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Abstract

Background
The main research topic in this paper is how to compare multiple biological experiments using transcriptome data,
where each experiment is measured and designed to compare control and treated samples. Comparison of multiple
biological experiments is usually performed in terms of the number of DEGs in an arbitrary combination of biological
experiments. This process is usually facilitated with Venn diagram but there are several issues when Venn diagram is
used to compare and analyze multiple experiments in terms of DEGs. First, current Venn diagram tools do not provide
systematic analysis to prioritize genes. Because that current tools generally do not fully focus to prioritize genes, genes
that are located in the segments in the Venn diagram (especially, intersection) is usually difficult to rank. Second,
elucidating the phenotypic difference only with the lists of DEGs and expression values is challenging when the
experimental designs have the combination of treatments. Experiment designs that aim to find the synergistic effect
of the combination of treatments are very difficult to find without an informative system.

Results
We introduce Venn-diaNet, a Venn diagram based analysis framework that uses network propagation upon
protein-protein interaction network to prioritizes genes from experiments that have multiple DEG lists. We suggest
that the two issues can be effectively handled by ranking or prioritizing genes with segments of a Venn diagram. The
user can easily compare multiple DEG lists with gene rankings, which is easy to understand and also can be coupled
with additional analysis for their purposes. Our system provides a web-based interface to select seed genes in any of
areas in a Venn diagram and then perform network propagation analysis to measure the influence of the selected
seed genes in terms of ranked list of DEGs.
(Continued on next page)
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Conclusions
We suggest that our system can logically guide to select seed genes without additional prior knowledge that makes
us free from the seed selection of network propagation issues. We showed that Venn-diaNet can reproduce the
research findings reported in the original papers that have experiments that compare two, three and eight
experiments. Venn-diaNet is freely available at: http://biohealth.snu.ac.kr/software/venndianet
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Introduction
A biological experiment is generally designed to char-
acterize the biological mechanism underlying different
phenotypes. Transcriptome, or gene expression profile
in the whole cell, provides a holistic picture of a cell
at the fine-grained level, individual gene. In transcrip-
tome studies, identifying differentially expressed genes
(DEGs) is the first step to understand the difference
between control and treated samples in transcriptome
level. Some experiment designs have multiple lists of
DEGs to address complicated biological questions that
tries to narrow down the subset of genes. When the lists
of DEGs increases, summarizing the relationship between
lists becomes much more challenging. Therefore, Venn
diagram, an effective method that can effectively summa-
rize and illustrate the portion of each gene sets is gen-
erally used. Venn diagram is an intuitive interpreter that
helps researchers to understand common or distinctive
characteristics of the experiments and helps researchers
make the decision for further investigation. However,
there are several issues when Venn diagram is used to
compare and analyze experiments that have multiple
DEG lists.

First, current Venn diagram tools do not offer enough
information to identify genes that are related to the phe-
notype differences. Most of the current Venn diagram
tools are developed to visualize a Venn diagram in a
easy-to-understand or assists researchers’ understanding
of the experiment in terms of the number of genes in
each section of a Venn diagram [1–9]. These tools are
very useful but they do not give effective method to
design an effective follow-up study to further investigate
which genes are more related to the phenotype differ-
ences in multiple biological experiments. For example, in
some scenario, the researcher might be interested to focus
on DEGs that satisfies three experimental conditions (in
other words, the intersection of three distinct DEG lists).
However, the number of genes in the following condition
might have too many genes to be considered and it is
generally difficult to prioritize the most promising genes
because the candidate DEGs have three distinct ranks that
are corresponded to each DEG lists.

Second, prioritizing genes that satisfy the researcher’s
interests only with the lists of DEGs and expression val-
ues are challenging when the experiment is designed
to have the combination of treatments. For instance,
when researchers designed an experiment to investigate
the synergy effect of two different treatments (for con-
venience: drug A, drug B), the experiment will have
three lists of DEGs to compare: drug A, drug B, and
drug A+B, respectively. The relative complement of
DEGs from the combination of drug A and drug B,
can logically represents the synergy effect of two differ-
ent treatments, but it cannot illustrate which drug had
more efficacy to the expression alteration. Also, DEGs
from the intersection of three different lists cannot be
ignored. Some DEGs might have been boosted by the
combination of drugs. However, these DEGs might be
underestimated because these genes are also differen-
tially expressed in other treatments and it is difficult to
create the decision criteria of how whether the expres-
sion alteration of the drug combination is outstanding
than others.

In this paper, we show that the two issues can be effec-
tively handled by ranking or prioritizing genes in regions
of a Venn diagram. Thus, a gene prioritization strategy
needs to be implemented into the Venn diagram in order
to rank the DEGs of each region. Gene prioritization
is a widely used strategy that rank genes by combining
multiple data sources (including methods) to maximize
the biological relevance to answer difficult questions that
cannot be easily solved in a single data. Among various
strategies of prioritizing genes, network propagation is
one of the widely used technique that computes the influ-
ence of initial nodes (or seeds) to other nodes [10], and can
prioritize genes in the context of biological networks [11–
17]. However, selection of seed genes is one of the criti-
cal factors for the network propagation and becomes more
important when prior knowledge is not available or is not
enough. In this paper, we suggest that the seed selection
issue can be handled by allowing the user to select seed
genes with the combinations of regions in a Venn diagram.
We argue that each area of the Venn diagram represents
a subset of DEGs and each area represents genes that
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contain biological meaning. And these subsets can be used
as a guidance to logically select seeds for the subset of
genes that the user is in interested.

Here, we present Venn-diaNet: a web-based Venn dia-
gram based network analysis framework that can pri-
oritize genes to compare multiple biological experi-
ments of transcriptome data. A convenient web-based
user interface is provided to generate Venn diagrams
of DEGs dynamically and to perform network prop-
agation upon protein-protein interaction (PPI) net-
work to investigate which genes are relevant to cer-
tain phenotypes. We believe that Venn diagram, cou-
pled with analytic methods such as network propaga-
tion, can be a very useful tool for comparing multi-
ple biological experiments that have multiple different
controls.

Methods
In this section, we explain how Venn-diaNet performs net-
work analysis to prioritize genes from DEGs with Venn
diagram and the network propagation technique. The
overview is shown in Fig. 1.

Venn-diaNet work flow
STEP 1: Taking input data
Venn-diaNet takes multiple DEG lists as input. Each DEG
list is determined by comparing treatment/control or
treatment/treatment in the experiment (Fig. 1: Step 1).
Each file must include a DEG list from an experiment.
For example, if a researcher wants to compare three dif-
ferent experiments, three independent files of DEG list
must be provided. The format of the file is as follows.
Each input file requires transcript ID (or gene ID) for
the first column and gene symbol for the second col-
umn. Venn-diaNet takes transcript ID to handle inputs
that might annotate identical genes (causing duplicated
genes). Currently, Venn-diaNet requires this column but
the information does not need to be strict to certain anno-
tation format. We provide an example data on the web
page of Venn-diaNet for better understanding.

STEP 2: Generating Venn diagram of DEG sets
Venn-diaNet considers each experiment as a set for the
diagram. Therefore, With given number (=n) of experi-
ments E, Venn-diaNet generates a diagram of n circles that

Fig. 1 Venn-diaNet work flow. Step 1 : Venn-diaNet, as input, takes DEG lists per experiments from user. Step 2 : Uploaded DEGs from Step 1 are
interpreted with a Venn diagram and they are organized as sets with table. Now, a user can repeat Steps 3 and 4 as many times as she wants. Step 3 :
One or multiple regions of Venn diagram, Ci , is selected as seeds for further network propagation analysis. Step 4 : Once seed is defined,
Venn-diaNet instantiates a PPI network of DEGs from STRING DB. Network propagation with given seeds from the previous steps. As a result, DEGs
are ranked by the probability score calculated during the Markov Random Walk
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have a maximum of 2n −1 regions. Each region is denoted
as Ci (1 ≤ i ≤ 2n − 1) while each Ci contains genes of:

Ci =
⎧
⎨

⎩
g : g ∈

N⋂

j=1
G(bj)

⎫
⎬

⎭

G(bj) =
{

Ej if j = 1
Ec

j if j = 0

b represents a binary number of Ci (i.e. C1 = 001) while
bj indicates the position of digits (i.e. b1 = 1, b2 = 0, b3
= 0). If Venn-diaNet receives DEG lists from 3 experi-
ments, Venn-diaNet illustrates a Venn diagram of 3 sets
(E1, E2, E3) that have 7 regions (C1, C2, C3, · · · C7), where
C7 contains genes of E1 ∩ E2 ∩ E3. We emphasize that
Ci represents DEGs that is specific to the correspond-
ing region that could be considered as ‘condition-specific
genes’.

STEP 3: Seed selection
This step is the most important part of Venn-diaNet. A
user can select one or more segments of the Venn diagram
(Ci) as seeds for network propagation to measure the
global influence of the seed DEGs. Thus, the results will
vary depending on the selected seeds. As we previously
mentioned, network propagation methods generally use
informative genes (i.e. ‘disease-related genes’, ‘phenotype-
related genes’) as seeds. The idea of network propagation
in Venn-diaNet is similar. Since DEGs in each region of
the Venn diagram can be considered as condition-specific
DEGs, DEGs in Ci can be a guide to find similarities
or dissimilarities to other Cj (j �= i) that we are inter-
ested in. Because the selection is crucial, we describe three
possible seed selection scenarios with examples to help
understand the seed selection. Each seed selection sce-
nario describes that user can select seeds from one or
more segments from Venn diagram and prioritize genes
with specific prospects.

The first scenario is to consider ‘condition-specific func-
tion’ as seeds. Again, DEGs in specific region can be
considered as condition-specific DEGs. If we use these
genes as seeds, then we can prioritize DEGs belonging to
other conditions in terms of functional similarity to the
seed DEGs. For example, if a user wants to prioritize tissue
A-specific DEGs (Fig. 2A: C1) that have similar function to
the tissue B-specific DEGs when the same genes is knock-
out (KO), tissue B specific-DEGs (Fig. 2A: C2) can be used
as seeds.

The second scenario is to consider ‘common function’
as seeds. In some cases, a user might be interested in
condition specific DEGs that have common function in
different experiments. For instance, if the user is inter-
ested in tissue A-specific DEGs (Fig. 2A: C1) that have

similar function between two different tissues, C3 can
be seeds. Similarly, if the common KO effect in different
tissues are in interest (C3), C1+C2 can be seeds.

The last scenario suggests to use GO terms to consider
seeds that have ‘Functional similarity’ between segments
in Venn diagram. This scenario assumes the case that
there is no sufficient knowledge to have confidence select-
ing certain Ci as seeds. This scenario is for users who
expect the DEGs of interest (Cj) to have functional simi-
larity to the DEGs in other condition (Ci) but not certain
which Ci is closer to Cj. In this case, we suggest using GO
terms to compare the similarity between Ci and Cj, and
choose Cj similarity to the condition of interest will be
appropriate to be as seeds. This scenario is suggested as
a ‘minimum guideline’ to analyze the data that might not
be covered by the fore-mentioned scenarios. Currently,
Venn-diaNet does not support GO term analysis, thus the
GO term analysis should be conducted separately by the
researcher.

STEP 4: Network propagation and gene ranking
When a set of seed DEGs are selected, Venn-diaNet
instantiates a PPI network of DEGs from STRING DB
[18]. In the instantiated network, nodes are DEGs and an
edge between two DEGs is defined when the correspond-
ing edge in the original PPI network is of high-confidence
(combined score >700). Then, Markov Random Walk
(MRW) [19] is performed using the seeds selected in the
previous step (Fig. 1: Step 4). The goal of network prop-
agation is to quantify the influence of seed DEGs to the
remaining DEGs. The selected seed DEGs can be consid-
ered as the hypothesis that a user wants to test. Thus,
by performing a network propagation analysis, the user
can obtain the DEGs pertaining to the hypothesis. For
the network propagation, an R package diffusr, the
implementation of MRW, is used. The equation is shown
below:

pt+1 = (1 − r)A′pt + rp0

where p0 is the vector of initialized nodes, t is a time
step, pt is the vector at the current time step t, pt+1 is
the vector at the next time step, A′ is column-normalized
matrix of adjacency matrix A, and r is the restart rate.
p0 is initialized in 1 or 0, to represent the assigned seed
DEGs and target DEGs, and normalized so the sum of the
elements in p0 becomes 1. The adjacency matrix A is a
matrix consists with 0 or 1 that represents a graph with no
weighted edges. The network propagation was performed
with the default options of the diffusr package, where
r is 0.5 and stops the network propagation when L1 norm
difference between pt and pt+1 is smaller than 10−4. When
the algorithm stops, Venn-diaNet returns a ranked gene
sets based on the network propagation result.
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Fig. 2 Key concept of Venn-diaNet. a Instantiate a PPI network with the DEGs from the multiple experiments. b When we are interested in C1 that
has similar function as C2, we can define C2 as seeds. c Performing network propagation with Markov Random Walk. d Discard C3 genes (as well as
seed genes) in order to focus on C1 genes. Remaining genes are ranked by the probability score calculated from the previous step

Web interface
The web tool of Venn-diaNet’s work flow is summarized
in Fig. 3. The details of Venn-diaNet work flow (web)
is described in the manual of Venn-diaNet (Additional
file 1).

Results
We evaluated the performance of Venn-diaNet using
three datasets downloaded from Gene Expression
Omnibus (GEO) [20] or from the supplementary data of
the corresponding published paper. The selected dataset
is used to determine whether Venn-diaNet can be used in
various experimental designs.

Case 1: Venn-diaNet for two experiments
In order to validate the Venn-diaNet performance for
experiment designs that have two experiments, we used a
dataset from a study of Per2 KO mice with two different
tissues [21]: (i) Per2 KO vs Wild type (WT) in white adi-
pose tissue (WAT Per2 KO), and (ii) Per2 KO vs WT in
brown adipose tissue (BAT Per2 KO). The authors used
these two DEGs lists and reported that several WAT spe-
cific expressed genes have similar behavior in BAT when
Per2 is KO. Two independent DEG lists, BAT Per2 KO
and WAT Per2 KO are downloaded from the supported
supplementary data.

For convenience, we will denote BAT Per2 KO specific
DEGs as C1, WAT Per2 KO as C2, and the intersec-
tion DEGs of BAT Per2 KO and WAT Per2 KO as C3
(Fig. 4A). We used this data to show that Venn-diaNet can

reproduce the authors’ results by following the authors
inputs, interest, and approach. As we mentioned, the
study reported that Per2 KO caused BAT specific genes to
express in WAT by controlling PPARγ -dependent genes.
Therefore, we set our aim to find promising C2 DEGs
that have the similar characteristic in BAT tissue. For this
study, we could use all three suggested seed scenarios to
address the authors interest. For each seed scenarios, we
compared (i) how the GO terms of ranked top 10% genes
matches the GO terms reported in the original paper,
and (ii) how many genes matches to the genes that are
reported in the original paper. Note that the authors used
only fold change to rank genes and did not use any gene
prioritization method.

Condition specific function (C1) & common function (C3) as
seeds
BAT Per2 KO specific DEGs (C1), can be used as seeds
in order to prioritize genes of WAT Per2 KO specific
DEGs (C2). This scenario is to investigate the unknown
genes that expresses exclusively in BAT somehow seems
to be expressed in WAT when Per2 is KO. The phe-
nomenon indicates that there might be functional similar-
ity between these two different conditions.

Similarly, common DEGs between two experiments
(C3) can also be considered as seeds. The activation
of BAT-specific genes in WAT also means that BAT
and WAT share common functions. Thus, the com-
mon function of these genes (C3) might be guide-
line to prioritize WAT specific genes (C2) with the
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Fig. 3 Venn-diaNet (web) work flow. A work flow of Venn-diaNet (web). Step 1: Upload DEG list per experiment. Step 2: Select seed condition Ci Step
3: Perform analysis. Venn-diaNet gives user (1) list of ranked genes, (2) gene’s neighbor nodes information (when the node is clicked). (3) Venn
diagram with PPI network (when the Venn diagram is zoomed in)

Fig. 4 Venn-diaNet Per2 GO term comparison. a Venn-diagram of Per2 KO experiment perform by Benedetto Grimaldi et al. C1 represents Per2 KO
vs WT DEGs that is specific to BAT while C2 represents WAT specific Per2 KO vs WT DEGs. b Enriched GO terms by DAVID gene functional clustering
analysis. Gene functional clustering was performed for each specific condition (Ci). c Enriched GO terms of Top 30 genes prioritized by
corresponding seeds
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context of ‘functional similarity’ between two differ-
ent tissues. It is interesting that Venn-diaNet could
prioritize genes in top 30 (about 10% of total can-
didates) as well as prioritizing genes that are related
to the functions that the authors reported (Fig. 4C,
Additional file 2:(2)).

Analysis scenario with functional similarity (C1) as seeds
As we discussed in the previous section, we might
encounter a situation where the user does not have suf-
ficient knowledge to select seeds. Therefore, we assumed
ourselves that we do not have confidence to choose cer-
tain seed scenario. In this case, we suggested a ‘minimum
guideline’ to choose certain condition as seeds to rank
genes in condition of interest. For this, we define it as
‘The condition that have functional similarity to the con-
dition of interest will be appropriate to be as seeds’, which
the ‘function of the condition’ can be determined by gene
function clustering by DAVID [22, 23].

The process is very straight-forward. (i) Find the major
GO terms of each Ci, (ii) use the genes in Ci if the GO
terms are similar to the condition Cj (j �= i) that we want
to prioritize. As a result, we found that GO term (mito-
chondrion) in C1 was similar to the condition of interest
(C2) (Fig. 4B). Thus, C1 becomes appropriate seed for
this scenario and the results shares the same which we
discussed in the previous subsection.

Venn-diaNet is also tested with other possible seed sce-
nario (C1+C3) to confirm whether Venn-diaNet performs
better than random seeds. Genes lists and GO terms that
we compared are described with details in (Additional
file 2).

Case 2: Venn-diaNet for three experiments
Data from a study of human papillomavirus onco-
genes [24] is used for Venn-diaNet validation to con-
sider the case of more complicated experiment designs.
The study observes the independent, synergistic effects
of two treatments: (i) K14E6/E7 bitransgenic mice
vs WT mice (E6/E7), (ii) estrogen treated mice vs
WT mice (E2), and (iii) K14E6/E7 bitransgenic mice
treated with estrogen mice vs WT mice (E6/E7+E2)
(Fig. 5).

As the authors did, we focused on E6E7+E2 DEGs (C1
+ C3 + C5 + C7) to determine the synergistic effect of
E6/E7 and E2. We selected E6/E7 specific DEGs and E2
specific DEGs (C2 + C4) for the seed scenario of ‘condi-
tion specific function’. The seed scenario represents that
the independent effect of each treatment as a guide-
line to find the effect of the combined factors. Our goal
for this study is to reproduce GO terms and genes that
the authors reported. For this study we focused on the
results of top 100 genes (from 461 genes), prioritized by
Venn-diaNet.

Condition specific function as seeds (C2 + C4)
We found that Venn-diaNet could prioritize genes and
GO terms that are reported in the original paper by using
the combination of independent effects of two factors
as seeds (C2 + C4) (Fig. 5C and Additional file 3:(2)).
However, several careful consideration remains to be dis-
cussed. When we consider the prioritized top 20% genes,
Venn-diaNet was not superior than the original paper’s
results, but it could still prioritize genes that are related to
the GO terms were the original paper focused. In addition,
Venn-diaNet could prioritize other genes that are related
to the function of interest (immune response & inflamma-
tory response) that are responsible to the HPV associated
cervical cancer while the authors did not.

For example, Tlr2, a gene that is known to be related to
take a significant role in HPV associated cervical cancer
[25–28], was also over expressed exclusively in E6/E7+E2.
The results supports that Tlr2 might also be one of the sig-
nificant gene that is enhanced by the combined effect of
E6/E7 and E2, which achieves the condition of ‘inflamma-
tory response are increased by epithelial E6/E7 expression
and further enhanced by estrogen’. We conjecture that
Tlr2 was not included in the original paper because the
fold change of Tlr2 is not significant (ranked 332th in
terms of fold change rankings) enough and become out-
focused. However, our gene prioritization analysis ranked
Tlr2 much higher in the 33rd place.

Likewise, CD74 is reported that it may play an impor-
tant role in the pathogenesis and angiogenesis of cervical
cancer [29] as well as the influence of the HPV [30]. Venn-
diaNet placed this gene in the 76th position while fold
change could only rank them as 182th. Icam1 was ranked
76th in foldchange but had the 3rd position in Venn-diaNet
which also might have a E6/E7+E2 specific expression
while Icam1 was also reported to have a role with HPV
related cervical carcinoma [31]. The comparison of Top
100 ranked genes related to ‘inflammatory response’ &
‘immune response’ is summarized in Additional file 3:(3).

Functional similarity as seeds (C4)

C4 was selected by following the ‘minimum guideline’
to select seeds. Unlike ‘Condition specific function as
seeds’, seeds chosen by functional similarity performed
weaker (Both in GO terms and rankings) than the pre-
vious seeds (Fig. 5C and Additional file 3:(3)) This is
probably because the seed scenario does not reflect the
effect of E6/E7. E6/E7 is well known to change the activity
of cytokine and chemokine, and Venn-diaNet could not
prioritize those genes without considering those effects in
seeds. We would like to emphasize that this seed scenario
reflects that using seed genes from a singular treatment
is not effective to rank genes that is under the influence
of multiple treatments. However, Venn-diaNet could still
prioritize 7 genes in top 100 with seeds of ‘functional
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Fig. 5 Venn-diaNet HPV experiment GO term comparison. a Venn-diagram of E6/E7 experiment performed by Megan E. Spurgeon et al. C1, C2, and
C4 represents E6/E7+E2 specific DEGs, E6/E7 specific DEGs, and E2 specific DEGs, respectively. b Enriched GO terms by DAVID gene functional
clustering analysis. Gene functional clustering was performed for each specific condition (Ci). c Enriched GO terms of Top 100 genes prioritized by
corresponding seeds

similarity’ (Additional file 3:(2)). Other possible seeds
were also tested and the results indicates other seeds are
less effective than the suggested seed scenarios.

Case 3: Venn-diaNet for eight experiments
Case 3 is a dataset from a study that designed the exper-
iments with four treatments in four tissues [32]: (i) nar-
ciclasine (ncls), (ii) vehicle (veh), (iii) high-fat diet (HFD),
(iv) normal chow diet (NCD), (v) WAT, (vi) BAT, (vii) liver,
and (viii) muscle. The initial number of sets of this study
were extremely complicated that makes almost impossible
to interpret the DEG list at once. Thus, the authors used
a step-by-step filtering method to find promising genes
for these multi-condition data. The authors searched the
relation between treatments and tissues using hierarchical
clustering and narrowed down to compare two DEG lists
(HFD-ncls/HFD-veh: DEGs from the comparison of HFD
mice treated with ncls and HFD mice treated with veh,
NCD-veh/HFD-veh: DEGs from the comparison of NCD
mice treated with veh and HFD mice treated with veh) of
muscle. The study reported genes that have low expres-
sion level in HFD, changed to have a high expression level
when ncls was given. The results indicate that a natural
compound ncls can attenuate diet-induced obesity and the
associated genes can enhance the energy expenditure.

To reproduce the results of the original paper, we
planned two different scenarios. The first scenario is to
follow the story of the authors: using two DEG lists. The
authors compared the expression profile of treatments
and tissues using hierarchical clustering as a very first step.
They discovered that muscle had partial mutual exclusive
expression pattern to other tissues, and made a hypoth-
esis of ‘ncls might accelerate genes to be expressed again
while the genes were suppressed in HFD environment in
muscle’. We assumed that we also reached to this step
and use Venn-diaNet for the DEGs of HFD-ncls/HFD-
veh and NCD-veh/HFD-veh. Venn-diaNet will mimic this
story with the concept of ‘Case 1: Venn-diaNet
for two experiments’ analysis of Venn-diaNet.

Another scenario is to find promising genes purely by
Venn-diaNet, using eight DEG lists. The goal of this sce-
nario is to check whether Venn-diaNet can track down the
reported genes, with a reasonable story. We would like to
emphasize that the original paper has (i) filtered out less
interesting conditions at the early stage, (ii) focused on
DEGs that are related to muscle, and (iii) report the DEGs
of interests while supporting the full list of DEGs that
are related to muscle through their supplementary data.
Therefore, to make both scenarios available in our study,
we need to process the raw data of the tissues that are
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not directly supported in the original paper. Thus, we ana-
lyzed the raw RNA-seq data (GSE63268) with pipelines
that are slightly different from the original paper. The
pipeline we used reported 184 DEGS as up-regulated at
HFD-ncls/HFD-veh while authors calculated them as 160.
The details of RNA-seq data processing are explained in
section ‘Materials’.

Authors’ approach : two DEG list
As we described in the previous section, we assumed that
we also performed hierarchical clustering and focus to
find certain genes in C3 (Fig. 6A) that have the common
characteristics of up-regulation when ncls is induced and
up-regulated in NCD without any treatments .

In order to prioritize genes in C3, we used the
seed scenario of Condition specific function
as seeds. DEGs that are common in both experiments
can be prioritized using the independent effects of each
factor. Therefore, C1+C2, the specific effect of each treat-
ments was selected as seeds to observe the influence
to the genes that have same activity alteration in HFD-
ncls/HFD-veh and NCD-veh/HFD-veh (C3). As a result,
we found that Venn-diaNet could prioritize and repro-
duce the genes where the authors reported (Additional
file 4:(2)) as well as prioritizing GO terms of the authors’
interest with better hit ratio (Fig. 6C). The minimum
guideline, ‘Functional similarity as seeds’ (C2) showed
weaker gene prioritization but still had a better focus on
GO terms (Fig. 6C and Additional file 4:(2)). In addi-
tion, this study is designed to find the common effect
from independent conditions, meaning that the condi-
tion of interest is closely related to each other condition.

Therefore, it is natural to have poor performance with the
same reason discussed in the previous section.

Venn-diaNet approach: All (eight) DEG list
We assumed ourselves that we do not have enough knowl-
edge to this data, and tested whether Venn-diaNet could
reach the same conclusion to the authors. We simply
used Venn-diaNet with all DEG lists (that contains up
and down-regulation) from eight different experiments at
once (Fig. 7A). The Venn diagram shows that the inter-
section of HFD-ncls/HFD-veh and NCD-veh/HFD-veh
shared many DEGs in muscle (C48) than any other tissues
(C3, C12, C192).

The findings of Venn diagram reaffirms the authors’
hierarchical clustering results and leads to the idea
that the intersection of HFD-ncls/HFD-veh and NCD-
veh/HFD-veh in muscle have common functions than
other tissues, and needs to be analyzed in detail. To start
the detailed search, we now used up-regulated DEG list to
examine whether Venn-diaNet can answer for the hypoth-
esis of ‘ncls might accelerate genes to be expressed again
while the genes were suppressed in HFD environment in
muscle’. As a result, we were able to discover that the
condition of interest was much more distinct to other con-
ditions (Fig. 7B: C48) and the portion of common genes
between HFD-ncls/HFD-veh and NCD-veh/HFD-veh in
muscle was bigger than any other tissue (C48, C3, C12,
C192). The findings indicate that up-regulation of C48 is
likely to be more specific and distinct to other tissues. To
prioritize genes in C48, we choose the seed scenario of
‘common functions as seeds’. We selected the intersection
of HFD-ncls/HFD-veh and NCD-veh/HFD-veh of other

Fig. 6 Venn-diaNet HFD GO term comparison. a Venn-diagram of GSE63268 experiment. C1 represents HFD (ncls/veh) specific DEGs while C2 shows
veh (NCD/HFD) specific DEGs. b Enriched GO terms by DAVID gene functional clustering analysis. Gene functional clustering was performed for
each specific region. c Enriched GO terms of Top 100 genes prioritized by corresponding seeds
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Fig. 7 Venn-diaNet using 8 different DEG list. a Using up and down-regulated DEG list to Venn-diaNet (web). The Venn diagram directly shows
muscle DEGs in HFD-ncls/HFD-veh, and NCD-veh/HFD-veh are similar to each other while other tissues are not similar to each other. b Using
up-regulated DEG list to Venn-diaNet. The Venn diagram shows that up-regulated muscle DEGs in HFD-ncls/HFD-veh, and NCD-veh/HFD-veh are
very similar to each other while other tissues are not similar to each other

tissues as seeds (C3, C12, C192) to represent that the func-
tion of ’ncls might accelerate genes to be expressed again
while the genes are suppressed in HFD environment’ in
other tissues can assist to prioritize genes in muscle. As a
result, we were able to reproduce genes that the authors
reported in their original paper (Additional file 4:(2)).

In addition to seed selection, the minimum guideline
cannot be used for this complex condition data. The data
is composed of 255 conditions that makes it difficult to
compare and analyze the GO terms of all these conditions.

System Architecture
Venn-diaNet is a web analysis tool built with Django
web framework v.1.10.3 (https://djangoproject.com) and
draws Venn diagram using venn.js [33]. venn.js
draws keen Venn diagrams only with circles regardless to
the number of conditions and considers the size of the cir-
cle and the position of the diagram’s centroid that depends
on the size of the given sets. When the number of exper-
iments is more than four, the drawn Venn diagram might
not be perfectly correct, but it still considers the distance
between circles as well as the size of circles to draw a rea-
sonable Venn diagram as possible. d3.venngraph.js
[34] is used to overlay the network graph upon the Venn
diagram by using the position of each circle’s centroid. The
distance between nodes was calculated by using the idea
of the Nelder-Mead method to make nodes that have the
same condition more closer while nodes that are distinct
to the other conditions to be more further.

Conclusions
We present Venn-diaNet, a web-based software that does
not require any additional installment or registration. In
this paper, we introduced that Venn-diaNet can be applied
for various experiment designs and can effectively prior-
itize genes from multiple DEG lists. Experiment designs
that have multiple lists of DEGs are generally difficult
to prioritize phenotype related genes because it requires
multiple data processes to gain a subset of gene lists. How-
ever, Venn-diaNet has shown that the combination of PPI
network and Venn diagram can simplify these process.
Venn-diaNet showed that the seeds from the segments of
Venn diagram and the results of the network propagation
with PPI network are effective enough to prioritize genes
without considering the specific expression values of each
DEGs lists. Also, because that Venn-diaNet can prioritize
genes in a single step regardless to the number of DEGs
lists, it has an advantage for analyzing complicated exper-
iment designs that forces to analyze with multiple steps
because it can simplify the analysis steps.

In addition, in the aspects of gene prioritization, Venn-
diaNet can avoid the ‘black-box’ issue in gene prior-
itization which is caused by the integration of het-
erogeneous data sources because Venn-diaNet provides
explainable ranking results of the network propaga-
tion [35]. Venn-diaNet supports gene list with ranking
and additional features that explains how the specific
gene is influential to other genes. Venn-diaNet is avail-
able at: (http://biohealth.snu.ac.kr/software/venndianet).

https://djangoproject.com
http://biohealth.snu.ac.kr/software/venndianet
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Source code can be reviewed at: (https://github.com/
hurben/VenndiaNet).

Materials
RNA-seq data processing
GSE63268, the dataset used in Case 3: Venn-diaNet
for eight experiments, raw data (fastq) files were
obtained from GEO [20], while RSEM (v1.2.19) and
Bowtie2 (v2.2.6) were used for aligning reads. Reference
genome (mm10) and gene annotation information was
obtained from UCSC genome browser [36]. EBSeq [37],
‘rsem-run-ebseq’ was used for DEG calculation and 0.05
was used as a cutoff value for ‘rsem-control-fdr’. Every
mentioned program was executed without any additional
options. We would like to emphasize that the calculated
DEGs slightly differs from the authors. In muscle, our
pipeline calculated 184 DEGS as up-regulated at HFD-
ncls/HFD-veh while authors calculated them as 160. We
assume that the difference came from different reference
genome and analysis pipeline which authors used mm9,
and Cufflink. Despite the different pipeline and reference
genome, key genes that the authors pointed out were still
able to be reproduced. Details of gene list are in Additional
file 4.
Supplementary information
Supplementary information accompanies this paper at
https://doi.org/10.1186/s12859-019-3302-7.

Manual for additional files A manual that describes the details of
Supplementary data 1, 2, 3.
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