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Abstract

Background: Graph-based representation of genome assemblies has been recently
used in different contexts — from improved reconstruction of plasmid sequences and
refined analysis of metagenomic data to read error correction and reference-free
haplotype reconstruction. While many of these applications heavily utilize the
alignment of long nucleotide sequences to assembly graphs, first general-purpose
software tools for finding such alignments have been released only recently and their
deficiencies and limitations are yet to be discovered. Moreover, existing tools can not
perform alignment of amino acid sequences, which could prove useful in various
contexts — in particular the analysis of metagenomic sequencing data.

Results: In this work we present a novel SPAligner (Saint-Petersburg Aligner) tool for
aligning long diverged nucleotide and amino acid sequences to assembly graphs. We
demonstrate that SPAligner is an efficient solution for mapping third generation
sequencing reads onto assembly graphs of various complexity and also show how it
can facilitate the identification of known genes in complex metagenomic datasets.

Conclusions: Our work will facilitate accelerating the development of graph-based
approaches in solving sequence to genome assembly alignment problem. SPAligner is
implemented as a part of SPAdes tools library and is available on Github.

Keywords: Assembly graph, Graph alignment, Molecular sequences alignment

Background

Many popular short read assemblers [1-3] provide the user not only with a set of con-
tig sequences, but also with assembly graphs, encoding the information on the potential
adjacencies of the assembled sequences. Naturally arising problem of sequence-to-graph
alignment has been a topic of many recent studies [4-8]. Identifying alignments of
long error-prone reads (such as Pacbio and ONT reads) to assembly graphs is particu-
larly important and has recently been applied to hybrid genome assembly [9, 10], read
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error correction [11], and haplotype separation [12]. At the same time, the choice of the
practical aligners supporting long nucleotide sequences is currently limited to vg [4] and
GraphAligner [13], both of which are under active development. Moreover, to the best
of our knowledge, no existing graph-based aligner supports alignment of amino acid
sequences.

Here we present the SPAligner (Saint Petersburg Aligner) tool for aligning long diverged
molecular (both nucleotide and amino acid) sequences against assembly graphs produced
by the popular short-read assemblers. The project stemmed from our previous efforts
on the long-read alignment within the hybridSPAdes assembler [9]. Our benchmarks on
various Pacbio and Oxford Nanopore datasets show that SPAligner is highly competi-
tive to vg and GraphAligner in aligning long error-prone reads. We also demonstrate
SPAligner’s ability to accurately align amino-acid sequences (with up to 90% amino acid
identity) onto complex assembly graphs of metagenomic datasets. To further motivate
this application we show how SPAligner can be used for identification of biologically
important (antibiotic-resistance) genes, which remain under the radar of conventional
pipelines due to assembly fragmentation (e.g. genes exhibiting high variability in complex
environmental samples).

Implementation

“Alignment of long nucleotide sequences” section describes the notation and presents the
approach taken in SPAligner for semi-global alignment of nucleotide sequences to the
assembly graph. Extension of this approach for aligning amino acid sequences is discussed

in “Alignment of amino-acid sequences” section.

Alignment of long nucleotide sequences

Let G be a (directed) compacted de Bruijn graph with edges labeled by nucleotide
sequences that we further refer to as assembly graph!. Length of a nucleotide sequence S
is denoted by |S| and length of edge e, |e|, is defined as a length of its label. S[ x] denotes
x-th symbol of S (starting from 0). Position x on string S belongs to a range [0. .. |S|] and
corresponds to location before S[x], if x < |S|, and after S[|S| — 1] otherwise. S[a : b] is
a substring of S between positions 4 and b. By the size of graph G, |G|, we denote the sum
of the number of its vertices, edges and total length of all labels.

Position in the graph is naturally defined by a pair of an edge e and position in the
sequence of e: p = (e, i), where 0 <= i <= |e|. Note that with such notation there are
multiple positions in graph that corresponds to a vertex of G — it is located at the end of
each incoming edge and at the beginning of each outgoing edge. G[ p] denotes a symbol
on position i within edge e. A path P in G is defined by a sequence of consecutive edges
e1,...,e, and a pair of positions pos, and pose, on e; and e, respectively. We denote
the nucleotide sequence obtained by concatenation of edge labels in a path P (trimmed
according to pos,, and pos,,) as Label(P).

For the sake of clarity throughout the paper we are going to neglect the fact that adjacent
edges produced by popular assembly tools typically overlap (in particular adjacent edges
produced by majority of the de Bruijn graph based assemblers overlap by K bp, where

1\While common definition of assembly graph associates sequences with the vertices, assembly graphs produced by de
Bruijn graph based assemblers can be readily represented as edge-labeled graphs, considered in this work. We also note
that our methods can be straightforwardly re-implemented in application to other assembly graphs.
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K is the kmer size parameter of de Bruijn graph). Additional file 1 “Notes on running
aligners” presents a formal description of the assembly graphs accepted by the current
implementation of SPAligner.

The semi-global alignment of a sequence S (query) to an assembly graph G is defined
as a path P in G, such that Label(P) has minimal alignment cost against S across all paths
in G. As well as other practical tools for searching alignments in large sequence graphs
(including vg and GraphAligner) SPAligner first identifies regions of high nucleotide iden-
tity between the query and the graph sequences that we refer to as anchor alignments (or
anchors) and then attempts to extend them to desired semi-global alignments.

Below we outline the four steps implemented in SPAligner for aligning a nucleotide
sequence query S to an assembly graph G (see Fig. 1), generally following the approach
used in alignment module of hybridSPAdes assembler [9]

Anchor search. Anchor alignments between S and the pre-indexed edge labels are
identified using the BWA-MEM library [14] (every high-scored local alignment between
a query and individual edge labels reported by BWA-MEM is considered as a potential
anchor). Each anchor a is defined by a range on S — [start;(a), ends(a)) and a range
on a specific edge e(a) — [start.(a), end.(a)). The span of an anchor a is defined as
(ends(a) — starts(a)). Only anchors with span exceeding a certain threshold (by default
equal to K — the kmer size parameter of de Bruijn graph) are considered. Since the goal
of this step is to get a set of all potentially-relevant anchors, BWA-MEM settings were
adjusted for higher sensitivity. In particular, we modified the defaults to retain as many
alignments as possible: secondary alignments were included, mask_level and drop_ratio
were assigned to 20, and the seed size was decreased from 17 bp to 14 bp.
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Fig. 1 Sequence-to-graph alignment with SPAligner. Alignment of query sequence S (orange bar) to
assembly graph G. Assembly graph edges are considered directed left-to-right (explicit edge orientation was
omitted to improve clarity). Upper-left: Anchor search. Anchor alignments (regions of high similarity)
between the query and the edge labels are identified with BWA-MEM. Upper-right: Anchor filtering.
Anchors shorter than K (anchors 2, 6, 11), anchors “in the middle” of long edge (anchor 7) or ambiguous
anchors (anchor 10 mostly covered by anchor 9, both anchors 4 and 5) are discarded. Bottom-left: Anchor
chaining. Heaviest chain of compatible anchors (chain 3 — 8 — 9) is determined. Bottom-right:
Reconstructing the filling paths. Paths for fragments of the query between the consecutive chain anchors
(as well as left- and right-most fragments) are reconstructed
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Anchor filtering. Unreliable and ambiguous anchors are further discarded based on
their size, locations in the graph and the layout on the query sequence. In particular, the
following groups of anchors are discarded (in the specified order):

e Anchors “in the middle” of long edges, which span less than T bp (T = 500, by
default). More formally we discard the anchor a if end,.(a) — start.(a)+
min(starts(a), start.(a)) +min(|S| — ends(a), |e| — end.(a)) > 3-(end.(a) — start.(a)).

e Anchors for which at least half of their query ranges are covered by other anchors.

e Anchors spanning less than t bp (t = 200, by default).

Anchor chaining. Anchors are assigned weights equal to their span. Two anchors a
and b are considered compatible if the minimal distance between them in G does not
significantly exceed the distance between their positions on S. SPAligner searches for
the heaviest chain of compatible anchors using dynamic programming and considers the
resulting chain as a skeleton of the final alignment [9]. Two anchor alignments a and b
are considered compatible if the minimal distance between them in G does not signifi-
cantly exceed the distance in S (formally, distg(p4, pp)/(start;(b) — ends(a)) > o, where
Pa = (e(a), end.(a)), pp = (e(b), start,(b) and « defaults to 1.3).

Reconstructing the filling paths. The goal of this step is to identify paths in G between
the consecutive anchors in the skeleton (and beyond its leftmost/rightmost anchors)
minimizing the alignment cost against corresponding regions of the query sequence. Fol-
lowing a number of previous works on alignment of sequences against general graphs
(potentially containing cycles) [9, 13, 15, 16], we use classic reformulation of the alignment
problem as a minimal-weight path problem in an appropriately constructed alignment
graph (or edit graph) [13, 16]. The alignment graph is a weighted directed graph which
is constructed in such a way that paths between certain types of vertices unambiguously
correspond that valid alignments of the query sequence to G and the alignment costs are
equal to the path weights.

The primary reason for using BWA alignments instead of exact matches was to utilize
local chaining and extension of the k-mer matches implemented in BWA. Compared to
the exact matches the resulting anchors allow for easier and more reliable filtering of
spurious matches and are better suited for scoring (easier to sensibly prioritize) within
our chaining procedure.

Though SPAligner was primarily designed for finding semi-global alignments, in some
cases it may also produce split-read alignments, i.e. separate alignments covering non-
overlapping segments of the query sequence (see Additional file 1 “Support for split-read
alignments”).

Sequence to graph alignment via alignment graphs

While in this work we only consider linear gap penalty scoring scheme (with non-negative
gap penalty parameter o and mismatch cost 1), proposed approach can straightforwardly
support affine gap cost model [17].

For the given query sequence fragment, assembly graph and the scoring parameters we
define alignment graph SG(G, Sub) with vertices corresponding to all pairs of position in
the graph and position in the query sequence.

The weighted ? edges are introduced in SG(G, Sub) as follows:

2\We use “weights” rather than “lengths” notation here to simplify introduction of negative weights in later sections.
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< p,possyy >—>< p', poss,p > of weight o,

2. < p,possup >—>< p,possy, + 1 > of weight o,

3. < p,possyy >—><p,possy, + 1 >, of weight zero if Sub[ poss,, + 1] matches
G[p'], and u otherwise,

4. < Pend> POSsub >—> < Pstart, POSsyp > of weight zero if p,,g and psqare both
corresponds to the same vertex in G (i.e. peng = (€1, |€1]), Pstare = (€2,0) and the
end of edge e; is same vertex as the start of e),

where p iterates through all positions in G, while p’ iterates through all graph positions
extending p (i.e. p = (e,i) and p’ = (e,i+ 1) for some edge e and index i < |e|), and posg,
— through all (permissible) positions in Sub.

Consider a pair of consecutive anchors in the skeleton chain, a;: ([ starts(a;), ends(a;)),
(e(ai), [starte(a;), ende(ay)))), and aji1: ([ starts(aiy1), endg(ait1),

(e(ait1), [starte(aiy1), ende(aiy1))), and a substring of query Sub = S[ends(a;)
starts(ai+1)]. ED(S1,S2) denotes alignment cost (linear gap penalty function with
parameters 1 and o) between strings S; and S;. Our goal is to find a path
P, connecting positions p1 = (e(a;),endc(a;)) and ps = (e(ait1),starte(ai+1))
in the graph G minimizing ED(Label(P),Sub). It is easy to see (ie. Lemma 5
in [15]) that path P can be recovered from the minimal-weighted path con-
necting vertices < p3,0 > and < po,|Sub| > in SG(G, Sub), moreover, its
weight is equal to ED(Label(P),Sub). Note that SG(G,Sub) only has non-negative
weights, so minimal-weighted paths search can be efficiently performed by Dijkstra
algorithm [9, 15].

In addition to reconstruction of paths between the consecutive anchors of the alignment
skeleton, SPAligner also attempts to extend the alignment beyond the leftmost/rightmost
anchors. Without loss of generality, we consider finding optimal alignment of the query
fragment Suf beyond ends(ayj,s), fixing its starting position in the graph G as p; =
(e(ayyst), ende(ajge)). The sought answer can be recovered from the minimal weight path
in SG(G, Suf) across all paths connecting < ps, 0 > with any of the vertices {< py, |Suf| >
}, where p; iterates through all positions in G, which can also be found by Dijkstra
algorithm.

To speed-up the optimal path search SPAligner implements multiple heuristics (see
Additional file 1 “Alignment extension heuristics and thresholds”). In particular, while
we consider the entire graph G in the description above, a much smaller subgraph
surrounding anchor alignments is considered by the SPAligner implementation. The
implementation also benefits from available highly optimized solutions for sequence-
to-sequence alignment (see Additional file 1 “Leveraging fast sequence-to-sequence
alignment methods”).

More efficient algorithms in terms of worst case time complexity have been earlier sug-
gested in [18, 19] for an important case of edit distance or Levenshtein distance (© and
o equal to 1). Additional file 1“Shortest paths search in binary-weighted graphs” presents
a simple modification of the basic approach described above achieving the same time
complexity of O(|G| - |Sub|).

It worth to note that recently Jain et al.[6] suggested an elegant algorithm extending the
same time complexity to both linear and affine gap penalty functions.
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Alignment of amino-acid sequences

Consider an assembly graph G with edges labeled by nucleotide sequences and an
amino acid query sequence S,. We will refer to a path P in G as an AA-path, if its
label translates into a valid (i.e.without any stop codon) protein sequence (denoted by
Translated(Label(P))). We define semi-global alignment of a sequence S, to graph G as
an AA-path P in G, such that the alignment cost between S, and Translated(Label(P)) is
minimal across all AA-paths in G®.

While considering fixed mismatch penalties is usually sufficient for aligning nucleotide
sequences, most practical scoring schemes for amino acid sequence alignment use spe-
cialized substitution matrices (e.g. BLOSUM or PAM matrices) [20], which take into
account the substitution rates between different pairs of amino acids over time as well as
the relative frequencies of various amino acids.

To reconcile our cost-minimization formulation with the fact that typical substitution
matrix M assumes better alignments to have higher cumulative scores, we will consider
elements of matrix M’ = —M as match/mismatch score (by default M =BLOSUM90).

Again, though we only consider linear gap penalties with coefficient o (in our exper-
iments we used ¢ = 5) here, affine gap penalties can also be implemented without
significant increase of running time or memory footprint [19].

Alignment graph for amino acid sequence alignment

For the given query sequence, assembly graph, substitution matrix and gap penalty coef-
ficient (¢), we introduce alignment graph, SG,. Each vertex corresponds to a triplet
< P»POSsub,,fS >, where p is position in the graph G, possys, is the position in the query
fragment sequence and fs is a frame state string (of length 0 — 2), encoding a partial
codon sequence (empty string is denoted by ¢). We further define the graph by the itera-
tive procedure, initialized by introducing the vertices (p, 0, ), where p iterates through all
positions in G. Then, until no more edge can be added, we introduce edges and required
vertices following one of the rules below:

< D, POSsub,, f5 >—> < P, possup,, fs + G p'] > of zero weight if |fs| < 2,
< P> DPOSSub,,, f$ >—> < p’,posswbp,a > of weight o if |fs| = 2,
3. <P POSSub,.f5 >—< p’,posswbp + 1,& > of weight
M'[ Translate(fs + G[ p'] ), Subp| possyp, + 111, and |fs| = 2,
< Ps DOSSub,,» € >—>< P, POSsyb, + 1,& > of weight o,
5 < pend,posSubp,fs >—< psmt,posSubp,fs > of weight zero if pe,s and psrar:
correspond to the same position in graph on consecutive edges of G (i.e.
Pend = (€1, |e1]), Pstart = (e2,0) and end of edge e; is same vertex as the start of e),

where p is a position in G, p’ is a position in G extending p (i.e. p = (e,i) and p’ = (e,i+1)
for some edge e and index i < |e|),posSubp — is a position in Sub,.
As before, one can find the semi-global alignment path of the sequence Sub,, (fixed on
one or both sides by anchor alignments) by searching for minimal weight paths in SG,,.
In particular, it is easy to show that the semi-global alignment of the amino acid

sequence Subj, starting from position p; in the graph G corresponds to the minimal

3Note that here we are not interested in paths spelling the “frame-shifted” version of the protein coding sequence (in
particular, |[Label(P)| is always divided by 3). Here we implicitly rely on the assumption that the assembly graph was
constructed from highly accurate reads and thus rare “frame shift” events need not be considered.
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weight path in SG,(G, Sub,) connecting vertex < p;,0,& > to any of the vertices {<
Pt, |Suby|, 0 > }, where p; iterates through all positions in G.

Note that since any reasonable matrix M’ contains negative elements, the graph SG,
will have edges of negative weight, preventing direct application of Dijkstra algorithm and
its variations to the search of such minimal weight paths.

While Algorithm 2 from [19] (slightly modified to account for the frame states) can be
applied here, we use an alternative approach resulting in the same time complexity*.

We define a new graph SG;(G, Suby) increasing the weights of edges introduced by
rules 3 and 4 by an arbitrary constant C, exceeding the maximum value in M. Since the
resulting graph has only edges with non-negative weights, Dijkstra algorithm can be used
for the shortest paths search in this graph.

At the same time it is easy to show that the minimum weight path between two arbitrary
nodes of the form s =< x,0,& > and e =< y, [Suby| + 1,& > in SGIQJ is also the minimum
weight path between s and e in SG,. Indeed, if we consider an arbitrary path P in SG,
between s and e of weight wp, its weight after transformation (in SG;) iswy + C - |Suby|,
because P contains exactly |Sub,| edges with modified weights. Therefore, the weights of
all paths between two vertices s and e will be increased by the same constant [Sub,| - C.

Amino acid sequence alignment pipeline

Below we outline the four steps implemented in SPAligner for aligning an amino acid
sequence S, to an assembly graph G, highlighting the differences with the pipeline
presented in “Alignment of long nucleotide sequences” section.

Anchors search. As before SPAligner first identifies anchor alignments between S,
and the pre-indexed six-frame translated edge labels. Current implementation relies on
finding high-scoring local alignments between the “canonical” nucleotide representations
of protein sequences, obtained by substituting every amino acid by its lexicographically
minimal codon. The search is performed by BWA-MEM configured to prevent gapped
alignments (gap_open penalty set to infinity) and we additionally check that the aligned
ranges are consistently located with respect to the reading frame.

Anchor filtering. Unreliable and ambiguous anchors are discarded based on their
size and query range. Anchors shorter than K are filtered out. Smaller lengths of typi-
cal protein sequences as compared to long read sequences allow us to omit the anchor
chaining step in order to increase the accuracy of the resulting amino acid sequence
alignments. It also eliminates the need to coordinate the reading frames of the chained
anchors.

Alignment extension. SPAligher then uses the adjusted alignment graph approach (see
“Alignment graph for amino acid sequence alignment”) to search for optimal alignments
extending each of the remaining anchors. The procedure employs several heuristics and
constraints, which can be found in Additional file 1 “Alignment extension heuristics and
thresholds”.

Alignments post-processing. SPAligner removes alignment paths shorter than a cer-
tain fraction of the query coding sequence length (0.8 by default) and filters perfectly
duplicating paths. Resulting paths are then translated and re-scored against the query
sequence with Parasail library [21].

4Though method from [19] achieves better worst case space complexity, our approach is more straightforward.
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Results and discussion

Aligning long error-prone reads

We benchmarked SPAligner against the two sequence-to-graph aligners supporting long
reads — vg v1.17 and GraphAligner v1.0.4.

The vg alignment pipeline [4] starts from searching for super maximal equal matches
(SMEMs) with GCSA2 library [22]. After filtering and chaining of SMEMs, the SMEMs
in a chain are linked by SIMD-accelerated banded dynamic programming. In order to use
this method, vg first “unrolls” the cycles to transform the graph into a directed acyclic
graph (DAG). It is worth noting that this step can produce large intermediate graphs
and potentially lead to suboptimal alignments. While working with long sequences, vg
splits them into overlapping “chunks” (default 256 bp with 32 bp overlap) and maps them
separately, further combining them by the same method as for SMEMs chaining.

GraphAligner [23] is a novel tool for aligning nucleotide sequences onto general
sequence graphs, which implements many innovative techniques. GraphAligner v1.0.4
uses MUMmer4 [24] to identify potential alignment seeds to restrict the search for the
potential alignment paths. Each seed is then extended separately by improved bit-parallel
algorithm for sequence-to-graph alignment under an edit distance (unit costs) model.
Extended description of GraphAligner implementation approach and detailed compar-
ison with SPAligner can be found in Additional file 1 “Sequence-to-graph alignment
implementation insights”.

Besides the default configuration of GraphAligner we have also benchmarked its
“try-all-seeds” mode (disabling the filtering of likely false positive seed alignments),
recommended by the developers for bacterial datasets.

For benchmarking we considered PacBio and ONT reads (both real and simulated)
for three different organisms: E. coli strain K12, S. cerevisiae strain S288C and C. ele-
gans strain Bristol N2 (see Supplemental Text “Datasets availability” for details on the
simulation and accession numbers). Assembly graphs were generated with SPAdes v3.12
[1] assembler from the appropriate short-read Illumina datasets (using “-k 21,33,55,77”
and setting other parameters to defaults). For running the aligners we tried to follow the
recommendations given by the developers (see Supplemental Text “Notes on running
aligners” for details).

Results of benchmarking on real sequencing data are summarized in Table 1, while
results of additional benchmarking on the simulated PacBio and ONT reads can be found
in Supplementary Table S2. Additional analysis of dependency between reads alignment
quality and their length can be found in Additional file 1 “Dependence of alignment
quality on read length”

Table columns present the following metrics:

e Number of mapped reads (MR): Read is considered mapped if 80% of its length is
covered by a single alignment path.

e Alignment identity (%) (Al): Mean nucleotide identity > across the longest continuous
alignments of the mapped reads.

e Wall-clock time (h:m)(T): Wall-clock time with 16 threads.

e Memory (Gb)(M): Peak RAM usage with 16 threads.

5Identity of aligning sequence S onto path P is defined as 1 — ED(S, Label(P))/|S|.
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Table 1 Summary statistics of aligning PacBio/ONT reads to short-read assembly graphs
(constructed by SPAdes with kmer size equal to 77)

Aligner MR(%) Al (%) T (h:m) M (Gb)  MR(%) Al (%) T (h:m) M (Gb)
E. coli PacBio E. coli ONT

vg 29 90 00:41 4.1 58 88 00:33 33
GraphAligner 85.3 86.7 00:01 0.1 82.2 86.1 00:01 0.2
GA try-all-seeds 86 86.6 00:25 03 836 86 01:43 4.8
SPAligner 883 86.5 00:04 03 86.6 86.1 00:03 03
S. cerevisiae PacBio S. cerevisiae ONT

vg 15 90 28.03 91 70 47 42:59 85
GraphAligner 537 86.5 00:01 0.2 65.7 81.1 00:01 0.2
SPAligner 56.5 85.9 00:38 0.7 61.6 82.1 00:16 06
C. elegans PacBio C. elegans ONT

vg 10 91 76:26 306 15 89 60:58 309
GraphAligner 84.1 86.8 00:03 1.8 63.6 86.6 00:03 1.8
SPAligner 84.6 86.5 01.06 1.2 66 864 00:34 13

Every dataset consists of 10k reads longer than 2Kbp (except E. coli ONT dataset with 7k reads of appropriate length). All runs
performed in 16 threads. Due to high fragmentation of assembly graph resulting from available C. elegans Bristol N2 Illumina
sequencing data, we used simulated lllumina reads to obtain C. elegans assembly graph

Vg showed highest average alignment identity for all considered datasets, but at the
same time resulted in very low fraction of mapped reads. The same tendency can be seen
on simulated datasets (see Additional file 1).

For E. coli datasets SPAligner showed 2—4% advantage in number of mapped reads over
GraphAligner, with no significant difference in mapping identity.

For S. cerevisiae SPAligner showed 3% advantage in number of mapped reads on
PacBio dataset while GraphAligner was able to map 4% more reads from ONT dataset.
In both cases advantage in number of mapped reads is accompanied by 1% reduc-
tion of average mapping identity, likely reflecting alignment of additional lower identity
reads. Supplementary Table S3 shows that on the set of reads mapped by both SPAligner
and GraphAligner (51% for S. cerevisiae PacBio dataset and 60% for S. cerevisiae ONT)
mapping identity is nearly the same for both tools.

SPAligner shows a 2% advantage in the number of mapped reads on C. elegans ONT
dataset with similar mapping identity, and on C. elegans PacBio dataset both tools show
similar results.

Overall, our benchmarking suggests that SPAligner and GraphAligner produce similar
alignments of long error-prone reads with SPAligner being faster and more memory-
efficient than GraphAligner in “try-all-seeds” mode and slower and less memory-efficient
than GraphAligner in default mode.

Aligning protein sequences
In contrast to other sequence-to-graph aligners available at the moment, SPAligner
supports alignment of protein sequences onto assembly graphs. In this section we demon-
strate how SPAligner can be efficiently used to identify regions of the assembly graph
exhibiting high similarity to known prokaryotic protein sequences.

Contigs originating from metagenomic assemblies can be excessively fragmented due
to various reasons, including inter-species repeats (conservative sequences, horizontally
transferred genes, etc) and within-species microdiversity [25]. Contig fragmentation can
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lead to loss of important insights in modern metagenomic studies, which increasingly rely
on annotation of assembled contigs for functional analysis of the microbial community
members [26, 27]. Alignment of known protein sequences onto metagenomic assembly
graph provides a complementary approach capable of identifying genes fragmented over
several contigs.

The capacity of applying SPAligner in this context is demonstrated below in two

experiments, considering alignments of:

e coding sequences from entire UniProt (The UniProt Consortium, 2019) database
onto an assembly graph of a well-defined synthetic metagenomic community;

e a comprehensive set of known antibiotic resistance genes onto an assembly graph for
a wastewater metagenomic dataset.

While alignment of a protein sequence with SPAligner might result in several alignment
paths (initiated by different anchors), in this work we will only consider single best scoring
alignment for each query.

Annotating genes in synthetic metagenomic community

Shakya et al. [28] performed sequencing of synthetic DNA mixture for 64 diverse bacterial
and archaeal organisms (SRA acc. no. SRX200676). This dataset, containing 109 million
2 x 100 bp Illumina reads (with mean insert size of 206 bp) has been extensively used
for benchmarking of tools for metagenomic analysis [29, 30]. Reference genome annota-
tions available for all organisms forming the community contain a total of 196150 protein
coding sequences, further referred as reference protein sequences.

We model the situation in which we aim to identify potential close homologs of known
protein sequences within the metagenomic assembly graph. In particular, we searched
for semi-global alignments of 350 thousand sequences comprising “reviewed” UniProt
database of bacterial proteins [31]. In order to identify UniProt sequences that are
expected to align to the assembly graph (assuming that the graph represents all necessary
sequences), we aligned UniProt sequences to the set of reference protein sequences. We
used BLASTp [32] with default settings in order to quickly find most similar sequences
to the reference one. As a result, 26209 UniProt sequences were mapped to some refer-
ence protein with 90% amino acid identity threshold. We consider assembly graph, built
by metaSPAdes v3.12 [29] with default settings, and use SPAligner to identify alignments
of UniProt sequences at 90% amino-acid identity threshold. SPAligner was able to align
93% (24324 out of 26209) of UniProt sequences with matching reference proteins (see
above), as well as 1299 extra sequences. Further analysis showed that the majority of
falsely identified sequences are similar to substrings of some reference protein sequences.

Identification of antibiotic resistance genes in a hospital wastewater sample
In this section we demonstrate how SPAligner can be applied to identify genes of
particular interest within real metagenomic dataset.

Spread of antimicrobial resistance is an escalating problem and a threat to public health.
Metagenomic sequencing provides an efficient methodology for detection and tracking of
the antibiotic resistance genes (ARGs) in the environment samples. Ng et al. [33] explored
wastewater and urban surface water metagenomic datasets for the presence of various
antimicrobial resistance (AMR) proteins, in particular beta-lactamases. To illustrate the
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ability of SPAligner to identify additional AMR gene families as compared to conventional
approaches based on analysis of assembled contigs, we focus on a hospital wastewater
discharge dataset, which, according to the original study, had the highest total coverage of
beta-lactamase genes. The dataset consisting of 3.3 million 2 x 250 bp Illumina reads with
mean insert size of 350 bp (SRA acc. no. SRR5997548) was assembled by metaSPAdes
v3.12 with default settings.

First, we used state-of-the-art AMRFinder tool [34] to identify AMR genes in assem-
bled contigs. AMRFinder performs the BLASTx [32] searches of the protein sequences
from Bacterial Antimicrobial Resistance Reference Gene Database [34], containing pro-
tein sequences for over 800 gene families representing 34 classes of antimicrobials and
disinfectants. Since we are aiming at the identification of the (almost) complete protein
sequences, partial predictions covering no more than 75% of the corresponding database
protein were discarded. All other parameters were left to defaults, including the 90%
alignment identity threshold.

We then used SPAligner to identify best alignments (with at least 90% amino-acid
identity threshold) for all 4810 ARG sequences from the same database onto the graph.

To check whether our sequence-to-graph alignments were able to capture additional
AMR protein families as compared to the baseline contig analysis approach, protein
sequences identified by AMRFinder and SPAligner were clustered by single-linkage
clustering with a 90% similarity cut-off. Clusters where only SPAligner alignments are
presented tend to be really far by identity from alignments found by AMRFinder and vice
versa. Out of the resulting 89 clusters a single cluster consisted of only AMRFinder pre-
diction. Further analysis showed that SPAligner also successfully identified corresponding
protein sequence which spanned 89.7% of the query length, while AMRFinder prediction
spans 90.7%. At the same time, 4 clusters contained only SPAligner’s alignments. tBLASTx
[32] alignments of the corresponding database protein sequences onto the assembled
contigs either covered less than 75% of the query or had low identity (< 70%).

Figure 2 shows a region of the assembly graph surrounding one of the putative proteins
predicted exclusively from SPAligner results. Corresponding alignment of the database
entry for IMP-4 beta-lactamase covered the entire query sequence with > 98% identity.

We further relate our analysis to the original study [33] with respect to the identi-
fied beta-lactamase families. Alignments were obtained for instances of seven out of

(a) Contigs paths (b) IMP-4 gene path

Fig. 2 Prediction of putative beta-lactamase protein sequence, fragmented in the metagenomic assembly
contigs. a Relevant region of assembly graph visualized by Bandage software [35]. Blue, red, green and brown
colors correspond to 4 different contigs within the metaSPAdes assembly. b Visualization of the alignement
path for IMP-4 gene (246 aa long, alignment identity — 98%). Edges comprising the path are colored in green
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nine beta-lactamase protein families from the original study (blaxpc, blacTx—m, blasuv,
blaTpym, blaiyp, blayiy and blapgxa). While SPAligner was not able to produce alignments
for two remaining gene families (blanpys and blacary), in the original study their instances
were estimated to be poorly covered compared to other families®.

Note that in [33] authors tried to identify multiple beta-lactamase sequences within the
same protein family, which we are not aiming to do here, since minor differences within
highly similar gene sequences are likely to be lost in the metagenomic assembly process.
Such high-resolution analysis should be possible within the sequence-to-graph alignment
framework via configuring the assembly graph construction stage to preserve necessary
genomic variation. This promising direction is left for future research.

Future improvements

In particular, our results suggest that SPAligner is an efficient solution for mapping third
generation sequencing data and can also facilitate the identification of known genes in
complex metagenomic datasets.

Besides general improvements of the codebase, we are planning to migrate to more
efficient libraries for searching anchor alignments [22, 24] and extension algorithms
(6, 13].

An important direction with respect to the nucleotide sequence alignment is improving
the alignment of reads structurally different from the genome, represented by the assem-
bly graph [36]. This includes a more reliable strategies for ignoring poorly sequenced read
extremities and producing split-read alignments.

With respect to the amino acid sequence alignment our future goals include improving
the sensitivity of the anchor alignment to allow for searching of the more diverged protein
sequences, as well as development of strategies for identification of multiple closely-
related gene sequences within the custom metagenomic assembly graphs with preserved

variation.

Conclusions

In this work we present SPAligner tool for aligning long diverged molecular sequences to
assembly graphs and demonstrated its effectiveness for aligning both reads produced by
third-generation sequencing technologies and protein sequences.

SPAligner was benchmarked against the two sequence-to-graph aligners supporting
long reads — vg and GraphAligner, and showed highly competitive results on various
Pacbio and Oxford Nanopore datasets. At the same time being the only tool that pro-
duce alignment of amino acid sequences, SPAligner was successfully used to identify gene
sequences, which were not fully recovered by metagenomic assembly.

Availability and requirements

Project name: SPAligner

Project home page: http://cab.spbu.ru/
software/spaligner

Operating system(s): Platform independent
Programming language: C++

6Total abundance of the identified families exceeds 150X, while the total coverage of NDM and CMY families was
estimated as 20X. The exact formula for abundance calculation is presented in the original study [33].
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Other requirements: g++ (version 5.3.1 or higher), cmake (version 2.8.12 or higher), zlib,
libbz2

License: GNU GPLv2

Any restrictions to use by non-academics: None
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