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Abstract

Background: Genome-wide Association Studies (GWAS) have contributed to unraveling associations between
genetic variants in the human genome and complex traits for more than a decade. While many works have been
invented as follow-ups to detect interactions between SNPs, epistasis are still yet to be modeled and discovered more
thoroughly.

Results: In this paper, following the previous study of detecting marginal epistasis signals, and motivated by the
universal approximation power of deep learning, we propose a neural network method that can potentially model
arbitrary interactions between SNPs in genetic association studies as an extension to the mixed models in correcting
confounding factors. Our method, namely Deep Mixed Model, consists of two components: 1) a confounding factor
correction component, which is a large-kernel convolution neural network that focuses on calibrating the residual
phenotypes by removing factors such as population stratification, and 2) a fixed-effect estimation component, which
mainly consists of an Long-short Term Memory (LSTM) model that estimates the association effect size of SNPs with
the residual phenotype.

Conclusions: After validating the performance of our method using simulation experiments, we further apply it to
Alzheimer’s disease data sets. Our results help gain some explorative understandings of the genetic architecture of
Alzheimer’s disease.
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Background
Genome-Wide Association Studies (GWASs) have helped
uncover associations between genetic variants and com-
plex traits for more than a decade. The methods for
GWA studies first started with the univariate hypothesis
testing, and later, many advanced statistical and machine
learning methods have been proposed to infer and gain
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insights into the genetic architectures of the complex
traits. For example, linear mixed models are demonstrated
with empirical successes in correcting confounding fac-
tors raised by population stratification, family relatedness,
and cryptic relatedness [1–5], and multivariate regres-
sion methods are introduced for modeling the polygenetic
effects [6–8]. Integration of these two methods is also
introduced to successfully consider polygenicity and con-
founding factor correction together [9, 10].

Despite promising results have been generated using
these approaches, it has been long known that additive
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effects can explain only part of genetic variations [11].
Epistasis (i.e., interactions between genetic variants) is
believed to be a potential source of the unexplained varia-
tions [12–15]. Evidence of epistatic interactions has been
shown for human complex traits [16–18], suggesting that
more potential interactions between genetic variants are
to be discovered, which motivates the development of
more powerful computational methods.

Epistasis detection is usually highly computational chal-
lenging, and thus many efforts have been made by gear-
ing towards developing efficient computational tools for
discovering epistasis with different searching strategies,
including exhaustive [19–23], probabilistic [24], or prior-
itized search [25–30]. In addition to these methods that
mainly focus on the detection of pairwise interactions of
SNPs, a few methods were developed for detecting higher
order interactions, and they either rely on probabilistic
sampling [31] or ultra-high-performance computing ser-
vice [32]. Recently, Crawford et al proposed an alternative
strategy for testing the exact combinations of candidate
SNPs. Their method, named MAPIT, tests to identify the
SNPs that involved in the epistasis marginally [33]; in
other words, their aim to identify the SNPs that are asso-
ciated with the phenotype in an epistastic manner without
revealing the exact combination of these SNPs.

In this paper, continuing with the goal of investigat-
ing marginal epistasis, we propose a deep-learning-based
method that can implicitly model arbitrary high-order
interactions between genetic variants, as well as simul-
taneously correct confounding effect due to population
stratification, family structure, and cryptic relatedness.
The central design rationale behind our model is the uni-
versal approximation property of deep neural networks
[34], which allows neural networks to model arbitrary
interactions of the input features (i.e., epistasis). To take
advantage of this property, we propose the Deep Mixed
Model (DMM). DMM consists of two components: 1) A
confounding factor correction component that is a one-
dimensional convolutional neural network (CNN) with
a large kernel size, thus CNN can focus mostly on the
population-wise pattern of data. 2) A variable selection
component that mainly consists of a fine-grained Long-
short Term Memory (LSTM) model with sparse variable
selection methods plugged in; this component is respon-
sible for identifying the SNPs that are associated with the
residual phenotype in univariate, polygenetic, or epistastic
manners.

We first conduct simulation experiments to demon-
strate the superior empirical performance of DMM over
competing methods and to inspect and verify the inter-
nal working mechanism of DMM. Then we apply DMM
to real-world Alzheimer’s disease data sets, and DMM
identifies several interesting SNPs. Some of these results
are supported through literature surveys, which suggest

that our findings, despite explorative at the current stage,
may lead to some novel understandings of the Alzheimer’s
disease.

Methods
In this section, we formally introduce our proposed Deep
Mixed Model, which is composed of two components,
one for confounding factor correction and the other for
genetic variants selection. We refer to these two com-
ponents as corrector and selector for convenience. We
first present the overall concept and then discuss each
component in detail.

Overview
Figure 1 illustrates the main idea of our proposed Deep
Mixed Model, which consists of two components: 1) the
red part of the figure represents the corrector, which is a
convolutional neural network with a large kernel size. The
large kernel size forces the CNN to focus more on the
overall pattern represented by the genetic variants, instead
of variations of specific SNPs, and thus resulting in a pop-
ulation effect estimator; and 2) the blue part of the figure
represents the selector, which is an LSTM with a sparse
vector attached at the input. We will discuss the details of
these two components immediately after this overview.

In this paper, we use X ∈ Rn×p to denote the SNP array
in our study, y ∈ Rn×1 to denote the phenotype, where
n represents the number of samples, and p represents the
number of SNPs. We use β to denote effect sizes for fixed
effects and u to denote effect sizes for random effects. The
dimension of β and u can be inferred from the context.
We use f (·; δ) to denote the corrector, and δ stands for
the corresponding parameters. Similarly, we use h(·; θ) to
denote the selector, and θ stands for the parameters. g−1(·)
denotes the inverse linkage function of a generalized lin-
ear model. ε denotes natural noise which is negligible in
most cases throughout this paper.

The confounding factor correction component (the
corrector)
To account for confounding factors, we propose a
one-dimensional convolutional neural network that esti-
mates the population-level effects and further calcu-
lates the residual phenotype after removing these effects.
To enforce that CNN primarily focuses on estimating
population-level effects, we adopt a large size of the
convolutional kernel, based on the understanding that
a kernel with large size will encourage the network to
learn high-level conceptual representations – rather than
detailed variations – of the data [35]. Different from the
conventional mixed models that estimate the second-
order statistics (variance) raised by confounding factors
using the kinship matrix [36], the corrector directly oper-
ates on the data matrix and estimates the first-order
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Fig. 1 The structure of Deep Mixed Model (DMM), which consists two components: 1) the red component is a convolutional neural network with a
large kernel size that scans over the SNP sequence to detect the population-level effect; and 2) the blue component is an LSTM with a vanilla
network attached to the input that identifies the genetic variants associated with the phenotype

statistics, which is also sufficient in helping remove the
confounding factors, justified by the resemblance between
a linear mixed model and a ridge regression (Wang H,
Aragam B, Xing EP: Statistical analysis of linear mixed
model for gwas. in preparation).

The fixed-effect estimation component (the selector)
For the component that is responsible for selection of
genetic variants, we choose the LSTM. Instead of feeding
the data directly into the LSTM, we add a one-dimension
weighing vector for SNPs; by doing so, the magnitude
of the corresponding value of the weighting vector can
directly reflect the importance of the genetic variants eval-
uated by the model, as shown by [37]. More specifically,
we can decompose the selector as:

h(Xi; θ) = l(Xi � ω; ι)

for ith sample, where � denotes element-wise product,
ω denotes the weighting vector, and l(·; ι) denotes the
generic LSTM module whose parameters are denoted as
ι. The fixed-effect estimation component consists of both
ω and l(·; ι), and we denote the parameters as θ =[ ω; ι].

Algorithm
The algorithm for solving DMM splits into two steps: 1)
estimating the parameter δ for the corrector (f (·; δ)), and
2) estimating the parameter θ for the selector (h(·; θ)).

The estimation of δ can be done straightforwardly by
solving:

δ̂ = arg min
δ

c(y, f (X; δ)) (1)

where c(·, ·) is a generic cost function; for example, we can
use the mean squared loss for data with continuous phe-
notypes and use the cross entropy loss for case-control
data.

With δ̂, we can further estimate θ by solving:

θ̂ = arg min
θ

c(y, g−1(h(f (X; δ̂); θ))) (2)

where g(·) can also be chosen based on the understand-
ing of data; for example, a linear function can be used
for continuous phenotypic data and a logic function for
case-control data.

It is essential to avoid overfitting in genetic studies,
especially because the psychiatric genetic data are costly
to obtain, and we usually only have a sample size of a
couple hundred. To avoid overfitting, we stop the training
process before the optimization starts to converge, which
is known as early-stopping, a regularization method for
neural networks [38, 39]. While both Function 1 and Func-
tion 2 are optimized with early-stopping, we empirically
notice that, in the simulation experiments, the early-
stopping is particularly crucial for optimizing corrector
since it effectively prevents the CNN from estimating
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additional (unnecessary) information other than true con-
founding effects from population-level factors. We notice
that the corrector only needs to be tuned for about 10
epoches.

The detailed configurations of our method mentioned
above are summarized in Table 1. With such configura-
tion, in practice, it takes our method less than an hour
to converge on the real data experiment (details to be
followed in the “Results” section) with a modern GPU.
Our method scales well with the number of samples, but
limited with the number of SNPs considered due to the
limitation of the memory of GPU or CPU.

Results
In this section, we will introduce our experiment results,
including the simulation results where we compare our
method with competing methods and the findings when
we apply the DMM to real data. The TensorFlow exper-
iment scripts to replicate the results are submitted as
the Supplement. We also released our script as a tool
for the community to apply on other data sets at:
https://github.com/HaohanWang/DMM.

Simulations
Competing methods
To evaluate the performance of DMM, we compare it with
several existing methods listed as follow:

• UT: The standard univariate testing (Wald testing)
with the Benjamini-Hochberg (BH) procedure [40].
This is the most popular approach for testing
associations in GWAS, without concerning epistasis
or accounting for population stratification.

• LMM: A standard linear mixed model with the BH
procedure. This is the most popular approach in
GWAS for handling population stratification, but not
concerning epistasis.

• Lasso: The �1-regularized linear regression [41].
• Adaptive Lasso (AL): An extension of Lasso that

weighs the regularization term accordingly [7]
(enabled by the method introduced in [42] for
high-dimensional data).

• Precision Lasso (PL): A novel variant of Lasso that
can handle correlated and linearly dependent features
commonly used in genomics study [8].

• MAPIT: The marginal epistasis test, a method
recently proposed for detecting epistasis in GWAS
[33]. We re-implement the method in Python for fair
comparison. We also add the BH procedure [40] for
false discovery control.

• LSTM: The selector in the Deep Mixed Model. We
test the performance of this component of DMM
without the confounding factor correction
component.

• DMM: The method we proposed in this paper. ROC
curve is calculated with different thresholds of
absolute effect sizes.

Data generation
We use SimPop [43] to simulate the SNP array. We simu-
late p = 10000 SNPs for n = 500 or 1000 samples from
five different populations with migration behaviors. Each
population also unevenly splits into five sub-populations.
Therefore, it can be seen as these samples are from 25
regions (denoted as G) out of five continents. As we men-
tioned previously, the SNP array is denoted as X. We
choose the number of samples to be small to reflect the
situation of our real psychiatric data.

We select k SNPs to be associated with the phenotype,
and to simulate the arbitrary interaction patterns of these
SNPs, we set a group size of t to group these k SNPs
into m groups (the number of groups m = k/t, where
k is divisible by t), and sample m effect sizes: each of
them is sample as β ∼ N(0, 25) (This value of variance is

Table 1 Detailed configurations of the method

Collector (1D-CNN)
Convolutional layer

Num. of Kernels: 16 Kernel Size: 1000 x 1 Padding: Same

Initializer: Truncated normal initializer Activation: ReLU

Pooling layer Size: 2000 Stride: 2000

1st fully-connected layer Output: 32 Dropout rate: 0.9

2nd Fully-connected layer Output: 1

Selector (LSTM)
Weighting layer Num. of units: p (one-to-one layer)

Hidden layer Num. of units: 0.15p

Optimizer (ADAM) Learning rate: 0.001 Batch size: 128

Other hyperparams Collector’s epoch: 20 Selector’s epoch: 1500

The architecture and hyperparameters are selected through the experiments with simulated data, and are used without changes for real data experiments

https://github.com/HaohanWang/DMM
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chosen following the suggestion of [44] as an intermediate
effect size).

As we mentioned previously in the Introduction, there
are plenty of methods that can identify the SNPs that are
associated to the phenotype with lower order of inter-
action manner. Therefore, in the experiment, we focus
on experimenting with the remaining situation when the
multiple SNPs interact (t = 5), which is more challeng-
ing than usual epistasis experiment set-up. However, our
set-up is not contradictive to the real-world setting, as this
remaining situation will be met when we regress out the
lower-order SNP effects.

To introduce confounders such as population stratifica-
tion and family structure, we use the regions G to affect
the phenotypes differently (the effects of these regions
are denoted as γ , sampled from a Gaussian distribution
N(0, σ 2

u )). The variation of σ 2
u results in a signal-to-noise

ratio of 0.25 or 1.0 for β in our simulation experiment.
Finally, we have the responses as:

r =
m∑

i=1

⎛

⎝
∏

j∈i
Xj

⎞

⎠ βi + Gγ

where we use the product sign (
∏

) to denote the inter-
action of the SNPs. We use the element-wise minimum
to simulate the interaction. j ∈ i denotes that the SNP
(indexed by j) out of the k associated SNPs that belong
to the group m. We test the methods with the continuous
phenotypes generated as

yc = r + ε,

where ε ∼ N(0, 1). Additionally, we also transform
these continuous responses r into binary phenotypes via
Bernoulli sampling with the outcome of the inverse logit
function (g−1(·)) over current responses. Therefore, we
have:

yb = Ber(g−1(r))

We experiment on both continuous data yc and binary
data yb. The main steps of this simulation data generation
process are conveniently illustrated by Figure 2. Due to
the introduction of epistasis, our simulation data becomes
extremely difficult for conventional methods to recover
the signals, as we will show in the next section.

Main simulation results
We test the methods with different settings of different
number of samples n ∈ {500, 1000} of the effects from
confounders σ 2

u ∈ {5, 10}, the number of associated SNPs
k ∈ {10, 50}, and for continuous phenotype yc and binary
phenotype yb respectively. There all together 16 different
experimental settings, and we run 20 different seeds of
each setting. In all these experiments, we investigate the
results for the SNPs that are ranked in the first 1000 asso-
ciated SNPs. Because of the difficulty of our simulation
set-up, almost no methods can report meaningful results
within top 100 or less reported SNPs.

We evaluate these methods with ROC curves. For
testing-based methods (UT, LMM, MAPIT), the ROC

Fig. 2 Illustration of the main steps of the simulation data generation process. The dark squares represent the SNP array, with two populations
(marked with red descriptions). We group every five SNPs and simulate their interaction, result in one epistatic variable. For each epistatic variable,
we introduce an effect size. Summing over the effects introduced by these epistatic variable, together with the effects introduced by population
structure, we result in an continuous variable, which will further be transformed into binary phenotype
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curve is plotted by variation of the threshold of p-values.
For multivariate regularized methods (Lasso, AL, PL), the
ROC curve is plotted with hyperparameters (regulariza-
tion weight) varying evenly in the logspace from 10−5 to
105. For deep learning methods, the ROC curve is plotted
with different thresholding of absolute value of estimated
selector parameter ω.

Figure 3 shows the simulation results. As we can see,
our proposed DMM method has a clear advantage over
the competing methods. We can see that almost all the
regularized multivariate regression method (Lasso, AL,
PL) behave unsatisfyingly in these simulations. We believe
this is because of the effects introduced from the con-
founders. Interestingly, vanilla Wald test generally behave
better than other methods despite that it considers nei-
ther epistatic effects (not even multivariate effect) nor
confounding factors.

By comparing the results in continuous case and the
corresponding results in binary case, all these methods
behave better in continuous case than in binary case. This

is expected because continuous response contains more
information. By comparing different settings, the experi-
mental results of methods behave as expected: with less
confounding effects, and more samples, the experimental
results tend to be better. Also, interestingly, we notice that
these methods tend to behave better when there are less
associated SNPs to be tested.

To have a more detailed comparison, we also study the
averaged Area under ROC of different settings of the
experiments corresponding to the results Fig. 3 shows,
details shown in Table 2. Notice that all these meth-
ods only select top 10% (1000 SNPs) as candidate SNPs
for plotting ROC and calculating AUC, which is the pri-
mary reason that the regularized multivariate regression
method shows a result of exactly 0.5.

When the phenotype is continuous, DMM shows a
clear advantage over other methods, while the LSTM fol-
lows in the second place. Therefore, we can safely draw
the conclusion that the differences between DMM and
the LSTM are due to the ability of the corrector for

Fig. 3 ROC curves of methods in comparison in simulation experiments. The experiment settings vary in different effects introduced from
confounders σ 2

u (e.g. Confounder Weight, CFW), different number of associated SNPs, and whether the phenotype is continuous yc or binary yb
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Table 2 Average AUC value for different methods with different settings on Binary data (B) and Continuous Data (C)

Pheno n σ k LSTM DMM LMM UT LASSO AL PL MAPIT

C 500 5 10 0.68 0.73 0.57 0.58 0.50 0.50 0.50 0.56

C 500 5 50 0.54 0.58 0.51 0.55 0.50 0.50 0.50 0.51

C 500 10 10 0.62 0.66 0.54 0.54 0.50 0.50 0.50 0.54

C 500 10 50 0.54 0.58 0.51 0.54 0.50 0.50 0.50 0.51

C 1000 5 10 0.77 0.80 0.68 0.67 0.50 0.50 0.50 0.53

C 1000 5 50 0.56 0.58 0.51 0.52 0.50 0.50 0.50 0.52

C 1000 10 10 0.68 0.71 0.63 0.57 0.50 0.50 0.50 0.51

C 1000 10 50 0.52 0.53 0.51 0.51 0.50 0.50 0.50 0.53

B 500 5 10 0.59 0.60 0.51 0.52 0.50 0.50 0.50 0.51

B 500 5 50 0.55 0.55 0.51 0.52 0.50 0.50 0.50 0.50

B 500 10 10 0.65 0.66 0.52 0.57 0.50 0.50 0.50 0.51

B 500 10 50 0.53 0.54 0.51 0.52 0.50 0.50 0.50 0.50

B 1000 5 10 0.59 0.58 0.51 0.53 0.50 0.50 0.50 0.51

B 1000 5 50 0.55 0.54 0.51 0.52 0.50 0.50 0.50 0.51

B 1000 10 10 0.66 0.65 0.51 0.54 0.50 0.50 0.50 0.51

B 1000 10 50 0.52 0.52 0.50 0.51 0.50 0.50 0.50 0.50

confounding factor correction. Interestingly, there are not
many differences between the LMM method and Wald
Testing method, which is probably due to the fact that
these two methods’ lack of power in identifying the asso-
ciated signals from arbitrary interaction of the data.

For the binary phenotype case, DMM does not have a
clear advantage over just the LSTM, which is related to the

known difficulties in the mixed model for correcting the
confounding factors in binary data [36].

Ability in confounding factor correction
In addition to evaluation of end performance of DMM, we
continue to investigate the internal working mechanism of
DMM. Figure 4 shows how both modules of DMM fit the

Fig. 4 Illustration of internal working pattern of DMM. X-axis shows 500 samples and y-axis shows the phenotype. For each figure, there are 4
sub-figures. The first one shows how the prediction by DMM (orange) fits the true phenotype (yellow). The second shows how the fixed-effect
estimation component (blue) fits the phenotype (yellow). The third one shows the how the confounding factor correction component (red) fits the
phenotype (yellow), and the fourth one shows how the confounding factor correction component (red) fits the confounding effects (green). (a) and
(b) are two sets of visualizations of the simulation experiments with two different random seeds
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data. With two examples under different setting of con-
founding factor weight σ , but same setting of n = 500,
k = 10, and continuous phenotype, we plot the phenotype
across 500 samples, and the prediction made by DMM, the
selector, the corrector, and we also plot how the corrector
fits the confounding factor curve.

As we can see from both figures in Fig. 4, DMM fits
the phenotype very well, and we can barely see the dif-
ferences between these two curves. Further, with the 2nd

and 3rd rows, we can see that neither the selector nor
the corrector can predict the phenotype well by itself. At
the last row, we can see that the corrector tends to cap-
ture the pattern of confounding signals, although there are
still gaps between what the corrector fits and the genuine
confounding signals. Also, we can observe that, when con-
founding signals are stronger, the corrector can fit the con-
founding signals better. These curves verified our design
rationale of the DMM: the corrector aims to fit the pop-
ulation level confounding signals, while the selector fits
in the residual signals to pinpoint the associated genetic
variants.

Application to Alzheimer’s Disease
As previous studies indicated the existence of epistasis
in Alzheimer’s disease [45], we apply our DMM method
to further reveal the genetic architecture of Alzheimer’s
disease given the success of our method in simulation
data.

We combine two different Alzheimer’s Disease data
sets to increase the sample size. The first one is the AD
data provided by Alzheimer’s Disease Neuroimaging Ini-
tiative (ADNI). We only inspect the individuals that are
diagnosed with AD or Normal in their last visit without
considering the patients diagnosed with MCI (mild cogni-
tive impairment). There are 477 individuals. The second
one is the late-onset AD dataset provided by Harvard
Brain Tissue Resource Center and Merck Research Lab-
oratories [46]. The genotype data were generated from

540 patients in an AD cohort matched for age, gender,
and post mortem interval, and consists of the measure-
ments for about 500,000 SNPs. The missing values are
imputed as the mode of the corresponding SNPs. For both
data sets, we only consider the SNPs that reside protein-
coding exons according to GENCODE [47]. We further
exclude the SNPs on X-chromosome following sugges-
tions of a previous study [48]. There are 6970 SNPs in the
experiment.

Results
We test the methods on this real data set and apply the
models to identify the top 20 SNPs. We report these 20
SNPs in Table 3, where we also list the gene that these
SNPs reside in according to GENCODE [47].

Due to the difficulties in verifying epistasis results, we
mainly discuss the results reported in Table 3. However,
although most other GWA studies that verify their results
through comparison to GWAS Catalog [49], our results
are not directly comparable there because most findings in
GWAS Catalog are conducted through univariate testing
methods. Therefore, we do not expect most of our iden-
tified SNPs appear in the GWAS Catalog, which creates
a challenge in verifying these reported SNPs. As a result,
instead of matching these identified SNPs with GWAS
Catalog database for verification, we validate these SNPs
through the literature search. Because the community is
still learning the functionalities of every single SNP, we
study the genes these SNPs reside in as a verification of
the genuineness of our discoveries. However, one should
be aware that although many pieces of evidence will be
presented in the following paragraphs, the evidence only
directly supports the relationship between the gene these
SNPs reside in and the phenotype, and indirectly serves as
the verification that our discovered SNPs are authentic. To
the best of our knowledge, this literature-search method-
ology is the best we can do due to the goal of our proposed
model.

Table 3 Top 20 SNPs reported by the Deep Mixed Model that are associated with Alzheimer’s disease

Rank SNP Chr Chr. Position Gene Rank SNP Chr Chr. Position Gene

1 rs2360982 14 75764629 TTLL5 11 rs7310543 12 69574742 FRS2

2 rs4238773 16 53597938 RPGRIP1L 12 rs4889798 17 75499805 TMEM94

3 rs2424641 20 24665866 SYNDIG1 13 rs7959720 12 27333098 ARNTL2

4 rs664866 9 137077808 UAP1L1 14 rs7036626 9 116425812 ASTN2

5 rs6706169 2 165989377 SCN1A 15 rs685417 13 32511131 N4BP2L2

6 rs7149337 14 50778766 NIN 16 rs405281 7 150693280 GIMAP2

7 rs12881259 14 90863056 RPS6KA5 17 rs10876394 12 51686444 SCN8A

8 rs12329001 2 65270990 ACTR2 18 rs7639223 3 40260163 MYRIP

9 rs13242458 7 99533066 ZKSCAN5 19 rs12488539 3 57561864 PDE12

10 rs13063312 3 48636988 CELSR3 20 rs10402233 19 40472690 SPTBN4
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Several of these genes have been previously reported
to be directly related to Alzheimer’s disease. The 5th

SNP resides in the gene SCN1A. SCN1A is reported to
affect the neural activity of the aging brain [50]. The
10th SNP resides in the gene CELSR3, which is related to
brain development, learning and memory behavior pro-
cesses in aging mice [51]. The 13th SNP lies in the gene
ARNTL2, which has been reported to be associated with
Alzheimer disease in Chinese population [52], although
the report focused on another SNP within the gene. The
17th SNP resides in the gene SCN8A, which is one of the
few genes that have been reported to be associated with
Alzheimer’s disease through pathway analysis in mouse
model [53]. The 18th SNP resides in gene MYRIP, which
is also repoted to be related with Alzheimer’s disease [54].
The 20th SNP lies in the gene SPTBN4, which is also
reported as a target gene from independent study on other
data sets in through DNA methylation map [55].

Several other genes that have not been reported to be
directly related to Alzheimer’s disease also function in the
cognitive activities. For example, the 8th SNP resides in
the gene ACTR2, which is identified to be associated with
language impairment through copy number analysis [56].
The 12th SNP resides in the gene TEME94, whose variants
are associated with neurodevelopmental delay [57]. The
14th SNP lies in the gene ASTN2, which is involved in the
neural development [58].

To sum up, these verifications suggest that our iden-
tified SNPs and the combinations, although explorative,
may reveal some new understandings of Alzheimer’s dis-
ease. These results also suggest the effectiveness of DMM
in identifying the SNPs that contribute to a phenotype
with an arbitrarily high order manner.

Discussion
We also noticed some limitations of our method, for
example, the scalability of our method is limited by the
memory the GPU. With a modern GPU, our method can
only scale up to around 10k SNPs with our current setting.
However, as our method only requires a few epoch on the
real-world data, a direct fix will be to run our method on
CPU clusters instead.

Conclusions
Following the recent popularity deep learning gains in
genetic applications [59], in this paper, we take advan-
tage of the universal approximation property of neural
network to build a method that can model the epistasis
with arbitrary order of interaction without explicit iden-
tifying the combination of SNPs. We built a fixed-effect
estimation component that mainly consists of an LSTM,
which is well-known for its ability in extracting signals
from sequential data. This component is used to iden-
tify the associated genetic variants from data. Further,

to help eliminate the signals from confounding factors
before fixed-effect estimation, we also introduce a con-
founding factor correction component (a CNN) that helps
to remove the effects raised by factors such as population
stratification.

Through simulations, we verify the superior perfor-
mance of our methods over existing methods with
simulated data with high-order interaction of SNPs.
We further apply our method to Alzheimer’s dis-
ease data sets and report the SNPs our method
filters (and combinations identified later by testing
methods). Many of these findings, although explorative,
are supported by our literature search verification, thus
may reveal some new understandings of Alzheimer’s
disease.
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