the resolution is 4.9Å, FSC threshold is 0.143, the number of
grid points is 224 × 224 × 224, the voxel size is 1.33 × 1.33 × 1.33Å.
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