
RESEARCH Open Access

EnClaSC: a novel ensemble approach for
accurate and robust cell-type classification
of single-cell transcriptomes
Xiaoyang Chen, Shengquan Chen and Rui Jiang*

From The 18th Asia Pacific Bioinformatics Conference
Seoul, Korea. 18-20 August 2020

* Correspondence: ruijiang@
tsinghua.edu.cn
MOE Key Laboratory of
Bioinformatics, Bioinformatics
Division and Center for Synthetic
and Systems Biology, Beijing
National Research Center for
Information Science and
Technology, Department of
Automation, Tsinghua University,
Beijing 100084, China

Abstract

Background: In recent years, the rapid development of single-cell RNA-sequencing
(scRNA-seq) techniques enables the quantitative characterization of cell types at a
single-cell resolution. With the explosive growth of the number of cells profiled in
individual scRNA-seq experiments, there is a demand for novel computational
methods for classifying newly-generated scRNA-seq data onto annotated labels.
Although several methods have recently been proposed for the cell-type
classification of single-cell transcriptomic data, such limitations as inadequate
accuracy, inferior robustness, and low stability greatly limit their wide applications.

Results: We propose a novel ensemble approach, named EnClaSC, for accurate and
robust cell-type classification of single-cell transcriptomic data. Through
comprehensive validation experiments, we demonstrate that EnClaSC can not only
be applied to the self-projection within a specific dataset and the cell-type
classification across different datasets, but also scale up well to various data
dimensionality and different data sparsity. We further illustrate the ability of EnClaSC
to effectively make cross-species classification, which may shed light on the studies
in correlation of different species. EnClaSC is freely available at https://github.com/xy-
chen16/EnClaSC.

Conclusions: EnClaSC enables highly accurate and robust cell-type classification of
single-cell transcriptomic data via an ensemble learning method. We expect to see
wide applications of our method to not only transcriptome studies, but also the
classification of more general data.

Keywords: Single-cell, scRNA-seq, Cell types, Classification, Feature selection, Few-
sample classes, Neural networks

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to
the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The
images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise
in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain
Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless
otherwise stated in a credit line to the data.

Chen et al. BMC Bioinformatics 2020, 21(Suppl 13):392
https://doi.org/10.1186/s12859-020-03679-z

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-020-03679-z&domain=pdf
mailto:ruijiang@tsinghua.edu.cn
mailto:ruijiang@tsinghua.edu.cn
https://github.com/xy-chen16/EnClaSC
https://github.com/xy-chen16/EnClaSC
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Background
Recent advances in single-cell RNA-sequencing (scRNA-seq) techniques make it pos-

sible to reveal previously unknown heterogeneity and functional diversity at a micro-

scopic resolution [1–3]. The exponential growth of the number of cells profiled in

individual scRNA-seq experiments has shed light on the studies aiming to identify new

cell types [4, 5], reveal regulatory mechanisms [6, 7], assess tissue composition [1, 8, 9],

investigate cell development and lineage processes [10–12], and many others. Cur-

rently, most of the analysis methods for scRNA-seq data are commenced with unsuper-

vised clustering, which highly relies on the investigator’s background knowledge about

the signature molecules, and is not efficient and accurate enough for the cell-type as-

signment of clusters [13]. Therefore, there is a demand for novel computational

methods for classifying newly-generated scRNA-seq data onto annotated labels.

A variety of methods have recently been proposed for the cell-type classification of

single-cell transcriptomes. For example, an unsupervised approach, named scmap [14],

projects cells to the identified cell-types based on the similarity between query and refer-

ence cells. Conventional supervised learning-based methods, such as Random Forest and

Support Vector Machine, though can be used for the cell-type classification, have been

proven that their performance is not comparable to scmap. SuperCT, a supervised neural

network framework, characterizes cell types of single-cell transcriptomic profiles with

transformed binary features [13]. Nevertheless, there are still several limitations to be ad-

dressed in the proposed methods for the cell-type classification of single-cell transcrip-

tomes. First, even the state-of-the-art methods have achieved encouraging performance,

the classification performance and stability can still be further improved for various data-

sets and tasks as shown in the Results Section. Second, to select informative features of

the query and reference datasets, there is a demand for a tailored feature selection ap-

proach for the cell-type classification. Third, both the query and reference datasets may

contain cell types that have only a small number of samples. A superior classification

method should be able to effectively characterize the cell types with only a small number

of samples. Last but equally important, a method that can be generally applied to data of

various dimensions or dropout rates is desirable for the broader application scenarios.

Motivated by the above understanding, we propose in this paper EnClaSC, a novel

ensemble approach for accurate and robust cell-type classification of single-cell tran-

scriptomes. Through comprehensive experiments, we illustrate that our method is su-

perior to existing methods in not only the self-projection within a specific dataset, but

also the cell-type classification across datasets. With a few-sample learning strategy,

EnClaSC can effectively characterize the cell types that have only a small number of

samples. We further show the robustness of our method for various data dimensional-

ity and different data sparsity. Through joint analysis of classification results with

scRNA-seq datasets of different species, we demonstrate the ability of our method to

make the cross-species cell-type classification.

Methods
Design of EnClaSC

As illustrated in Fig. 1, EnClaSC consists of four modules. First, a feature selection

module finds informative genes which benefit the cell-type classification from the
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common genes of the query and reference sets. Second, a few-sample learning module

is adopted to sufficiently learn the characteristics of classes with few samples, and thus

improve the performance in identifying the few-sample classes. Third, a neural network

module uses artificial neural networks with an ensemble learning strategy to stabilize

the performance of the cell-type classification. Finally, a joint prediction module inte-

grates outputs of the few-sample learning and neural network modules to predict the

class that a query cell belongs to. In general, EnClaSC draws on the idea of ensemble

learning in the feature selection, few-sample learning, neural network and joint predic-

tion modules, respectively, and thus constitutes a novel ensemble approach for cell-

type classification of single-cell transcriptomes.

Feature selection

Let E be the value of gene expression in scRNA-seq, n the number of the cells in the

dataset. The dropout rate of the j th feature is abbreviated as Dj. For the i th cell (sam-

ple), the expression of the j th feature (gene) of is abbreviated as Eij. For the j th feature,

the level of gene expression F(j) is calculated by the logarithm-plus-one of its arithmetic

mean value as

F jð Þ ¼ log

Pn
i¼1Eij

n
þ 1

� �

For the estimation of gene expression, we first use the dropout rate to fit a linear

model using the least square method

~F1 jð Þ ¼ aDj þ b

We then estimate F(j) by the mean of the logarithm-plus-one of each feature, namely,

~F2 jð Þ ¼
Pn

i¼1 log Eij þ 1
� �

n

Fig. 1 The graphical illustration of EnClaSC. EnClaSC consists of four modules, including feature selection,
few-sample learning, neural network and joint prediction modules
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The residuals of these two approaches between the true gene expression level are re-

corded as ΔF1(j) and ΔF2(j), respectively. Briefly, ΔF1ð jÞ ¼ Fð jÞ − ~F1ð jÞ , and ΔF2ð jÞ
¼ Fð jÞ − ~F2ð jÞ. ΔF1(j) reflects the rate of gene expression, that is, whether the gene can

be expressed or not. ΔF2(j) is the information entropy of each gene, which reflects the

residual degree of each gene expression. We can use the integrated score G(j) =

αΔF1(j) + (1 − α)ΔF2(j) to consider the above two factors synthetically. Here, α is the

control coefficient, which is responsible for regulating the influence of the two calcu-

lated factors. We set α to 0.5 in all the experiments of this work.

For a specific scRNA-seq dataset, we compute G(j) as the scores of features, and then

sort the features according to the scores in descending order. We extract K sorted

high-score features shared among the training and test sets. This feature selection ap-

proach can effectively maximize the common high-score features of different scRNA-

seq datasets, and thus contribute to the cell-type classification across datasets.

Few-sample learning strategy

We define few-sample classes as the cell types whose number of samples does not ex-

ceed 0.5% of the total number of training samples. In order to fully extract features of

the few-sample classes, we perform data augmentation and pre-train a few-sample clas-

sification model using samples of the few-sample classes in the training set. In more de-

tailed, let N be the number of samples in the training set, n the number of samples of

the few-sample classes in the training set, M the number of samples in the test set, and

D the number of features after feature selection. We pair the samples of these few-

sample classes one by one to form a few-sample training set with n × n samples and

2 ×D features. If the two cells of a paired sample belong to the same cell type, we mark

the label of the paired sample as 1; otherwise, we mark it as 0. We then pair the sam-

ples of the few-sample classes in the original training set with each sample in the ori-

ginal test set to form a few-sample test set with n ×M samples and 2 ×D features.

We adopt LightGBM, a gradient boosting framework that uses tree-based learning al-

gorithms, to perform the few-sample training [15]. We use the default setting of param-

eters except for the parameters listed in Table 1. To obtain the probability scores that

an original test sample belongs to the few-sample classes, we weight the prediction re-

sults of the few-sample test set by the Pearson correlation coefficients between the ex-

pression values of the two cells in corresponding few-sample test samples drawing on

the idea of ensemble learning, namely,

score x; ið Þ ¼
PNx

j¼1rijcij
PNx

j¼1rij

Table 1 Parameters of the LightGBM model

Parameters Setting

boosting_type ‘gbdt’

objective ‘regression’

metric {‘l2’, ‘auc’}

learning_rate 0.05

verbose 1
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where x is one of the classes in the original training set, Nx the number of samples of

class x in the original training set, j the j th sample of class x in the original training

set, i the i th sample in the original test set, and rij the Pearson correlation coefficients

between i and j, cij the prediction result of LightGBM for the paired sample of i and j.

If the predicted maximum score of an original test sample is greater than γ, then we

assign the sample as the class that has the maximum score, otherwise, the sample is

predicted as “unassigned” and should be further classified using the subsequent artifi-

cial neural networks.

Artificial neural networks for the cell-type classification

The neural network module uses artificial neural networks with ensemble learning

strategy to classify the test samples which are predicted as “unassigned” by the few-

sample learning module. We first design an artificial neural network framework with

parameters as shown in Table 2, and implement it using Keras with Tensorflow as the

backend. In order to improve the stability of the classification performance, drawing on

the Bootstrap strategy, we generate 10 new training sets by selecting 30% of the original

training set at random with replacement, and then use them to train 10 neural net-

works, respectively. For each trained neural network, if the predicted maximum score

of a test sample exceeds γ, the sample is assigned as the class that has the maximum

score, otherwise, it is classified as “unassigned”. We set γ to 0.7 in all the experiments

of this work. For each test sample, we classify it as “unassigned” unless there are more

than half of the 10 neural networks predict the test sample as a specific same class, and

we thus classify the sample based on the voting result of the 10 neural networks.

Assessment of performance

We adopt the widely used kappa value and assigned rate value to assess the classifica-

tion performance of the models. Briefly, we calculate the kappa values of the classifica-

tion results of assigned samples and the real classes of corresponding samples using the

following formula

kappa ¼ po − pe
1 − pe

where p0 is the sum of the number of samples correctly classified divided by the num-

ber of assigned samples in the test set, that is, the overall classification accuracy of

assigned samples in the test set. Assuming that the number of real samples which are

assigned by the model in each class of test set is a1, a2…ac respectively, the number of

Table 2 The architecture of the neural network

Layers Setting

Dense_1 {(feature numbers,128), ‘relu’}

Dropout_1 0.25

Dense_2 {(128,64), ‘relu’}

Dropout_2 0.5

Dense_3 {(64,32), ‘relu’}

Dense_4 {(32, number of classes in training sets), ‘softmax’}
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predicted samples in each class of the test set is b1, b2…bC respectively, and the number

of assigned samples in the test set is n. We have

pe ¼
a1 � b1 þ a2 � b2 þ…þ aC � bC

n� n

For the assessment of the ability of a model to recognize the cells in the test set, we

assume that the number of samples in the test set is N and use assigned rate to repre-

sent the proportion of the number of samples that can be assigned to a cell type by the

classifier, namely,

assigned rate ¼ b1 þ b2 þ…þ bC
N

Because the classes of test sets and training sets may not be completely consistent,

the assigned rate should be maintained at a relatively high level, but not the higher the

better, and thus the classification performance is primarily related to kappa values.

Data collection

We downloaded three humans pancreatic scRNA-seq dataset provided by Baron, M.

et al., Muraro, MJ et al., and Xin, Y. et al. (hereinafter are abbreviated as Baron Dataset,

Muraro Dataset, and Xin Dataset, respectively) from NCBI Gene Expression Omnibus

via accession GSE84133, GSE85241, and GSE81608, respectively [16–18]. The human

pancreatic scRNA-seq dataset provided by Segerstolpe, Å. et al. (hereinafter is abbrevi-

ated as Segerstolpe Dataset) was downloaded from EMBL-EBI ArrayExpress via acces-

sion E-MTAB-5061 [5]. For the subsequent usability of the dataset, we removed the

cells of the “unclear” class in Muraro Dataset, the cells of the “not applicable”, “unclas-

sified endocrine” and “unclassified” classes in Segerstolpe Dataset and the cells of the

“alpha.contaminated”, “beta.contaminated”, “delta.contaminated”, and “gamma.contami-

nated” classes in Xin Dataset. After preprocessing, Baron Dataset contains 8569 sam-

ples with 20, 125 features, Muraro Dataset contains 2122 samples with 19, 127 features,

Xin Dataset contains 1492 samples with 39, 851 features, and Segerstolpe Dataset con-

tains 2166 samples with 25, 525 features.

We also downloaded two mouse retina scRNA-seq datasets provided by Macosko, EZ

et al. and Shekhar, K. et al., (hereinafter are abbreviated as Macosko Dataset and She-

khar Dataset, respectively) from NCBI Gene Expression Omnibus via accession

GSE63473 and GSE81904 [2, 19]. Macosko Dataset measures the expression of 23, 288

genes in 44, 808 cells, while Shekhar Dataset measures the expression of 13, 166 genes

in 27, 499 cells.

Two mouse brain cell scRNA-seq datasets provided by Romanov, RA et al. and

Zeisel, A. et al. (hereinafter are abbreviated as Romanov Dataset and Zeisel Dataset, re-

spectively) and one human brain cell scRNA-seq dataset collected by Darmanis, S. et al.

(hereinafter is abbreviated as Darmanis Dataset) were downloaded from the NCBI Gene

Expression Omnibus via accession GSE74672, GSE60361 and GSE67835, respectively

[9, 20, 21]. To unify the label information, we replaced the cell type label ‘oligos’ in the

Remanov Dataset with ‘oligodendrocytes’, and the cell type labels ‘ca1pyramidal’, ‘s1pyr-

amidal’ and ‘interneurons’ in the Zeisel Dataset with ‘neurons’. After preprocessing,

Romanov Dataset contains 2881 samples with 24, 341 features, Zeisel Dataset contains
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3005 samples with 19, 972 features, and Darmanis Dataset contains 466 samples with

22, 088 features.

Results
EnClaSC achieves high performance for self-projection within a dataset

In order to illustrate that our method can effectively perform self-projection within a

scRNA-seq dataset, we conducted a series of self-projection experiments using 6 datasets,

including Baron Dataset, Muraro Dataset, Xin Dataset, Segerstolpe Dataset, Macosko

Dataset and Shekhar Dataset. We compared the performance of our method with scmap,

a similarity-based method, and SuperCT, an ANN-based method (we self-implemented

the method according to the paper because SuperCT is not open source) [13, 14]. Using

the same training (reference) and test (query) sets with EnClaSC, we run the two baseline

methods with parameters or structures proposed by the respective authors.

Both EnClaSC and scmap provide a feature selection method, while SuperCT uses all

features. When running EnClaSC and scmap, we selected 100 features, which is consid-

ered to be able to better demonstrate the advantages of scmap in their paper. We per-

formed 5-fold cross-validation within each of the six datasets. As shown in Fig. 2,

EnClaSC model has better self-projection performance than SuperCT and scmap. At

the same time, in terms of self-projection stability, EnClaSC is significantly superior to

SuperCT. The variance of the kappa value of EnClaSC is 71.09% lower than SuperCT,

and the variance of the assigned rate of EnClaSC is 68.03% lower than SuperCT.

EnClaSC outperforms other methods in the cell-type classification across datasets

We use six scRNA-seq datasets to demonstrate the superior cell-type classification

performance of EnClaSC. Using Baron Dataset, Muraro Dataset, Xin Dataset, and

Segerstolpe Dataset these four human pancreatic datasets, we selected each one of

them as the test set, while the integration of remaining three datasets serves as the

training set, respectively. In addition, we used two mouse retina datasets, namely,

Macosko Dataset and Shekhar Dataset, to form two symmetric training-test sets. We

used 100 selected features in EnClaSC and scmap, while all features in SuperCT, and

repeated each experiment five times.

Fig. 2 Performance comparison of the self-projection within a specific dataset
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As shown in Fig. 3, the kappa value of EnClaSC is higher than that of scmap given

comparable assigned rates, except for the group where Macosko Dataset serve as the

test set and scmap achieves much lower assigned rates. Compared with SuperCT,

which also uses a neural network architecture, assigned rates of EnClaSC has little dif-

ference except for Baron Dataset as the test set, while most kappa values of EnClaSC

outperform SuperCT. When Baron Dataset serves as the test set, the assigned rates of

SuperCT is much lower than that of scmap and EnClaSC. In addition, it can be seen

from the figure that the classification performance of EnClaSC is much more stable

than that of SuperCT. Therefore, even though EnClaSC only uses 100 features, the clas-

sification performance of EnClaSC is still far better than that of SuperCT. In general,

EnClaSC has a more outstanding performance in cell-type classification compared with

other two base-line methods.

Contribution of each module

Feature selection module

We validated the contribution of the feature selection module using the four human

pancreatic datasets including Baron Dataset, Muraro Dataset, Xin Dataset and Seger-

stolpe Dataset, and two mouse retina datasets including Macosko Dataset and Shekhar

Dataset. We performed six experiments as the above section. We first took each one of

the four human pancreas datasets as a test set and integrated the remaining three data-

sets as a training set. Then we took each one of the two mouse retina datasets as a test

set, and the remaining one was served as a training set. We replaced the feature selec-

tion method of our feature selection module with PCA, which is commonly used for

scRNA-seq dimensionality reduction, feature selection methods of Seurat v3.0 and that

of scmap, and compared them with our original method [22].

The results are shown in Fig. 4. Compared to PCA, our feature selection method is

more stable. The kappa and the assigned rate of EnClaSC is much better than the

EnClaSC framework using the feature selection method of Seurat v3.0 (the average of

kappa values of EnClaSC is 69.65% higher than Seurat v3.0, and the average of assigned

rates is 3.95% higher than Seurat v3.0). EnClaSC has slightly higher kappa values with

comparable assigned rates compared with the EnClaSC framework using the feature

Fig. 3 Performance comparison of the cell-type classification across different datasets
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selection method of scmap. In summary, the feature selection module of EnClaSC is su-

perior to other widely used feature selection approaches in the EnClaSC framework,

and thus serves as the effective feature selection approach for the cell-type

classification.

Neural network module

We validated the contribution of the neural network module using the four human

pancreatic datasets and the two mouse retina datasets, and we again performed six ex-

periments as the “Feature selection module” section. We replaced the neural networks

in EnClaSC with a single neural network that does not use the ensemble learning strat-

egy. We compared the performance of the above approach with that of our complete

model, and show the results in Fig. 5. With 64.14% reduced variance of kappa and

71.97% reduced variance of assigned rate on average, the main contribution of ensem-

ble learning strategy with several neural networks is significantly improving the stability

of classification performance. Besides, on most datasets, the ensemble learning strategy

slightly improves the classification performance.

Fig. 4 Performance of EnClaSC using different feature selection strategy

Fig. 5 Performance of EnClaSC with or without ensemble learning in the neural network module
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Few-sample learning module

To demonstrate the contribution of the few-sample learning module, we compare the

performance of EnClaSC with or without the few-sample learning module. We first

used Shekhar Dataset as the training set, Macosko Dataset as the test set to evaluate

the contribution of the few-sample learning module. This training-test set has a very

distinct characteristic compared to other sets we have used, because there are massive

samples of few-sample classes of the training set in the test set, which makes the classi-

fication task much more challenging. According to the definition in the Methods Sec-

tion, we consider “rods” and “cones” as the few-sample classes in the training set.

These two cell types account for 0.34 and 0.18% respectively in the training set, and ac-

count for 65.61 and 4.17% respectively in the test set.

As shown in Fig. 6a and b, EnClaSC with the few-sample learning module can iden-

tify 66.34% samples in the test set with the classification accuracy rate of 95.92%. How-

ever, the classification accuracy rate of EnClaSC without the few-sample learning

module is only 87.33%. As shown in Fig. 6a and b, the number of incorrectly classified

samples of the “rods” class is less than without the few-sample classification model, and

the samples of the “cones” class in the test set are all classified incorrectly.

We also evaluated the contribution of the few-sample learning module using training

and test sets whose cell types have similar sample distributions. We integrated Baron

Dataset, Muraro Dataset, and Xin Dataset as the training set, and used Segerstolpe Data-

set as the test set, and Segerstolpe Dataset, Muraro Dataset and Xin Dataset as training

sets, Baron Dataset as the test set to form two training-test sets for the experiment.

As shown in Fig. 6c-f, the training of few-sample classes in the neural network is in-

sufficient with limited samples, resulting in the worse classification performance, while

the few-sample learning module can effectively characterize the few-sample classes, and

thus improve the classification performance.

In addition, we found that in the Segerstolpe Dataset, which contains “MHC class II”

cell type but not ‘macrophage’ cell type. In the case that Baron Dataset or Segerstolpe

Dataset serves as the test set, the few-sample learning module can associate the ‘macro-

phage’ class with the “MHC class II” class as shown in Fig. 6c-f. The data showed that

“MHC class II” is a protein that is mainly secreted by the macrophage cell, indicating that

the few-sample learning module possesses the potential ability to recognize new cell types

and assign them to relative cell types. In summary, the few-sample learning module en-

dows EnClaSC the ability to effectively resolve few-sample classes of the training set, while

providing the potential ability to correlate new cell types with known relative cell types.

EnClaSC scales up well with various data dimensionality

To illustrate the robustness of our method for various data dimensionality, we se-

lected different numbers of features among the four human pancreatic datasets in-

cluding Muraro Dataset, Baron Dataset, Segerstolpe Dataset, and Xin Dataset. We

took each one of the four human pancreas datasets as a test set and integrated the

remaining three datasets as a training set, and repeated each experiment five times.

In order to illustrate the superior data-dimension adaptability of our method, we

selected 100, 300, 500, 700 and 900 as the feature numbers of our method and

scmap. It is worth noting that instead of designing a feature selection module,
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SuperCT directly binarizes all features, and thus uses all features in these

experiments.

As shown in Fig. 7, the performance of EnClaSC slightly improves with the in-

crease of data dimensionality. When the data dimensionality is 300, the kappa

value of scmap rises to the peak and remains basically unchanged, while the

assigned rates of scmap drops dramatically with the increase of data dimensionality.

At the same time, we can see that when the data dimensionality reaches 500 or

becomes higher, the kappa values and the assigned rate of EnClaSC are consist-

ently higher than that of scmap and SuperCT. In summary, EnClaSC scales up well

with various data dimensionality, and the higher the data dimensionality, the better

the performance of EnClaSC.

EnClaSC scales up well with different data sparsity

Considering that scRNA-seq data suffer from the dropout phenomenon, we further

demonstrated that our method can scale up well with different data sparsity using the

four human pancreatic datasets to perform four experiments. We randomly set 0, 10,

20, 30, 40, and 50% of the non-zero elements in the raw expression matrix, and re-

peated each experiment five times. As illustrated in Fig. 8, EnClaSC is much more

Fig. 6 Performance of EnClaSC with or without the few-sample learning module. a The results of EnClaSC
with few-sample learning module on Macosko Dataset. b The results of EnClaSC without few-sample
learning module on Macosko Dataset. c The results of EnClaSC with few-sample learning module on
Segerstolpe Dataset. d The results of EnClaSC without few-sample learning module on Segerstolpe Dataset.
e The results of EnClaSC with few-sample learning module on Baron Dataset. f The results of EnClaSC
without few-sample learning module on Baron Dataset
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robust to the dropout rate compared with other two methods. The kappa values hardly

change with the increasing of the dropout rate, even though the assigned rate decrease

slightly. Nevertheless, the performance of scmap becomes worse because the randomly

zeroing of the feature matrix could cause significant changes in cell-to-cell similarity.

The performance of SuperCT fluctuates irregularly with the increasing dropout rate. In

Fig. 7 Performance comparison on datasets of various dimensionality. a-d The performance on Muraro
Dataset, Baron Dataset, Segerstolpe Dataset and Xin Dataset, respectively
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some cases, the kappa value may decrease, which indicating that the increasing dropout

rate could cause further deterioration of the stability of SuperCT. The results demon-

strate that EnClaSC can account for the sparsity of single-cell gene expression data,

and thus benefits the cell-type classification tasks with the exponential growth of the

Drop-seq based scRNA-seq data.

Fig. 8 Performance comparison on datasets of different sparsity. a-d The performance on Muraro Dataset,
Baron Dataset, Segerstolpe Dataset and Xin Dataset, respectively
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EnClaSC enables cross-species classification

To illustrate that EnClaSC can effectively make cross-species classification, we used

datasets of mouse brain cells provided by Romanov, R. A. et al. (Romanov Dataset for

short) and Zeisel, A. et al. (Zeisel Dataset for short) as the training set, and a dataset of

human brain cells provided by Darmanis, S. et al. (Darmanis Dataset for short) as the

test set for the cross-species classification. Because there are only 466 samples on Dar-

manis Dataset, we did not use the Darmanis Dataset as the training set. As shown in

Fig. 9, our method not only achieves the highest assigned rate (37.83% higher than

scmap, and 2.54% higher than SuperCT), but also has the highest kappa (79.13% higher

than scmap and 80.06% higher than SuperCT) in this cross-species classification task.

Similarly, using our feature selection module in EnClaSC also provides the high-

est kappa value (211.60% higher than PCA, 11.89% higher than Seurat v3.0, and 4.94%

higher than scmap), and assigned rates (0.51% higher than PCA, 2.84% higher than Seu-

rat v3.0, and 2.46% higher than scmap). The results demonstrate that EnClaSC has su-

perior classification performance both in the classification of homologous cells of the

same species and in the classification of homologous cells of different species.

Discussion
scRNA-Seq techniques have advanced rapidly in recent years and enable the quantita-

tive characterization of cell types at a single-cell resolution. EnClaSC is proposed to

classify cell types using supervised learning. With the contribution of the tailored fea-

ture selection, neural network and few-sample learning modules, our method is super-

ior to other baseline methods, such as scmap and SuperCT, with regard to not only

accuracy and robustness, but also the performance of classifying few-sample classes.

Our method can certainly be improved in some aspects. First, a more well-crafted

module, such as modules considering dropout evens, can be introduced to better

characterize the scRNA-seq data, and thus further improves the performance of our

method. Second, our method can be extended to incorporate other types of functional

genomics data such as chromatin accessibility [23, 24]. Finally, drawing on the idea of

VPAC, we can integrate the feature selection module with other modules to endow the

method with the ability to balance the feature selection and prediction steps, and thus

extract features that are more conducive to the cell type classification [25].

Fig. 9 Performance comparison of cross-species classification
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Conclusions
We have proposed a supervised learning method, named EnClaSC, for accurate and ro-

bust cell-type classification of single-cell transcriptomes. Each of the well-crafted fea-

ture selection, neural network and few-sample learning modules draws on the idea of

ensemble learning, which makes EnClaSC superior to existing methods in the self-

projection within a specific scRNA-seq dataset, the cell-type classification across differ-

ent scRNA-seq datasets, various data dimensionality, and different data sparsity. We

have further demonstrated the ability of EnClaSC to effectively make cross-species clas-

sification, which may shed light on the studies in the correlation of different species.

Eventually, we expect that such a supervised learning approach will be widely applicable

for the cell-type classification with the explosive growth of scRNA-seq data.
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scRNA-seq: single-cell RNA-sequencing; ANN: Artificial neural network; PCA: Principal component analysis

Acknowledgements
Rui Jiang is a RONG professor at the Institute for Data Science, Tsinghua University.

About this supplement
This article has been published as part of BMC Bioinformatics Volume 21 Supplement 13, 2020: Selected articles from the
18th Asia Pacific Bioinformatics Conference (APBC 2020): bioinformatics. The full contents of the supplement are available
online at https://bmcbioinformatics.biomedcentral.com/articles/supplements/volume-21-supplement-13 .

Authors’ contributions
RJ designed the research. XC and SC designed and implemented the models. XC collected data and analyzed the
results. XC, SC and RJ wrote the manuscript. All authors read and confirmed the manuscript.

Funding
Publication costs are funded by the National Key Research and Development Program of China (No. 2018YFC0910404),
the National Natural Science Foundation of China (Nos. 61873141, 61721003, 61573207), Shanghai Municipal Science
and Technology Major Project (No. 2017SHZDZX01), and the Tsinghua-Fuzhou Institute for Data Technology.

Availability of data and materials
The datasets supporting the conclusions of this article are publicly available from the NCBI Gene Expression Omnibus
(https://www.ncbi.nlm.nih.gov/geo/), the NCBI Sequence Read Archive (http://www.ncbi.nlm.nih.gov/Traces/sra/), and
the EMBL-EBI ArrayExpress (https://www.ebi.ac.uk/arrayexpress/).

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Published: 17 September 2020

References
1. Jaitin DA, Kenigsberg E, Keren-Shaul H, Elefant N, Paul F, Zaretsky I, Mildner A, Cohen N, Jung S, Tanay A, et al. Massively

parallel single-cell RNA-Seq for marker-free decomposition of tissues into cell types. Science. 2014;343(6172):776–9.
2. Macosko EZ, Basu A, Satija R, Nemesh J, Shekhar K, Goldman M, Tirosh I, Bialas AR, Kamitaki N, Martersteck EM, et al.

Highly parallel genome-wide expression profiling of individual cells using Nanoliter droplets. Cell. 2015;161(5):1202–14.
3. Picelli S, Bjorklund AK, Faridani OR, Sagasser S, Winberg G, Sandberg R. Smart-seq2 for sensitive full-length transcriptome

profiling in single cells. Nat Methods. 2013;10(11):1096–8.
4. Grun D, Lyubimova A, Kester L, Wiebrands K, Basak O, Sasaki N, Clevers H, van Oudenaarden A. Single-cell messenger

RNA sequencing reveals rare intestinal cell types. Nature. 2015;525(7568):251.
5. Segerstolpe A, Palasantza A, Eliasson P, Andersson EM, Andreasson AC, Sun XY, Picelli S, Sabirsh A, Clausen M, Bjursell

MK, et al. Single-cell Transcriptome profiling of human pancreatic islets in health and type 2 diabetes. Cell Metab. 2016;
24(4):593–607.

6. Jaitin DA, Weiner A, Yofe I, Lara-Astiaso D, Keren-Shaul H, David E, Salame TM, Tanay A, van Oudenaarden A, Amit I.
Dissecting Immune Circuits by Linking CRISPR-Pooled Screens with Single-Cell RNA-Seq. Cell. 2016;167(7):1883.

7. Xue ZG, Huang K, Cai CC, Cai LB, Jiang CY, Feng Y, Liu ZS, Zeng Q, Cheng LM, Sun YE, et al. Genetic programs in
human and mouse early embryos revealed by single-cell RNA sequencing. Nature. 2013;500(7464):593.

8. Scialdone A, Natarajan KN, Saraiva LR, Proserpio V, Teichmann SA, Stegle O, Marioni JC, Buettner F. Computational
assignment Of cell-cycle stage from single-cell transcriptome data. Methods. 2015;85:54–61.

Chen et al. BMC Bioinformatics 2020, 21(Suppl 13):392 Page 15 of 16

https://bmcbioinformatics.biomedcentral.com/articles/supplements/volume-21-supplement-13
https://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/Traces/sra/
https://www.ebi.ac.uk/arrayexpress/


9. Zeisel A, Munoz-Manchado AB, Codeluppi S, Lonnerberg P, La Manno G, Jureus A, Marques S, Munguba H, He L,
Betsholtz C, et al. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science. 2015;
347(6226):1138–42.

10. Marco E, Karp RL, Guo GJ, Robson P, Hart AH, Trippa L, Yuan GC. Bifurcation analysis of single-cell gene expression data
reveals epigenetic landscape. Proc Natl Acad Sci U S A. 2014;111(52):E5643–50.

11. Satija R, Farrell JA, Gennert D, Schier AF, Regev A. Spatial reconstruction of single-cell gene expression data. Nat
Biotechnol. 2015;33(5):495–U206.

12. Treutlein B, Brownfield DG, Wu AR, Neff NF, Mantalas GL, Espinoza FH, Desai TJ, Krasnow MA, Quake SR. Reconstructing
lineage hierarchies of the distal lung epithelium using single-cell RNA-seq. Nature. 2014;509(7500):371.

13. Xie P, Gao M, Wang C, Zhang J, Noel P, Yang C, Von Hoff D, Han H, Zhang MQ, Lin W. SuperCT: a supervised-learning
framework for enhanced characterization of single-cell transcriptomic profiles. Nucleic Acids Res. 2019;47(8):e48.

14. Kiselev VY, Yiu A. Hemberg M: scmap: projection of single-cell RNA-seq data across data sets. Nat Methods. 2018;15(5):
359–62.

15. Ke G, Meng Q, Finley T, Wang T, Chen W, Ma W, Ye Q, Liu T-Y. LightGBM: A Highly Efficient Gradient Boosting Decision
Tree. In: Guyon I, Luxburg UV, Bengio S, Wallach H, Fergus R, Vishwanathan S, Garnett R, editors. Advances in Neural
Information Processing Systems 30, vol. 30; 2017.

16. Baron M, Veres A, Wolock SL, Faust AL, Gaujoux R, Vetere A, Ryu JH, Wagner BK, Shen-Orr SS, Klein AM, et al. A Single-
Cell Transcriptomic Map of the Human and Mouse Pancreas Reveals Inter- and Intra-cell Population Structure. Cell Syst.
2016;3(4):346.

17. Muraro MJ, Dharmadhikari G, Gruen D, Groen N, Dielen T, Jansen E, van Gurp L, Engelse MA, Carlotti F, de Koning EJP,
et al. A Single-Cell Transcriptome Atlas of the Human Pancreas. Cell Syst. 2016;3(4):385.

18. Xin Y, Kim J, Okamoto H, Ni M, Wei Y, Adler C, Murphy AJ, Yancopoulos GD, Lin C, Gromada J. RNA sequencing of
single human islet cells reveals type 2 diabetes genes. Cell Metab. 2016;24(4):608–15.

19. Shekhar K, Lapan SW, Whitney IE, Tran NM, Macosko EZ, Kowalczyk M, Adiconis X, Levin JZ, Nemesh J, Goldman M, et al.
Comprehensive Classification of Retinal Bipolar Neurons by Single-Cell Transcriptomics. Cell. 2016;166(5):1308.

20. Darmanis S, Sloan SA, Zhang Y, Enge M, Caneda C, Shuer LM, Gephart MGH, Barres BA, Quake SR. A survey of human
brain transcriptome diversity at the single cell level. Proc Natl Acad Sci U S A. 2015;112(23):7285–90.

21. Romanov RA, Zeisel A, Bakker J, Girach F, Hellysaz A, Tomer R, Alpar A, Mulder J, Clotman F, Keimpema E, et al.
Molecular interrogation of hypothalamic organization reveals distinct dopamine neuronal subtypes. Nat Neurosci. 2017;
20(2):176–88.

22. Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, Mauck WM, Stoeckius M, Smibert P, Satija R. Comprehensive
integration of single cell data. bioRxiv. 2018;177(7):1888.

23. Chen S, Wang Y, Jiang R. OPENANNO: annotating genomic regions with chromatin accessibility. bioRxiv. 2019.
24. Duren ZN, Chen X, Zamanighomi M, Zeng WW, Satpathy AT, Chang HY, Wang Y, Wong WH. Integrative analysis of

single-cell genomics data by coupled nonnegative matrix factorizations. Proc Natl Acad Sci U S A. 2018;115(30):7723–8.
25. Chen SQ, Hua K, Cui HF, Jiang R. VPAC: Variational projection for accurate clustering of single-cell transcriptomic data.

Bmc Bioinformatics. 2019;20:0.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Chen et al. BMC Bioinformatics 2020, 21(Suppl 13):392 Page 16 of 16


	Abstract
	Background
	Results
	Conclusions

	Background
	Methods
	Design of EnClaSC
	Feature selection
	Few-sample learning strategy
	Artificial neural networks for the cell-type classification
	Assessment of performance
	Data collection

	Results
	EnClaSC achieves high performance for self-projection within a dataset
	EnClaSC outperforms other methods in the cell-type classification across datasets
	Contribution of each module
	Feature selection module
	Neural network module
	Few-sample learning module

	EnClaSC scales up well with various data dimensionality
	EnClaSC scales up well with different data sparsity
	EnClaSC enables cross-species classification

	Discussion
	Conclusions
	Abbreviations
	Acknowledgements
	About this supplement
	Authors’ contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	References
	Publisher’s Note

