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Abstract

Background: Identifying splice sites is a necessary step to analyze the location and structure of genes. Two
dinucleotides, GT and AG, are highly frequent on splice sites, and many other patterns are also on splice sites with
important biological functions. Meanwhile, the dinucleotides occur frequently at the sequences without splice sites,
which makes the prediction prone to generate false positives. Most existing tools select all the sequences with the
two dimers and then focus on distinguishing the true splice sites from those pseudo ones. Such an approach will lead
to a decrease in false positives; however, it will result in non-canonical splice sites missing.

Result: We have designed SpliceFinder based on convolutional neural network (CNN) to predict splice sites. To
achieve the ab initio prediction, we used human genomic data to train our neural network. An iterative approach is
adopted to reconstruct the dataset, which tackles the data unbalance problem and forces the model to learn more
features of splice sites. The proposed CNN obtains the classification accuracy of 90.25%, which is 10% higher than the
existing algorithms. The method outperforms other existing methods in terms of area under receiver operating
characteristics (AUC), recall, precision, and F1 score. Furthermore, SpliceFinder can find the exact position of splice
sites on long genomic sequences with a sliding window. Compared with other state-of-the-art splice site prediction
tools, SpliceFinder generates results in about half lower false positive while keeping recall higher than 0.8. Also,
SpliceFinder captures the non-canonical splice sites. In addition, SpliceFinder performs well on the genomic
sequences of Drosophila melanogaster, Mus musculus, Rattus, and Danio rerio without retraining.

Conclusion: Based on CNN, we have proposed a new ab initio splice site prediction tool, SpliceFinder, which
generates less false positives and can detect non-canonical splice sites. Additionally, SpliceFinder is transferable to
other species without retraining. The source code and additional materials are available at https://gitlab.deepomics.
org/wangruohan/SpliceFinder.
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Background
Introduction
In recent years, high-throughput sequencing technolo-
gies have generated a large volume of genome sequences,
which poses both opportunities and challenges to the
identification of gene structure in genomes. The analy-
sis of gene structure becomes one of the essential tasks
in bioinformatics. A complete gene structure annota-
tion includes the start codons, splice sites which are the
boundaries between exons and introns, and stop codons.
Many in silico methods are proposed to identify the
aforementioned functional sites [1]. The success of an
annotation system relies on accurate prediction of each
component. In this work, we focus on the prediction
of splice sites where accurate localization of splice sites
can substantially help explore the structure of genes [2].
Furthermore, accurate prediction of splice sites can setup
the boundaries of exons which is critical in alternative
splicing prediction.

There are two types of splice sites, donor sites and
acceptor sites where donor sites are located at the junc-
tion of exon-intron and acceptor sites mark the intron-
exon boundaries. Two highly conserved dinucleotides are
observed on the splice sites, GT for donor sites and AG
for acceptor sites [3, 4]. The splice sites confirming the
GT-AG consensus are called canonical splice sites.

We now introduce the main factors which affect the
accuracy of splice site prediction. Firstly, the existence of
the dinucleotide GT or AG is not necessary for identifying
the splice sites, some non-canonical splice sites without
the dimers may be observed [5–9]. Though non-canonical
splice sites may not appear frequently [10, 11], some of
them are vital in immunoglobulin gene expression and
other important biological events [11]. Secondly, the exis-
tence of the dinucleotide GT or AG is not a sufficient
condition for splice sites since dimers frequently occur
at the sequences that are not splice sites. In this paper,
we address the aforementioned two issues in splice site
prediction.

Related work
The existing splice site prediction tools work on data
from either RNA sequences or DNA sequences. For
RNA-seq based tools, TopHat [12], SpliceMap [13], and
MapSplice [14] apply the alignment-based approach by
mapping the reads from RNA-seq experiments to the ref-
erence genome and discovering the exon-exon junctions.
The alignment-based approach makes it easier to
avoid false positives since it relies on the junction
signals, instead of patterns. However, the need for
a reference genome limits its application. Recently,
deep neural networks have been employed to pre-
dict splice sites from arbitrary pre-mRNA transcript
sequences [15].

For tools based on DNA sequences, they utilized learn-
ing models to learn the features around splice sites. With
more advanced machine learning algorithms designed,
complex patterns are likely to be learned, which leads
to the improvement in prediction accuracy. For exam-
ple, GeneSplicer applies the decision tree algorithm
and enhances it with Markov models to capture addi-
tional information around splice sites [16]. SpliceMachine
employs linear support vector machines to build a lin-
ear model, in order to predict splice sites from high-
dimensional local context representations [17]. Support
vector machines with weighted degree kernel have also
been applied to genome-wide predictions of splice sites
[18]. In recent years, deep networks have been widely
utilized to detect splice signals from genomic data. A
novel deep belief network with restricted Boltzmann
machines training method has been proposed for the
class-imbalanced problem [19] in splice site prediction.
Long short-term memory (LSTM) [20] and convolutional
neural networks (CNN) [21] have also been tried to
improve the performance. However, the learning mod-
els have the shortcoming of excessive false positives.
To solve the problem, most tools firstly choose all the
sequences with canonical signals (GT for donor sites and
AG for acceptor sites) as candidate splice sites and then
distinguish between true splice sites and pseudo splice
sites [16–18, 21]. In spite of the decrease of false posi-
tives, these tools would miss all the non-canonical splice
sites.

Based on the existing problems of splice site prediction,
we propose to design a splice site prediction tool, named
SpliceFinder, which has the following strengths:

(i) The model is trained with genomic data directly, so it
can achieve the ab initio prediction of splice sites.

(ii) Not only canonical but also non-canonical splice
sites can be predicted correctly.

(iii) The number of false positives decreased since
SpliceFinder considers more information besides AG
or GT pattern to identify splice sites.

Methods
Datasets
DNA sequence data (FASTA files) and annotations of the
corresponding sequences (GTF files) were downloaded
from Ensembl [22]. Our models were trained using human
reference genome (GRCh38). Since the reverse strand is
the reverse-complementary strand of the forward strand,
we only considered the forward strand. The hg38 dataset
contains 29742 genes with 21 exons per gene on aver-
age, most of these exons have duplicates due to alternative
splicing [23]. We randomly chose a certain number of
exons to generate training set for donor sites and acceptor
sites.
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For the purpose of testing the models on other species,
we also downloaded the genomic sequences of Drosophila
melanogaster (BDGP6), Mus musculus (GRCm38), Rattus
(Rnor_6.0), and Danio rerio (GRCz11) from Ensembl.

Convolutional neural network
Neural networks (NNs) consist of connections between
neurons, NNs learn from dataset by adjusting the weights
of the connections. However, the weights for different
positions are independent, NN is not enough for finding
the particular patterns of splice sites over the sequences
[21]. Therefore, a convolutional layer, which enables
shared weights, is added to the NN [24]. Figure 1 and the
following descriptions provide a summary of the input and
architecture of our CNN.

Before training, the sequence data are transformed
using one-hot encoding. A (Adenine) is encoded as
(1 0 0 0), C (Cytosine) is encoded as (0 1 0 0), G (Guanine)
is encoded as (0 0 1 0), T (Thymine) is encoded as (0 0 0 1),
and N (uncertain nucleic acid) is encoded as (0 0 0 0). As
a result, each sequence can be represented with a L × 4
matrix where L is the length of the sequence and 4 is the
size of nucleotides vocabulary. The encoded sequence is
the input of our neural network.

The first layer of our neural network is a convolu-
tional layer. The genomic sequence is considered as a 1-D
sequence window with a fixed length L and four chan-
nels (A, C, G, T). The convolutional layer is supposed to
extract the pattern information with 50 kernels of size 9,
and the length of scanning step is set to 1, for the purpose
of preserving the integrity of genetic code. The output of
the convolutional layer is a L × 50 feature map, where

L is the length of the sequence. Different numbers of
convolutional layers were tried and the results are shown
in Additional file 1. The NN with one convolutional layer
gives the best performance. Consequently, the following
experiments will apply one convolutional layer.

The following layer is a fully connected layer with 100
neurons. The fully connected layer is employed in order
to improve the nonlinear expression ability of our neu-
ral network, so that the model is more likely to detect
those non-canonical splicing signals. ReLU [25] is applied
as the activation function in this layer. In order to avoid
overfitting, a dropout layer [26] is used to randomly mask
out 30% of the output. The final fully connected layer has
three neurons which correspond to acceptor site, donor
site, and non-splice-site. Softmax activation function [27]
is used for the neurons in the last fully connected layer to
convert the output into normalized probability.

For training, cross-entropy [28] is used as the loss func-
tion, and Adam algorithm [29], with the learning rate of
10−4, is applied for optimization. The number of epochs
for training is set to 40, with the batch size of 50. We used
Keras Python package to build our CNN.

Training and testing procedure
The human reference genome (GRCh38) was used to con-
struct the dataset. We obtained the location of exons from
the annotation file, took sequences centered at the right
and left boundaries of exons, which correspond to donor
sites and acceptor sites, as the positive set of our train-
ing data, and then we took sequences centered at the
intermediate position of two adjacent splicing sites as the
initial negative set. The dataset contains 10000 sequences

Fig. 1 The architecture of our proposed CNN. The input of the neural network is the encoded DNA sequence with the length of L. The first layer is a
1-D convolutional layer, consists of 50 kernels with the size of 9. The second layer is a fully connected layer with 100 neurons, followed by a dropout
layer. Another fully connected layer and softmax activation function are applied for the final prediction
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of donor site, acceptor site, and non-splice-site, which are
randomly selected. Among the 30000 sequences, we used
90% for training and 10% for testing, and then 20% of
the training data were set as validation data, which were
used for checking network structure, hyper-parameters,
and sequence length.

Next, we used our trained model to predict the splice
sites on real-world long genomic sequences. Now that
the model requires fixed length input, we decided to use
a sliding window to detect every location on the long
sequences. Only when the splicing site locates in the mid-
dle of an input sequence will our model give a positive
classification result. Therefore, by moving the sliding win-
dow along the sequence and putting every subsequence
into our model, we will get the exact positions of every
splicing site. To decrease the number of false positives,
we also used two classifiers for those subsequences con-
sidered to have splice sites. The structures of these two
classifiers are the same as the structure of our proposed
CNN, except that the last fully connected layer has only 2
neurons, to predict whether it is a donor (acceptor) site or
false positive.

Dataset reconstruction
In spite of the high classification accuracy, we found that
when we apply the model to a long real-world sequence,
most non-canonical splice sites could not be found out,
and there were still many false positives. We believe the
major cause is that the training set is not comprehen-
sive. To solve the unbalance problem of the dataset, firstly,
we reconstructed the positive set by achieving a canoni-
cal: non-canonical ratio of 10:1 (totally 22000 sequences).
Then, for the negative set, there are too many sequences
containing GT or AG that are not annotated as splice sites,
so we used an iterative approach [30] to reconstruct the
negative set:

(i) We used 90% of the current dataset as the training
set. The model was trained with the training set. The
rest of the dataset was used to test the performance
of our CNN on the current dataset.

(ii) The model was used to predict splice sites on the
sequence of a randomly chosen human gene with a
sliding window.

(iii) The false positives generated from the last step were
added to the negative set. The new negative set,
together with the positive set, constituted the new
dataset.

This procedure was repeated until the number of false
positives did not decrease anymore when testing a gene
sequence which is set aside in advance. These steps are
illustrated in Fig. 2. The method forces the convolution
neural network to learn more features for the classification
task.

Performance evaluation
Our models can be applied to discriminating short
sequences and predicting splice sites on long sequences.
For short sequences classification, we measured perfor-
mance in terms of accuracy, area under receiver operat-
ing characteristics curve (AUC), recall, precision, and F1
score:

Recall = TP
TP + FN

,

Precision = TP
TP + FP

,

F1 score = (
Recall−1 + Precision−1

2
)−1.

Since all the measures except accuracy are applicable
for two-class classification, and other methods used for
comparison are designed only for two-class problems, we
calculated AUC, recall, precision, and F1 score for donor
site and acceptor site separately. The ROC curves and
precision-recall curves were also made for the perfor-
mance evaluation.

For long genomic sequences, on the one hand, most
of the existing tools can not find all the splice sites no
matter how to set the parameters; on the other hand,
the prediction with low recall is meaningless even though
the number of false positives is small. In order to con-
sider both the value of recall and the number of false
positives, we counted the number of false positives when
100% and 80% of the splice sites are successfully predicted
separately.

Results
Testing different length of input
To choose the most suitable region for training, we used
sequences of different lengths as the input of our mod-
els. Since the sequence lengths used in other splice site
prediction tools range from 40 to 400 nt, we varied the
input lengths in this range. Using the initial dataset, we
found that all the test accuracies reach 95%. However, the
accuracies have significant declines after the iterative pro-
cess because of the increased complexity of test data. For
instance, the accuracy decreases from 96.9% to 83.2% for
sequence length of 40 nt, and for sequence length of 400
nt, the accuracy changes from 96.5% to 90.3%. Longer
sequences help models keep good performance since they
provide more information. As shown in Fig. 3, CNN
achieves the best performance with the input length of 400
nt for the reconstructed dataset. Accordingly, subsequent
experiments will use this length of input.

Decomposing the output of CNN
To improve the interpretability of our neural network, we
utilized DeepLIFT to analyze the contributions of differ-
ent regions inside the sequence window to the output.
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Fig. 2 The iterative approach for negative set reconstruction. At each iteration, the trained CNN is tested with a randomly chosen genomic
sequence, the false positives are collected and added to the training data, which will be used to train our CNN at the next iteration

Fig. 3 The effect of sequence length on accuracy. Varying the sequence lengths from 40 to 400 nt, the classification accuracies for the test set of
initial dataset and reconstructed dataset are compared
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DeepLIFT uses the backpropagation method to decom-
pose the prediction of neural network on the input and
computes the weighted contribution scores for every part
of the input, thus making neural network no longer
a “black box” [31]. We randomly chose 100 sequences
with donor sites, 100 sequences with acceptor sites, 100
non-splice-site sequences with GT dimers, and 100 non-
splice-site sequences with AG dimers, from human ref-
erence genome, and then applied three models generated
from different periods of the iterative process to classify-
ing these sequences. The average weighted contribution
scores for 20 nucleotides near the splice sites are com-
puted, which show the influence of each nucleotide on the
right decision. A positive score means a positive role in
making the right decision while a negative score means
an opposite effect. The result is shown in Fig. 4. For
sequences with donor site or acceptor site, the contribu-
tion scores of GT or AG are high for all of the three
models. However, for non-splice-site sequences with the
dinucleotide GT or AG, the negative influence of the two
dimers decreases a lot for the models generated from later
periods of the iterative process.

Comparison of classification performance
We compared our CNN with common machine learning
algorithms (Logistic regression [33], Decision tree [34],
Random forest [35], SVM [36] with linear and RBF ker-
nel), DBN [37], and LSTM [38], the last two algorithms
have been applied to predicting splice junctions previously
and all the parameters are set as described by the authors
[19, 20]. We trained and tested the mentioned algorithms
using the reconstructed dataset. There are also tools that
require more information besides genomic sequences, like
RNA sequences, or only accept long sequences as inputs.
For the second case, we will compare these tools with our
models on long genomic sequences later.

Compared with other algorithms, SpliceFinder has the
best performance with regard to all the measures. Figure 5
(a) presents the comparison of accuracies between
SpliceFinder and other machine learning algorithms. The
classification accuracy of SpliceFinder exceeds 90% while
the accuracies of all other machine learning algorithms do
not reach 80%. Figure 5 (b) and (c) show the ROC curves
and precision-recall curves for donor site and acceptor site
respectively. SpliceFinder achieves the largest areas under

Fig. 4 The sequence logos and average weighted contribution scores of nucleotides near the splice site. For donor sites, acceptor sites, and
non-splice-sites with canonical signals, the average weighted contribution scores of different models for each nucleotide near the splice site
(located at the position between 200 and 201) is shown. From left to right, the models are generated from the 1st, 50th, and 100th iteration. The
sequence logos are made [32] to show the difference of patterns between true and false splice sites. a Donor. b Non-splice-site with GT dimers. c
Acceptor. d Non-splice-site with AG dimers
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Fig. 5 Comparison of classification performance of different methods on the test set of the reconstructed dataset. The compared measures include
(a) classification accuracy; (b) ROC curve for donor sites (left) and acceptor sites (right); (c) Precision-recall curve for donor sites (left) and acceptor sites
(right)
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the curves apparently. Additionally, in terms of recall, pre-
cision, and F1 score, SpliceFinder obtains higher scores
than other algorithms, the comparison result can be found
in Additional file 2.

Prediction performance on genomic sequences
To evaluate our method and compare it with other
tools, we used SpliceFinder to predict the splice sites on
three randomly chosen human genomic sequences. These
sequences are set aside in the iterative process.

We employed the models generated in the iterative pro-
cess and found the numbers of false positives have sharp
declines with iteration, shown in Fig. 6 (a). Since the
numbers of false positives decrease and the values of
recall remain high, the model obtains better accuracies
on the three genomic sequences after dataset reconstruc-
tion (Fig. 6 (b)). Next, we compared the performance of
SpliceFinder with GeneSplicer [16], SpliceMachine [17],
and SpliceRover [21]. When recall is 1, the number of false
positives was calculated. Since some tools can not reach
the recall of 1 at all, we also compared the number of false
positives when recall is over 0.8. As shown in Table 1,
with recall reaching 1 and 0.8, SpliceFinder generated the
least false positives. During the experiment, we noticed
that when the score cutoff was set to be 0, SpliceRover
would consider all the sequences with GT patterns as
donor sites and all the sequences with AG patterns as
acceptor sites. However, Fig. 7 shows that SpliceRover still

misses a donor site even with the score cutoff set as 0
for Genomic Sequence III. Therefore, there is a donor site
without GT pattern on this sequence. Despite this, for
SpliceFinder, the recall of models generated from early
iteration is 1, which means the models have the ability to
find the non-canonical splice sites.

Testing on other species
Since GT-AG rule can be applied to the splice sites of all
eukaryotic genes, we also used our trained models to pre-
dict splice sites on the genomic sequences of Drosophila
melanogaster, Mus musculus, Rattus, and Danio rerio. 3
long sequences for each species were chosen randomly.
Shown in Fig. 8, with iteration, the models obtained higher
accuracies. Since high accuracy is not enough for our task,
we also calculated the numbers of false positives and val-
ues of recall (See Fig. 9). For convenience, both donor
site and acceptor site are considered as the positive set,
so the recall in Fig. 9 is the percentage of splice sites to
be predicted successfully. It can be seen that with iter-
ation, the models are tended to give less false positives,
but keep the recall higher than 0.8 for the 12 genomic
sequences of different species in Fig. 9. Other mentioned
machine learning algorithms are also be compared on
other species, SpliceFinder achieves the best performance
on the four species (Additional file 3). Additionally, we
found the model trained with Homo sapiens data have the
same performance as the model trained with other species

Fig. 6 The prediction performance improves after dataset reconstruction. a Using the models generated in the iterative process to predict the splice
sites on three randomly chosen genomic sequences, false positive numbers of both donor site and acceptor site are shown. The false positive
numbers of the initial model are set as 100%. b The comparison of accuracy, recall, and false positives numbers between models with and without
dataset reconstruction
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Table 1 Comparison of prediction performances of different softwares on three randomly chosen genomic sequences

(a)

Genomic Sequence I Donor Acceptor Donor & Acceptor

GeneSplicer N/A N/A N/A

SpliceMachine 159 62 221

SpliceRover 19 16 35

SpliceFinder 7 5 12

Genomic Sequence II Donor Acceptor Donor & Acceptor

GeneSplicer N/A N/A N/A

SpliceMachine 72 54 126

SpliceRover 3 6 9

SpliceFinder 1 2 3

Genomic Sequence III Donor Acceptor Donor & Acceptor

GeneSplicer N/A N/A N/A

SpliceMachine N/A N/A N/A

SpliceRover N/A N/A N/A

SpliceFinder 24 35 59

(b)

Genomic Sequence I Donor Acceptor Donor & Acceptor

GeneSplicer N/A N/A N/A

SpliceMachine 159 62 221

SpliceRover 19 3 22

SpliceFinder 5 5 10

Genomic Sequence II Donor Acceptor Donor & Acceptor

GeneSplicer 9 4 13

SpliceMachine 10 4 14

SpliceRover 0 3 3

SpliceFinder 1 2 3

Genomic Sequence III Donor Acceptor Donor & Acceptor

GeneSplicer N/A N/A N/A

SpliceMachine 20 90 110

SpliceRover 444 21 465

SpliceFinder 6 6 12

The numbers of false positives when recall reaches 1 (a) and 0.8 (b) are shown. (Note: N/A implies the software can not reach the recall of 1 or 0.8, no matter how to set the
parameters. The best performance is in bold.)

data or multiple species data, on the genomes of all the
four species (Additional file 4).

Discussion
Analyzing the data reconstruction
The initial dataset is randomly generated from human
genomic sequences. In this case, only a small number
of sequences without splice sites contain the GT or AG
pattern, while almost all the splice sites confirm the GT-
AG consensus. Using this simple feature, many algorithms

have good performance in the classification tasks even
with the input of short length. However, when being
applied to the prediction task on long genomic sequences,
we found that our models still miss those non-canonical
splice sites. More seriously, any sequence with GT or AG
pattern is easily misclassified as donor site or acceptor
site, which leads to a large number of false positives.
Most tools also have these two problems. To decrease the
number of false positives, many existing splice site predic-
tion algorithms transfer the problem to two classification
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Fig. 7 Comparison of recall of different softwares for donor sites of Genomic Sequence III. Using different score cutoff or models generated in the
iterative process, the recall values of the four softwares, for donor sites of Genomic Sequence III, are calculated

problems: discriminating sequences with splice sites from
sequences without splice sites but with the dinucleotide
GT or AG for donor and acceptor sites separately [16–18, 21].
However, their methods focus on canonical splice sites,
only sequences with the consensus GT or AG will be
classified, which will definitely miss non-canonical splice
sites.

Therefore, we decided to consider the problem in a
different way. We think the most important cause for

the missed splice sites and false positives is the unbal-
ance of the training dataset, With the simple training set,
the classifier cannot learn enough information to find
non-canonical splice sites and exclude non-splice-sites
with canonical signals. Increasing the proportion of non-
canonical splice sites and the iterative process make the
training set cover more information, therefore the models
can deal with those unusual cases better after the recon-
struction of dataset. Although the classification accuracy

Fig. 8 The splice site prediction accuracy of our models for other species. For (a) Drosophila melanogaster, (b) Mus musculus, (c) Rattus, and (d) Danio
rerio, the models generated in the iterative process are applied to predicting the splice sites on three randomly chosen genomic sequences
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Fig. 9 The false positive numbers and recall of our models for other species. For (a) Drosophila melanogaster, (b) Mus musculus, (c) Rattus, and (d)
Danio rerio, the numbers of false positive and values of recall are calculated to show more details of the prediction performance for other species

is decreased, the models have better prediction perfor-
mance on long genomic sequences. Of course, since the
information in the training set is much more difficult to
learn, it requires longer sequences as input and models
with stronger pattern-find ability.

Strengths of SpliceFinder
Based on the experimental results, we believe SpliceFinder
has the following strengths:

(i) Trained with data generated directly from human
genomic sequences, SpliceFinder has achieved ab
initio splice site prediction. The experimental results
have proved that SpliceFinder has good prediction
performance using only genomic sequences.

(ii) To improve the sensitivity of our models for the
non-canonical splice sites, we increased the number
of splice sites without GT-AG patterns in the
training data, so unlike other existing tools,
SpliceFinder also considers non-canonical splice
sites.

(iii) Instead of simply increasing the score cutoff, we used
an iterative process to reconstruct the dataset, in order
to decrease the number of false positives. We can see
SpliceFinder makes less false positive predictions
while still successfully finding the true splice sites.

(iv) SpliceFinder is a 3-class model, which can directly
give the classification result of donor site, acceptor
site or non-splice-site. Compared with other tools
with 2-classes models, SpliceFinder is more
straightforward and convenient to use.

(v) SpliceFinder can be used to predict splice sites on the
genomic sequences of other species with no need to
retrain, so it can be applied to the annotation of new
species.

Future work
Our future work will continue to explore the following topics:

(i) Noticing that SpliceFinder can also be applied to
other species without retraining, we plan to combine
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SpliceFinder with other tools based on RNA-seq
[12–14], SpliceFinder provides the locations of splice
sites for reference, RNA-seq based tools use the
alignment approach to identify the actual splice sites.
We strongly believe the two methods will work
together and play complementary roles,
especially for new species without reference
genome.

(ii) A complete annotation system needs to predict not
only the splice sites but also the transcript start sites
(TSSs) and transcription termination sites (TTSs)
[39]. There are also conserved sequences around
TSSs and TTSs, for example, the well-known TATA
box is universally observed in the core promoter
region [40]. However, how to handle the promoter
sequences without TATA box and the non-promoter
sequences with TATA patterns remains a problem. It
is also a pattern-based task, so we plan to adjust the
structure of our CNN and expand the application of
our tool.

Conclusions
In this paper, we introduced a new tool for splice site
prediction, named SpliceFinder. SpliceFinder applies con-
volutional neural network to classify sequences to donor
site, acceptor site or non-splice-site. With a sliding win-
dow, it can predict the exact position of every splice site
on long genomic sequences with less false positives and
high recall. Compared with other splice site prediction
tools, SpliceFinder has better prediction performance, it
also has the ability to find the non-canonical splice sites.
Additionally, the models trained with human genome
are also applicable to other species without retraining,
which makes SpliceFinder useful in the annotation of new
species.
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https://doi.org/10.1186/s12859-019-3306-3.
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