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Abstract
Background: The imputation of genotypes increases the power of genome-wide
association studies. However, the imputation quality should be assessed in each
particular case. Nevertheless, not all imputation softwares control the error of output,
e.g., the last release of fastPHASE program (1.4.8) lacks such an option. In this particular
software there is also an uncertainty in choosing the model parameters. fastPHASE is
based on haplotype clusters, which size should be set a priori. The parameter
influences the results of imputation and downstream analysis.
Results: We present a software toolkit imputeqc to assess the imputation quality
and/or to choose the model parameters for imputation. We demonstrate the efficacy
of toolkit for evaluation of imputations made with both fastPHASE and BEAGLE
software for HapMap and 1000 Genomes data. The discordance of genotypes received
correlated well in both methods. Using imputeqc, we also shown how to choose the
optimal number of haplotype clusters and expectation-maximization cycles for
fastPHASE program. The found number of haplotype clusters of 25 was further applied
for hapFLK testing that revealed signatures of selection at LCT region on chromosome
2. We also demonstrated how to decrease the computational time in the case of
hapFLK testing from 3 days to 20 h.
Conclusions: The toolkit is implemented as an R package imputeqc and command
line scripts. The code is freely available at https://github.com/inzilico/imputeqc under
the MIT license.
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Background
Imputation is an in silico method that infers genotypes for undetermined or missed
markers in study samples. It results both in harmonizing data sets and increasing the
overall number of markers available for testing. The situation is common for genome wide
association studies based on microarrays for genotyping portions of the genome variation.
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To increase the sample number and the power of the study, the datasets from different
arrays are combined. Since they have different number of single-nucleotide polymor-
phism (SNPs), the joined dataset misses a lot of them. However, the missing genotypes
can be replaced for their estimates provided with imputation.

The strategies of imputation are based on a heuristic, expectation-maximization (EM)
algorithm or coalescent models [1]. They are implemented in the following softwares:
fastPHASE [2], MaCH [3], IMPUTE2 [4], BEAGLE [5], and others. Imputation tackles
two obstacles: time and accuracy. To balance the increase in computational burden nec-
essary for large reference panels, two-step imputation procedure has been proposed. It
includes an initial pre-phasing (i.e., haplotype estimation) of the studied genotypes with a
subsequent imputation of reference panel markers into the estimated haplotypes.

The effect of imputation depends heavily on what is missing [6]. In each particular case
one needs to control the quality of genotype reconstruction. A standard approach here
is to apply masked data analysis, which involves three steps: genotype masking (mak-
ing some known genotypes to be unknown), imputation, and comparison of the results
obtained with the original ones. In general imputation touches either “hole filling” or
reconstruction of entire SNP. Therefore two ways of masking is possible. We can either
hide a proportion of genotypes or remove the whole SNP. Besides, the genetic markers
can be masked randomly or intentionally.

Some softwares estimate the quality of replacement of missing genotypes. They have
built-in options. However, the methods of assessing the quality are different. Thus, MaCH
allows masking a certain portion of genotypes at random. Users apply the –mask option.
The program estimates the allelic and genotypic error rates. The allelic rate is expected
to be less than 5%. Authors of the program also advice to check the ratio of allelic to
genotypic errors. It should be 2:1 since a small proportion of errors seems to be caused
by imputation of one homozygote as the other one. It is also possible to estimate the
imputation errors of MaCH by masking the whole SNPs, but extra scripts to generate
the masked input files and count the errors after imputation will be required in this case.
BEAGLE software provides r2 metric for each SNP and IMPUTE2 has INFO score, a
metric for imputation quality for each SNP scaled from 0 to 1. Both reflects the correlation
between imputed and true genotypes.

Other softwares, for example, last release of fastPHASE program (1.4.8), do not provide
the users with built-in option to evaluate the quality of imputation. Additionally the users
of this program meet a problem of choosing the optimal number of haplotype clusters (K).
Scheet and Stephens called it a tricky statistical problem because Akaike and Bayesian
information criteria did not work well [2]. They proposed to apply a masked data analysis
to select K.

The number of haplotype clusters is also required for recently introduced hapFLK
software [7]. It exploits haplotype cluster model for detection of signals of natural selec-
tion in genomes. The authors of hapFLK statistic emphasized that the distribution of
hapFLK values can depend on the number of clusters thus pointing out the importance
of choosing this parameter. At the same time, users of hapFLK cannot utilize information
about the number of haplotype clusters from other software, for example, from BEA-
GLE, because the numbers identified varies along the genome [8]. Since such variation
itself may be due to natural selection, hapFLK requires a fixed number of clusters for
calculations.
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The absence of ready-to-use solution for assessing the quality of genotype imputation
in the case of fastPHASE pushed us to create a toolkit that would allow to estimate the
error of imputation and select the optimal model parameters. Our research resulted in
R package imputeqc. It utilizes the masked data analysis. The results of imputeqc testing
demonstrated that it can be applied not only with fastPHASE but also with BEAGLE and
other imputation softwares.

Below is the description of the package as well as its demonstration for datasets from
HapMap [9] and 1000 Genomes Projects [10]. The quality of imputation made with fast-
PHASE was estimated and compared to that of performed with the most versatile tool
BEAGLE. Both fastPHASE and BEAGLE are based on cluster models but of different
implementation. The optimal numbers of haplotype clusters (K) and EM cycles were
determined for fastPHASE. The K value was further applied for hapFLK test.

Implementation
The imputeqc project

imputeqc is an R package and accompanied scripts to estimate the quality of imputation
of genotypes of diploid organisms. We approach the imputation quality as discordance
between the imputed and true genotypes. The package supports two formats of input
files: *.inp and Variant Call Format (VCF). The first one is applied in fastPHASE tool,
while the second one is widely used for storing the DNA sequence variations.

imputeqc is based on masked data analysis that allows to estimate the imputation error.
Comparing the errors over several calculations made with different inputs, the user can
identify the imputation parameters statistically rather than heuristically. The examples of
such parameters are the numbers of haplotype clusters and EM cycles.

The key functions of imputeqc are as follow:

1 ReadfastPHASE() parses fastPHASE *.inp files. There are two types of them: with
ids of samples provided or not. The function loads both types. The alleles can be
coded as letters or numbers, but the missing ones should be “?”. The function
returns a character vector with strings representing the haplotypes. Two strings
per individual.

2 ReadVCF() loads data from VCF files and returns a character vector with
haplotypes. The function is built on top of readVcf() function from
VariantAnnotation R package [11].

3 GenerateMaskSet() samples a set of masks, given a proportion of genotypes to be
masked at each loci or the proportion of markers to be masked completely (p) and
the number of masks (n). The masks are generated without replacement. This
allows studying the space of possible variants of missing genotypes. Such an
approach can be regarded as a general case of cross-validation method. The
difference is in that GenerateMaskSet() allows to chose the number of data
partitions (n), while the traditional cross-validation fixes this number. Before
masking the function determines already existing missing genotypes. Thus, in the
case of masking the genotypes, the overall missingness will be higher than p. The
return value is a list of matrices with binary masks. The length of the list equals to n.

4 ApplyMasks() applies a set of masks to vector of haplotypes obtained with
ReadfastPHASE() or ReadVCF() functions. The output is saved as *.inp or VCF
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files, correspondingly. The number of files created equals to the number of masks
generated. The output files are ready for imputation with fastPHASE, BEAGLE or
other appropriate tools.

5 EstimateQuality() counts the discordance between imputed and true genotypes as
a proportion of genotypes imputed wrongly. By wrongly imputed genotypes we
mean that either one or both alleles did not coincide with the original ones.
Function returns a data frame for one set of test files with two columns:
“discordance” and “id”. The first column contains the value of discordance. The
second one has a user defined id. It is useful for a subsequent visualization. For
example, there are several computations distinguishing by a model parameter. In
this case, one can assign a value of model parameter to id argument of the function
and build a graphic showing the descordance vs. model parameter. The second
column is optional.

Besides R functions imputeqc project includes also some useful scripts:

• make_test_files.R automates creation of files with hidden genotypes or whole SNPs.
It takes fastPHASE or VCF files, the desired number of different masks (n), the
proportion of genotypes or SNPs to be hidden (p). The script outputs n files with
artificially missed data.

• hapmap2fastphase.R converts HapMap data into fastPHASE format.
• hapmap2plink.R converts HapMap data into Plink format.

To access the scripts, install the imputeqc package. Then retrieve the path to the scripts
by the command from R: system.file(“extdata”, package=“imputeqc”).

Masked data analysis

Assume you have Plink files with genotypes and want to estimate the imputation quality
as well as the optimal model parameters for fastPHASE program. The workflow proposed
is as follow.

1 Convert Plink files to fastPHASE *.inp files, using Plink tool.
2 Generate a set of test files with make_test_files.R script which is enclosed to the

package.
3 Impute the missing genotypes in each test file with fastPHASE.
4 Estimate the imputation quality with EstimateQuality() function in R.
5 Repeat steps 3 and 4 by varying one model parameter to be optimized.
6 Chose the parameter that minimizes the imputation error.

Results
Data preprocess

We used the same release of HapMap Project (Phase I, March 2005) as the
authors of fastPHASE tool. Non-redundant genotypes were downloaded from
ftp://ftp.ncbi.nlm.nih.gov/hapmap/genotypes/2005-03_16a_phaseI/full/non-redundant/.
The data were converted into Plink format with a custom script hapmap2plink.R, which
is also available within imputeqc toolkit. Having the file with pedigree information,
we left 60 unrelated individuals from CEPH population. To be processed the genotype
datasets should meet some thresholds (call rate, minor allele frequency, Hardy-Weinberg

https://ftp://ftp.ncbi.nlm.nih.gov/hapmap/genotypes/2005-03_16a_phaseI/full/non-redundant/
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Table 1 Dataset attributes and the discordances of genotypes imputated by fastPHASE and BEAGLE
softwares

Population Size Chrom SNPs fastPHASE BEAGLE

CEPH 60 7 28900 0.031 (0.004) 0.033 (0.003)

CEPH 60 22 13653 0.020 (0.001) 0.023 (0.001)

CEU, TSI, CHB, JPT 401 1 41524 0.0188 (0.0001) 0.020 (0.001)

CEU, TSI, CHB, JPT 401 22 7441 0.029 (0.001) 0.030 (0.001)

equilibrium). Using Plink v1.90b5.2 [12], we removed markers with MAF less than 0.01,
not fitting Hardy-Weinberg equilibrium (p-value < 10−5), and having genotype call rate
less than 0.95. The duplicated by position markers were also removed. The number of
SNPs thus left are given in Table 1.

Genotypes of CEU, TSI, CHB, JPT and YRI populations were extracted with VCFtools
0.1.15 [13] from the archive Omni25_genotypes_2141_samples.b36.v2.vcf.gz downloaded
from ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/working/. The list of SNPs con-
taining 2384646 observations was filtered similar to HapMap data. Sex and mitochondrial
chromosomes were removed. Only markers having “rs” in their id had been saved as Plink
files. The number of SNPs and individuals filtered are given in Table 2.

Five datasets were then merged by applying custom R scripts and Plink. The resulted file
contained 512476 SNPs and 502 individuals. The Reynolds distances required for hapFLK
calculations were further computed in R as follow:

� =
∑m

j=1
∑ai

i=1
(
pij − qij

)2

2
∑m

j=1
(
1 − ∑ai

i=1 pijqij
)

where pij and qij are the frequencies of i-th allele at j-th loci of two populations consid-
ered. They were estimated with Plink. For biallelic model ai = 2. The obtained Reynolds
distances are presented in Table 3. As it is seen from the table, the YRI population has
the largest values of about 0.15 with CEU, TSI, CHB, JPT whereas these four populations
are closer to each other as compared to YRI. Therefore, the YRI was chosen as outgroup
for hapFLK testing. It was removed from the dataset, thus leaving 401 individuals for
subsequent computations.

The kinship matrix was generated with reynolds2kinship.R script provided by hapFLK
toolkit. The dataset was split into 22 files according to the number of autosomes. The
chromosomes 1 and 22 were chosen for masked data analysis. The number of markers
in the chromosomes are given in Table 1. To estimate the quality of imputation made
with BEAGLE, we used the same files as for fastPHASE, while converting them into VCF
format with Plink.

Table 2 The number of SNPs and sample size for populations from 1000 Genomes Project after
filtration

Population Individuals SNPs

CEU 102 613498

TSI 99 622338

CHB 100 581985

JPT 100 575606

YRI 101 632448

https://ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/working/
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Table 3 The Reynolds distances for the populations from 1000 Genomes Project

YRI CEU TSI CHB JPT

YRI 0.0 0.1515256 0.1473879 0.1745052 0.1758466

CEU 0.1515256 0.0 0.008708298 0.1095429 0.111366

TSI 0.1473879 0.008708298 0.0 0.1094925 0.1113009

CHB 0.1745052 0.1095429 0.1094925 0.0 0.01185164

JPT 0.1758466 0.111366 0.1113009 0.01185164 0.0

For each chromosome under consideration a set of 5 different test files containing arti-
ficially missing genotypes was generated with make_test_files.R script. It is a command
line script built on imputeqc functions to automate the creation of files with missing geno-
types. Ten percent of genotypes at each loci was randomly marked to be missing. The
masks in a set do not repeat themselves, the script keeps a track of positions masked.

The VCF files containing 10% of missing genotypes were also generated with
make_test_files.R, which recognizes automatically *.inp (fastPHASE format), *.vcf, and
*.vcf.gz files.

Demonstration

To test imputeqc efficacy we compared the results obtained by this tool with those pub-
lished by the authors of fastPHASE. We ran the toolkit with fastPHASE (1.4.8) software
on genotypes of 60 unrelated individuals from CEPH population of HapMap project by
masking 10 and 25% of genotypes. In the case of 10% masked genotypes Paul Scheet and
Matthew Stephens found the imputation errors to be 0.034 and 0.033 for chromosome 7
and 22, respectively. Using imputeqc, we obtained similar imputation error for chromo-
some 7 (0.031, SD 0.004) and lower value for chromosome 22 (0.020, SD 0.001) (Fig. 1).
In the case of 25% masked data we also received discordances close to those of pub-
lished by the authors of fastPHASE who reported 0.041 for chromosome 7 and 0.039 for
chromosome 22 (Fig. 2).

Both chromosome 7 and 22 showed similar values of optimal K. But they differ depend-
ing on the missigness of genotypes. The discordance was minimal at K = 15 for 10% of
masked data (Fig. 1) and at K = 10 for 25% of masked data (Fig. 2).

Since the haplotype cluster model is often applied to the pool of populations, we also
demonstrated imputeqc for a dataset composed of genotypes from CEU, TSI, CHB and
JPT populations of 1000 Genomes Project.

Firstly, we estimated the optimal numbers of haplotype clusters and EM cycles. Fol-
lowing the approach related to the “elbow” method (see Discussion), we found K to be
25 (Fig. 3), while the number of EM cycles to be 20 (Fig. 6). Then, applying these model
parameters, we found the genotype discordance to be 0.0188 (SD 0.0001) and 0.029 (SD
0.001) for chromosome 1 and 22, respectively. Testing four other chromosomes (3, 8, 13
and 18) resulted in similar optimal K values. The discordances of genotypes were between
those estimated for chromosome 1 and 22 (Figs. 4 and 5)

We also demonstrated the usage of imputeqc toolkit with BEAGLE (4.1) software.
As fastPHASE it is based on cluster model, but the number of haplotypes clusters is
adjusted dynamically. There is no need to optimize this parameter with extra calculations.
BEAGLE showed similar to fastPHASE genotype discordance estimated with imputeqc
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Fig. 1 Discordance of CEPH genotypes from HapMap imputed with fastPHASE applying different number of
haplotype clusters under 10% of missing genotypes

for all datasets tested. The discordance is given as median followed by standard devia-
tion in parentheses. Each value is calculated from five imputations of genotypes masked
uniquely (Table 1).

The optimal number of haplotype cluster being known, hapFLK test for the search of
footprints of selection can be performed. We ran it for a pool of CEU, TSI, CHB and JPT

Fig. 2 Discordance of CEPH genotypes from HapMap imputed with fastPHASE applying different number of
haplotype clusters under 25% of missing genotypes
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Fig. 3 Discordance of pooled CEU, TSI, JPT, and CHB genotypes of chromosomes 1 and 22 imputed with
fastPHASE applying different number of haplotype clusters

populations. YRI was chosen as outgroup. The p-values of hapFLK metric thus obtained
are given in Fig. 7. They showed a strong signal at chromosome 2, position 137 Mb, which
is known to be associated with a regulation of LCT gene. The analysis of haplotype clus-
ter frequencies of 4Mb region around this signal indicated CEU population contributing
essentially to the signal (Fig. 8).

Imputation

Missing genotypes were imputed with fastPHASE 1.4.8 program applying the parameters
as follow. The number of EM starts with different seeds was 10 in all calculations. The
number of EM iterations was fixed to 20, while the K value varied from 5 to 40 with a
step of 5. The K was fixed to 20, while the number of EM varied from 5 to 35 with a step

Fig. 4 Discordance of pooled CEU, TSI, JPT, and CHB genotypes of chromosomes 3, 8, 13, and 18 imputed
with fastPHASE applying different number of haplotype clusters
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Fig. 5 Medians of discordances of pooled CEU, TSI, JPT, and CHB genotypes of chromosomes 1, 3, 8, 13, 18,
and 22 imputed with fastPHASE applying different number of haplotype clusters

of 5. Missing genotypes were also imputed with BEAGLE 4.1 program applying default
parameters without reference genome.

hapFLK calculations

hapFLK values were obtained with hapFLK (1.3.0) tool [7]. Ten model fit iterations, 25
haplotype clusters, and YRI population as outgroup were applied. P-values of hapFLK
were estimated with scaling_chi2_hapflk.py available at hapFLK website [14]. The haplo-
type cluster frequencies were analysed and visualized with custom scripts in R. All plots
in the paper were made with ggplot2 R package [15].

Computational time

We ran computations on Intel(R) Core(TM) i7-6800K CPU @ 3.40GHz machine with
64Gb RAM and 12 CPUs. Below are computation times in the case of a pool of CEU, TSI,
CHB, and JPT populations. The creation of 5 masked files with make_test_files.R script
took 5 minutes for chromosome 22 and 2 h for chromosome 1. The imputation with
fastPHASE was quite time consuming. Thus, the imputation of 8 sets (K = 5, 10, 15, 20,
15, 30, 35, and 40) each having 5 masked files took 6 days for chromosome 22. In contrast,
the imputation of 5 masked files with k = 35 took 6 days for chromosome 1.

We noticed that fastPHASE utilizes only one CPU. Therefore several runs of this pro-
gram can be made in parallel. The GNU parallel [16] utility allows to do it. When it was
applied, the imputation at K = 40 (5 masks) took 48 h for chromosome 1. The calculation
of hapFLK metric required about 20 h.
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Discussion
An R package imputeqc is proposed and demonstrated for masked data analysis to esti-
mate the quality of imputation and to select the optimal parameters for imputation and
downstream analysis. Firstly, we wanted to be sure that the imputation error estimated
by us was in agreement with literature data. For the purpose we reproduced the results
published by the authors of fastPHASE tool. We masked 10 and 25% of genotypes. For
both cases the estimated genotype imputation errors were similar to those obtained by
Scheet and Stephens [2]. The same seemed to be also true regarding the optimum num-
ber of haplotype clusters. We estimated this parameter to be 15 and 10 for 10 and 25% of
masked genotypes, respectively. However, the authors of fastPHASE made accent on its
lower value (K = 8) that probably reflected their desire to keep the computational burden
low.

Secondly, we demonstrated the application of imputeqc for the search of signatures of
selection. It can be easily incorporated in a pipeline with hapFLK test. Here one needs
to answer the question how many clusters should be considered in haplotype cluster
model to perform hapFLK calculations in a particular pool of populations. That is why
we merged datasets from 1000 Genomes Project (CEU, TSI, CHB, and JPT ), generated
several files with artificially missing genotypes, and imputed them with fastPHASE under
different K values.

As seen from Fig. 5, the median of genotype imputation error decreases from 0.029
to 0.018, when K increases from 5 to 40 in the case of chromosome 1. Other chromo-
somes tested showed similar behavior but the discordance was higher. The shorter the
chromosome was, the higher the discordance became.

We also found here that the error curve had an asymptotic shape at the range of K values
studied, whereas in the case of one population it showed a clear minimum (Figs. 1 and 2).
The change of the shape can be attributed to the bias-variance trade-off [17].

The higher the number of haplotype cluster, the more complex the model becomes. On
the one hand, the raise in complexity drops the bias of the model. It tends to predict the
outcome variable more accurately. On the other hand, the variance of predicted values
becomes higher with increasing the error. The counter-play of two tendencies (bias and
variance) results in a minimum of imputation error that we observed in the case of one
population imputed (CEPH from HapMap).

When the object became more complex (e.g., four different populations were mixed),
the minimum was not observed at the range of K values considered (Fig. 3). It is
probably shifted to a higher number with K greater than 40. The positive influ-
ence of reduced bias predominates the imputation error observed. The error curve
shows the permanent decrease. The question is how to choose the optimal K value
in this case?

Determining the optimal number of clusters is a fundamental problem in Data Science.
For example, the R package NbClust [18] provides 30 different indexes for estimating the
best number of clusters. The authors of fastPHASE tested Akaike and Bayesian informa-
tion criteria and found them to be inappropriate. To select K for fastPHASE, we propose
an approach similar to “elbow” method [19]. The location of a bend in a plot of error
against K indicates the optimal number of clusters. More clusters will not make the model
better but will increase dramatically the computational time. Following this way, we found
the optimal number of haplotype clusters to be 25.
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To estimate the optimal K in the case of asymptotic behavior of the discordance curve,
users can also apply more profound approach. For example, one can load the table with
discordances created with EstimateQuality() function from imputeqc and process it with
the function elbow() from GMD R package [20].

Package imputeqc has a practical benefit. There is a trade-off between accuracy and
computational time, which depends on the model parameters. The computational com-
plexity of fastPHASE algorithm is O

(
nMK2), which means that it is liner dependable on

the number of individuals and markers but square dependable on the number of clusters
[2]. The optimization of K allows to reduce essentially the computational cost.

The toolkit proposed is designed in such a way as to optimize not only the number of
haplotype clusters but also other parameters of the model. As illustration we considered
the optimization of the number of EM steps. It should be enough for the likelihood to
converge at its maximum value. The convergence can be estimated visually by plotting
likelihoods or by assessing imputation quality with imputeqc at different values of EM
steps.

The genotype imputation error demonstrated similar dependence on the number of EM
cycles as that of haplotype cluster did (Fig. 6). Using “elbow” approach, we can conclude
that the model converged in 20 iterations.

Thus, we demonstrated the usage of imputeqc not only for the estimation of genotype
imputation error but also for the selection of optimal values of K and EM parameters to
secure the computational time. Using the optimal values of K and EM steps, we further
applied them for hapFLK testing of populations from 1000 Genomes Project.

The Manhattan plot of p-values estimated for hapFLK statistic showed a strong signal
near LCT gene (Fig. 7). According to haplotype cluster frequencies, it is accounted by
CEU population (Fig. 8). This observation is in a good agreement with the studies of

Fig. 6 Discordance of pooled CEU, TSI, JPT, and CHB genotypes of chromosome 22 imputed with fastPHASE
with different number of EM cycles
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Fig. 7 Manhattan plot of hapFLK p-values for the pool of CEU, TSI, CHB and JPT populations. Red horizontal
line corresponds to 0.999-th percentile of p-values

haplotype diversity around LCT gene in human populations made with fastPHASE [21]
and BEAGLE [22]. It should be also mentioned that hapFLK test has not yet been applied
to the populations of humans. Our results showed its potential for the search of signatures
of selection among humans.

Thirdly, imputeqc is flexible regarding the input files of different formats. Potentially
it can be used to estimate the quality of genotypes inferred by any imputation program.
To illustrate this, we estimated the quality of imputation made by BEAGLE software. We

Fig. 8 Haplotype cluster frequencies in 4 Mb region at chromosome 2 (LCT region)
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applied it to the same set of populations and found the errors to be close to those obtained
with fastPHASE (Table 1).

Thus, imputeqc can be used for the estimation of imputation quality on real data sets,
with the imputation softwares being different. It also provides a way to optimize the
parameters of imputation models or test different inputs of the program applied. For
example, the user can run imputation with different reference panels and compare the
discordance of genotypes reconstructed.

To conclude, the imputeqc core functions are based on the standard R data classes [23].
Therefore, for deeper analysis of imputation quality it can be extended with functions
available at other R packages. We validated our toolkit for fastPHASE and BEAGLE soft-
wares but it is quite adaptive and can be used with other imputations tools allowing the
users to assess the imputation quality independently by self-designing tests. However, in
this case the scripts to make the input files may be required. We consider the toolkit as
especially useful for the developers of new imputation algorithms as well as for those who
study the factors influencing the quality of reconstruction of missing genotypes.

Conclusions
A new open-source software toolkit, which includes an R package imputeqc and accom-
panied scripts, is proposed. It allows to estimate the quality of genotype imputation made
with different tools as well as to determine the appropriate number of haplotype clusters
for searching footprints of selection with hapFLK software. Other model parameters can
be also optimized with imputeqc. The toolkit is freely available from GitHub repository
by the link https://github.com/inzilico/imputeqc.

Availability and requirements
Project name: imputeqc
Project home page: https://github.com/inzilico/imputeqc
Operating system(s): Platform independent
Programming language: R
Other requirements: R packages ggplot2, plyr, VariantAnnotation
License: MIT License
Any restrictions to use by non-academics: no restrictions
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