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Abstract
Background: Network alignment is an efficient computational framework in the
prediction of protein function and phylogenetic relationships in systems biology.
However, most of existing alignment methods focus on aligning PPIs based on static
network model, which are actually dynamic in real-world systems. The dynamic
characteristic of PPI networks is essential for understanding the evolution and
regulation mechanism at the molecular level and there is still much room to improve
the alignment quality in dynamic networks.
Results: In this paper, we proposed a novel alignment algorithm, Twadn, to align
dynamic PPI networks based on a strategy of time warping. We compare Twadn with
the existing dynamic network alignment algorithm DynaMAGNA++ and DynaWAVE
and use area under the receiver operating characteristic curve and area under the
precision-recall curve as evaluation indicators. The experimental results show that
Twadn is superior to DynaMAGNA++ and DynaWAVE. In addition, we use protein
interaction network of Drosophila to compare Twadn and the static network alignment
algorithm NetCoffee2 and experimental results show that Twadn is able to capture
timing information compared to NetCoffee2.
Conclusions: Twadn is a versatile and efficient alignment tool that can be applied to
dynamic network. Hopefully, its application can benefit the research community in the
fields of molecular function and evolution.
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Background
In recent years, due to the rapid development of biotechnology, we can obtain a large
amount of biological data, such as: gene expression data, methylation data, protein inter-
action network data and so on [1]. Protein is a substance closely related to life and various
forms of life activities. It plays a vital role in almost all life activities. Therefore, research
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on proteins plays a crucial role in our biological research. Protein is not a single biological
function. It usually interacts with other proteins to perform certain biological functions
[2–5]. All protein interactions form a protein-protein interaction (PPI) network. Most of
networks are dynamic in real-world systems. For instance, PPI could change over time,
and online professional network will also evolve over time [6]. A large number of PPIs
are transient interactions, which briefly exists in only certain cellular context related with
cell types, cell cycle stages etc. However, most of network alignment (NA) methods are
designed for static networks [7], since static networks were used to model complex real-
world systems. The aim of NA on PPI networks is to find an optimal node mapping
that can indicate similar biological meanings between matched proteins. However, these
networks actually change over time. The dynamic characteristic of PPI networks is essen-
tial for the understanding of evolution and regulation mechanism at the molecular level.
Some pioneer works [8] attempt to improve NA quality using dynamic network model
on evolving systems. This new computational framework can use dynamic characteristic
as a supplementary information in the measure of node similarity, whereas it also suffers
from the lack of high-confidence dynamic networks of real-world systems. Network study
consists of a lot of parts, such as KF-finder [9], which can identify key factors from host-
microbial networks in cervical cancer, besides, detection of network motif [10] is also a
major search of network. In this paper, we focus on NA, which can be used to predict
protein function by transferring functional knowledge from a well-studied species to a
poorly-studied species.

There are two categories of alignment methods according to the target regions of net-
works: global alignment and local alignments. Global alignment is to find one global
node mapping for compared networks [11], while local alignment aims to identify multi-
ple conserved subregions which reflect putative functional modules of biological systems
[12]. Alignments of two networks are called pairwise network alignments, those of three
or more are termed as multiple network alignments. In this paper, we aim to address
the global alignment problem of two dynamic networks. IsoRank was originally pro-
posed to solve pairwise global alignment. It was intuitively guided by the assumption
that one protein is a good match for another protein in the other compared network if
their neighborhood topologies and sequences are similar. Many more alignment tools
were developed to improve the algorithm performance of existing methods over the past
decade. Among these, there are NETAL [13], H-GRAAL [14], MAGNA [15], MAGNA++
[16], which can provide one-to-one global node mapping for two compared networks. To
find protein match sets for multiple species, IsoRankN [17], NetCoffee [11], SMETANA
[18] and multiMAGNA++ [19] were used to find one global node mapping for mul-
tiple PPI networks. All these algorithms focused on aligning protein pairs based on
static networks, although these networks evolve over time. DynaMAGNA++ [8] and
DynaWAVE [20] were recently proposed to make up this deficiency. DynaMAGNA++ is
the first dynamic NA algorithm, which was adapted from the MAGNA++ method. Dyna-
MAGNA++ takes two measures (node conservation and edge conservation) to capture
functionally conserved proteins. However, there is still much room to improve the align-
ment quality in dynamic networks. It is still a challenge to solve the alignment problem
for dynamic networks.

To overcome these issues, we proposed a novel NA algorithm based on a technique
termed as dynamic time warping (DTW) to align dynamic PPI networks across species. A
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5-tuple-feature vector was calculated on each node of each time snapshot. A target scor-
ing function was used to evaluate the quality of NA, which integrates both topology and
sequence information. Then, the alignment problem is transformed into an optimization
problem. Simulated annealing was applied to iteratively search for a near-optimal global
node mapping between two compared networks.

Methods
The Twadn algorithm returns the optimal alignment results over two given dynamic net-
works. A dynamic network can be seen as a series of static networks based on a time
sequence. So the structure feature of each static network can be extracted by a traditional
static NA. In our program, one of our previous work NetCoffee2 [21] was applied to
extract the topological feature of each node in the network. Then we can get a sequence
of features of each vertex in the dynamic network. Simulated annealing algorithm was
used to search for a near-optimal solution. Twadn’s algorithm framework is shown in
Fig 1. and it has four major steps: 1) perform pair-wise sequence alignment for all pairs of
proteins, and select the similar pairs which are statistically significant; 2) extract the topo-
logical feature of each vertex in each of the static network using NetCoffee2; 3) calculate
the dynamic time warping similarity of all pairs of proteins; 4) use simulated annealing
algorithm to find an optimal NA.

Sequence-based similarity

We use the open source tool BLASTP [22] to sequence alignment of all proteins in the
network, and obtain the sequence similarity scores e-value and bit-score for each protein
pair. Considering that the amino acid sequence that affects protein function may be just a
functional region of the sequence, we use the e-value parameter for preliminary filtering
and select those protein pairs with e-value less than 1e-7 as the e-value can affect the
coverage of predicted homologous proteins by the NetCoffee2 algorithm. Note that �

denotes the candidates of homology proteins. Given a protein pair u and v, the sequence
similarity sh(u, v) can be calculated in the following formula:

Fig. 1 Algorithm framework of Twadn
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sh(u, v) = ε(u, v) − εmin(u, v)
�ε

(1)

Here, ε(u, v) can be −log(e − value) or bit-score of the protein pair u and v, �ε is
the largest difference between any two pairs of homolog in �, and �ε = εmax(u, v) −
εmin(u, v), which servers as a normalization factor. The similarity values calculated by this
method are in the interval [0, 1], where 0 represents the least similar protein pair and 1
represents the most similar protein pair.

5-tuple-feature vector of every vertex

Dynamic networks can be regarded as a series of static networks at many snapshots. Here,
we attempt to construct a 5-tuple-feature (γ , σ , τ , η, θ) for each node in the static network
to represent local connectivity of its corresponding node. We denote the adjacent matrix
of a netwrok G as Mn×n. Since M is real and symmetric, it must has a major normalized
eigenvector K = (k1, k2, ..., kn), which is the normalized eigenvector of the largest eigen-
value. Then, we use ki, 1 ≤ i ≤ n as the reputation of the node vi while the greater the
reputation is, the more important the node is. Therefore, we use ki as the first element of
the 5-tuple-feature vector (i.e. γ ) for node vi. The set of neighbors of v is denoted as Nv.
Then, we use |Nv| as the second element of the 5-tuple-feature vector (i.e. σ ), the sum of
the reputation of these nodes

∑
x∈Nv kx as the third element(i.e. τ ). Let us denote nodes

that are 2-step away from v as N2
v and all nodes in N2

v are not directly connected to v.
Then, we use

∣
∣N2

v
∣
∣ as the fourth element (i.e. η). The last element η is calculated by the

following formula:

1
2

∑

x∈N2
v

kxpxv (2)

where pxv presents the number of the shortest paths from x to v.

Dynamic time warping similarity

The input for calculating the dynamic time warping similarity between networks is two
dynamic network DN1 and DN2, and output is a matrix S in which each element sij rep-
resents the time warping similarity between protein i from DN1 and protein j from DN2.
Therefore, for each protein in DN1, we need to calculate it’s time warp similarity with
each protein in DN2. Here we carefully explain the calculation method of the time warp-
ing similarity between the proteins P and Q of DN1 and DN2, then through apply this
method to all other protein pairs, we can obtain the result matrix S.

Since proteins from different dynamic network may have different snapshot number,
the length of each sequence might be different. So, Euclidean distance is unable to be used
in measuring the similarity of two given nodes as their differences in sequence length.
Suppose P and Q appearing m and n times in their snapshots respectively, so their time
sequences can be written as, p = (p1, p2, ..., pi, ..., pm), q = (q1, q2, ..., qj, ..., qn). Here, pi
and qj are the 5-tuple-feature vectors of time sequences p and q at its ith and jth appearance
in the snapshot.

DTW is one of the algorithms for measuring similarity between two temporal
sequences, which may vary in length and it’s proved that DTW is a robust distance mea-
sure for time series, allowing similar shapes to match even if they are out of phase in the
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time index or different length of time series. So we apply DTW algorithm to calculate the
time warping similarity between the sequences p and q.

To align two sequence using DTW, we construct a matrix Dm×n in which each matrix
element value dij represents distance between pi and qj

(
i.e. dij = ∑5

k=1
(
pik − qjk

)2
)

,
which capture the time feature of protein in the network. Here, we define a warping path
to describe the time correspondence between p and q as follow:

W = w1, w2, ..., wk , max(m, n) ≤ k ≤ m + n − 1 (3)

The form of wk is (i, j), which represents that this path passes through the lattice corre-
sponding to pi and qj. DTW is a typical optimization problem and its purpose is to find
the warping path that minimizes the cumulative distance between two sequence as follow:

DTW (p, q) = min
W

k∑

i=1
δ (wi) (4)

Here, δ(wk) = dij is the distance between two time series elements of wk .
The selection of this path needs to meet the following constraints: 1)w1 = (1, 1) and

wk = (m, n); 2) If wk−1 = (i, j) and wk = (
i′, j′

)
, then i <= i′ <= i + 1, j <= j′ <= j + 1.

Then, the search for an optimal path can be transformed into a dynamic programming
problem. We define the recurrence formula of the cumulative distance of each pair of
proteins as follow:

λ(i, j) = d(pi, qj) + min{λ(i − 1, j − 1), λ(i − 1, j), λ(i, j − 1)} (5)

where λ(i, j) is the dynamic time warping distance of p and q. With the warping path W,
the node similarity of any two nodes p and q in the dynamic network can be calculated
with the Gaussian function st(p, q) = exp

(− 1
2 [ λ(m, n)]2).

Figure 2 shows an example of calculate dynamic time warping similarity of each
two nodes in dynamic network DN1 and DN2. The matrix (A) are the 5-tuple-feature
sequence of node a at five snapshots. Red numbers in matrix (B) constitute the warping
path, which can be used to calculate the dynamic time warping distance of node a and
node B. The matrix (C) contains all dynamic time warping distance of each two nodes in
DN1 and DN2. The matrix (D) contains all dynamic time warping similarity of each two
nodes in DN1 and DN2.

Simulated annealing

To find an optimal NA, Twadn used the simulated annealing technique to search for an
approximately optimal solution, which maximizes the sequence similarity and dynamic
time warping similarity with an objective function. The objective function writes as
f (A) = ∑

m∈A sm, where A and m refer to all possible match sets and a match set, respec-
tively. A match set is a putative functional orthologs that could be a group of functionally
related proteins. Suppose there is a match set m = (m1, m2, ..., mv), the alignment score
of m is:

sm =
∑

i,j,i�=j
αsh(i, j) +

∑

i,j,i�=j
(1 − α)st(i, j), i, j ∈ {m1, m2, ..., mv} (6)

where sh(i, j) and st(i, j) is sequence-based similarity and dynamic time warping similar-
ity of protein i and j described above. With this definition, an optimal global alignment
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Fig. 2 Dynamic time warping similarity between dynamic network DN1 and DN2

solution could be solved by maximizing a target function:

A∗ = arg max
A

f (A) = arg max
A

∑

m∈A
sm (7)

Result
To test our method, Twadn was evaluated on both simulated dynamic networks and
real-world dynamic networks. We use a simulated dynamic network to compare Twadn,
DynaMAGNA++ and DynaWAVE and evaluate the quality of alignment results in terms
of area under the precision-recall curve(AUPR) and area under the ROC curve(AUROC).
To show the ability of characterizing the time information in dynamic network, Twadn
and NetCoffee2 were implemented on two real-world dynamic networks. We aggregated
a dynamic network into a static network. In the static version, the network has the same
set of nodes as the dynamic network, and a static edge will exist between two nodes if
there is at least one edge between the same two nodes in the dynamic network. This
kind of dynamic network aggregation was commonly applied in other time series network
analyses, such as [23].

Evaluation using synthetic dynamic network

Model of synthetic dynamic network generation

To simulate a network that mimics the evolution of protein-protein interaction networks,
we generated the simulated network using a scale free gene duplication network model
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[20]. First, a small seed network was given with two connected nodes. Then, we add a
node and some edges to network at each step, which simulates the gene duplication and
divergence mechanism during the evolution of PPI networks:

Duplication: A node i is selected at random. A new node i′, with a link to all the
neighbors of i, is created. With probability p a link between i and i′ is established.

Divergence: For each of the nodes j linked to i and i′, we choose randomly one of the
two links (i, j) or (i′, j) and remove it with probability q.

Evaluation measures

A good NA approach should be able to produce high quality alignments between net-
works that are similar, and to produce low quality alignments between networks that
are dissimilar [8]. It assumes that networks originating from a model with a same set
of parameters should be more similar than these from different parameters [20]. We
generate 20 dynamic networks using two sets of parameters p = 0.3, q = 0.7 and
p = 0.7, q = 0.6. Each model generates 10 dynamic networks. We align all possible pairs
of the synthetic networks by using Twadn, DynaMAGNA++ and DynaWAVE. Alignment
quality of the C2

20 = 190 pairs of synthetic dynamic networks can reflect the alignment
power of the three algorithms. Alignment tools can classify all pairs of networks based on
the alignment score into two categories, similar pairs and dissimilar pairs. With a given
threshold ρ, these network pairs with a score s > ρ will be categorized into similar pairs,
others will go to dissimilar pairs.

Afterwards, we can compare the performance of all the alignment algorithms using
precision-recall and receiver operating characteristic (ROC). The precision is the frac-
tion of network pairs which are true positive among all pairs which have a score s > ρ.
The recall is the fraction of network pairs which are true positive among all pairs which
are true (similar) network pairs. A precision-recall curve can be plotted by adjusting
the threshold ρ from 0 to the maximum observed alignment score. The area under the
precision-recall curve (AUPR) and F-score are two commonly used measures for the
performance of classification methods. The measure F-score is the harmonic mean of
precision and recall which can be calculated by following function:

F = 2 × precision × recall
precision + recall

(8)

We used the F-score at the point that precision and recall are equal, termed as F-scorecross
and the score when F-score gets the maximum, termed as F-scoremax. We also evaluated
the binary classification according to the receiver operating characteristic (ROC) curve,
which was created by plotting the true positive rate (TPR) against the false positive rate
(FPR). Here, TPR is the same as recall. FPR is the fraction of false positive network pairs
among all false pairs (i.e. dissimilar network pairs). The ROC curve can be plotted by
adjusting the criterion ρ. The area under the ROC curve (AUROC) can be calculated after
we got the plot.

Performance on synthetic dynamic networks

For synthetic dynamic networks, we aim to develop a NA tool to distinguish these similar
network pairs from the other. So we use AUPR, F-scorecross, F-scoremax, and AUROC to
evaluate the quality of the alignment algorithm. As shown in Table 1, the performance



Zhong et al. BMC Bioinformatics 2020, 21(Suppl 13):385 Page 8 of 13

Table 1 Network discrimination performance of DynaMAGNA++, DynaWAVE and Twadn. For
biological synthetic networks, with respect to the area under the precision-recall curve (AUPR),
F-score at which precision and recall cross and are thus equal (F-scorecross), maximum F-score
(F-scoremax), and the area under the ROC curve (AUROC). In each column, the best score is bolded

algorithm AUPR F-scorecross F-scoremax AUROC

DynaMAGNA++ 0.467 0.489 0.642 0.507

DynaWAVE 0.600 0.556 0.642 0.594

Twadn 0.653 0.589 0.735 0.718

of Twadn outperforms all other alignment algorithms in terms of AUPR, F-scorecross, F-
scoremax, and AUROC, which are 0.653, 0.589, 0.735, and 0.718, respectively. DynaWAVE
shows a better performance than DynaMAGNA++ in terms of AUPR, F-scorecross, and
AUROC. From Fig. 3, it shows that the PR curve of DynaMAGNA++ starts from origin
of the coordinate system. It means that DynaMAGNA++ failed to discriminate the one
with the best alignment score. From Figs. 3 and 4, Twadn is the best aligner according to
both the PR curve and the ROC curve over all.

Evaluation using real-world dynamic networks

Experimental design on real-world dynamic networks

To show the alignment capabilities in real-world networks, we evaluated our algorithm on
PPI networks. In contrast to static NA tools, Twadn is able to capture dynamic features
of a node in the time axis, which would benefit the alignment quality. It’s difficult to tell
whether two biological networks come from a same evolution model or not because of
the ambiguity of evolution model in biology. So we use a randomized (noisy) version of
the network (see below). The larger randomized noise level, the more dissimilar the two
dynamic network are. We have two randomized versions of the network. One randomizes
only the temporal aspect of the network and another randomized both temporal aspect
and structure aspect.

Fig. 3 Network discrimination performance of DynaMAGNA++ and Twadn for biological synthetic networks
with respect to precision-recall curve
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Fig. 4 Network discrimination performance of DynaMAGNA++ and Twadn for biological synthetic networks
with respect to ROC curve

Since there is a lack of available experimental dynamic molecular networks, we create
a dynamic Drosophila melanogaster PPI network from an artificial temporal sequence of
static PPI networks. Here, the static PPI network that are used as snapshots of the dynamic
PPI network are all real-world networks, it is just their temporal sequence that is artifi-
cial. The sequence consists of seven static PPI network snapshots: at the first snapshot,
network have 70% high confidence interactions of original network. at second snapshot,
we add 5% high confidence interactions. Now the network have 75% interactions of origi-
nal which have greater confidence value than the rest interactions. We continue to add 5%
interaction until the network has hole 100% interaction of original network. Then we get
a real-world dynamic network with seven static PPI network snapshots. Then we generate
two randomized versions of network, as follow:

Randomizes only temporal aspect of network: Since the difference between dynamic
NA and static NA is that the former accounts for the temporal aspect of the data more
explicitly than the latter, we first randomizes only temporal aspect of network, which
means randomized network will preserve as much structure as possible of dynamic net-
work. They are only different from each other in time information. This way, the only
difference observed between Twadn’s and NetCoffee2’s performance will be the conse-
quence of considering the temporal aspect of the data. We randomize network with a
parameter the noisy level p, the larger the p value, the more noise is added. Given the
noise level p and G = (

g1, g2, ..., g7
)

, gi = (Vi, Ei), for each eab (a ∈ Vi, b ∈ Vi) in Ei , with
probability p, we arbitrarily select ecd

(
c ∈ Vj, d ∈ Vj

)
from another snapshot gj(j �= i)

and swap this two interactions. The specific method of swap is to delete the edge eab in
the snapshot gi and add an edge ecd. At the same time, delete ecd in the snapshot gj and
increase eab. By randomizing only temporal aspect of network, an dynamic network can
be aggregated into the same static network as its noisy version’s.

Randomizes both temporal aspect and structure aspect of network: To observe
the performance of Twadn and NetCoffee2 in different sets of noisy versions of the
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original network using a somewhat more flexible randomization scheme that does not
conserve the structure of the flattened version of the original dynamic network, we ran-
domize both temporal aspect and structure aspect of network. Given the noisy level p
and G = (

g1, g2, ..., g7
)

, gi = (Vi, Ei), for each eab (a ∈ Vi, b ∈ Vi) in Ei, with probability
p, we arbitrarily select ecd

(
c ∈ Vj, d ∈ Vj

)
from another snapshot gj(j �= i), if there is no

edge connection between node a and d, and there is no edge connection between node
b and node c, then connect a and d, b and c. If the process of adding noise creates a loop
(i.e., an edge from a node to itself ) or a multiple link (i.e., duplicate edge between the
same nodes), then we undo it and re-randomly select another edge to do the above pro-
cess. By randomizing both temporal aspect and structure aspect of network, the resulting
compressed version of the static network is different from the original dynamic network.

Evaluation measures

For NA of Drosophila dynamic networks with increased noise, we know the true align-
ment results (the same protein can be considered a homologous protein). So we use the
Alignment Score, which is the algorithm’s objective function value (Eq. 3) and node cor-
rectness (NC) to measure the network alignment results and the NC can be calculate as
follow:

NC = Ncorrect
Nall

(9)

where Ncorrect represents the number of correctly aligned protein pairs and Nall repre-
sents the count of all protein pairs. The greater the node-correctness is, the better the
algorithm is. When noise is added to the dynamic network only on the timing informa-
tion, the dynamic network will become more and more dissimilar to the original network
as the level of noise increases, while the dynamic network will be compressed into the
same static network. Then as the noise level increases, the comparison result of Twadn
will become worse and worse, and the result of NetCoffee2 should not change much.
When randomizes both temporal aspect and structure aspect of network, if the dynamic
network is compressed to a static version, different static networks will be obtained.
As noise level increase, the noise and original versions of dynamic and static networks
become more and more dissimilar. Then if Twadn and NetCoffee2 are used to compare
the dynamic network with the static network respectively, the comparison results of the
two algorithms should be worse as the noise level increases.

Result

As Fig. 5 shows, the alignment score of Twadn decrease with the increase of noisy, while
the alignment score of NetCoffee2 does not change when randomizing only temporal
aspect. It is reasonable since the flattened version of noisy of dynamic network is the same
as original network’s. The alignment quality of NetCoffee2 and Twadn both decrease
when randomizing both temporal aspect and structure aspect of network in Fig. 6. This
illustrates that Twadn really capture the time information of dynamic network compared
with NetCoffee2. In other hand, the node-correctness of Twadn is higher than NetCof-
fee2 in every noisy level, which means Twadn is superior to NetCoffee2. We think it is
reasonable as Twadn capture the time information of dynamic network while NetCoffee2
does not.
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Fig. 5 The performance of node correctness and alignment score when randomizing only temporal aspect
of network

Discussion
Although the experimental results have been able to achieve better results than existing
algorithms. There are still many problems in the work done in this paper that can be
further explored: 1) The algorithm temporarily does not support multiple dynamic net-
works for simultaneous alignment. However, according to the framework of the simulated
annealing algorithm, it is hoped that multiple networks can be aligned at the same time in
the future. 2) The algorithm is currently only used in PPI networks, and it is expected to
be applied to other networks in the future, such as gene regulatory networks, metabolic
networks, etc.

Conclusion
NA is a very important computational framework for understanding molecular function
and phylogenetic relationships. Although many NA methods have been developed in the
last decade, most of these focused on aligning proteins in static PPI networks. All species
and PPIs evolve in different speed. Therefore, there is an urgent demand to develop
efficient computational tools to deal with these dynamic networks. To supplement this
shortcoming, a novel method Twadn based on the dynamic model of networks was pro-
posed, which can include the time information of molecular interactions. We construct
a 5-tupe-feature vector and an optimal warping path to extract topology structures and
evolving patterns of all nodes in networks. Twadn was applied in both synthetic datasets
and real biological datasets. The synthetic dataset was generated based on a scale-free
gene duplication model. Results show that Twadn is superior to DynaMAGNA++ and

Fig. 6 The performance of node correctness and alignment score when randomizing both temporal aspect
and structure aspect of network
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DynaWAVE in synthetic network. At the same time, in order to show that the Twadn can
capture timing information compared to the static NA, we add timing information and
noise to the Drosophila protein interaction network, and then run the Twadn and Net-
Coffee2, experimental results in line with our expectations. Dynamic NA algorithm do
capture timing information. It suggests that Twadn is a versatile and efficient alignment
tool that can be applied to dynamic network. Hopefully, its application can benefit the
research community in the fields of molecular function and evolution.
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