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Abstract

Background: There are many different types of microRNAs (miRNAs) and elucidating their functions is still under
intensive research. A fundamental step in functional annotation of a new miRNA is to classify it into characterized
miRNA families, such as those in Rfam and miRBase. With the accumulation of annotated miRNAs, it becomes possible
to use deep learning-based models to classify different types of miRNAs. In this work, we investigate several key issues
associated with successful application of deep learning models for miRNA classification. First, as secondary structure
conservation is a prominent feature for noncoding RNAs including miRNAs, we examine whether secondary
structure-based encoding improves classification accuracy. Second, as there are many more non-miRNA sequences
than miRNAs, instead of assigning a negative class for all non-miRNA sequences, we test whether using softmax
output can distinguish in-distribution and out-of-distribution samples. Finally, we investigate whether deep learning
models can correctly classify sequences from small miRNA families.

Results: We present our trained convolutional neural network (CNN) models for classifying miRNAs using different
types of feature learning and encoding methods. In the first method, we explicitly encode the predicted secondary
structure in a matrix. In the second method, we use only the primary sequence information and one-hot encoding
matrix. In addition, in order to reject sequences that should not be classified into targeted miRNA families, we use a
threshold derived from softmax layer to exclude out-of-distribution sequences, which is an important feature to make
this model useful for real transcriptomic data. The comparison with the state-of-the-art ncRNA classification tools such
as Infernal shows that our method can achieve comparable sensitivity and accuracy while being significantly faster.

Conclusion: Automatic feature learning in CNN can lead to better classification accuracy and sensitivity for miRNA
classification and annotation. The trained models and also associated codes are freely available at https://github.com/
HubertTang/DeepMir.
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Introduction
Non-coding RNAs (ncRNAs) refer to the RNAs that
do not encode proteins and function directly as RNAs.
Genome annotation of many different genomes show that
ncRNAs are ubiquitous and have various important func-
tions [1]. Besides commonly seen house-keeping ncRNAs
such as transfer RNAs (tRNAs), ribosome RNAs (rRNAs),
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many small ncRNAs play important roles in gene regula-
tion. This work is mainly concerned with a type of small
ncRNA, microRNA (miRNA), which act as key regulators
of gene expression at post-transcriptional level in differ-
ent species [2–5]. In metazoans, mature miRNAs bind
to the 3’-UTR of target mRNAs and can repress transla-
tion or promote mRNA degradation. As an miRNA can
bind to multiple mRNA transcripts, a large number of
protein-coding genes can be regulated by miRNAs [6, 7].

Because miRNAs’ important functions and their asso-
ciations with complicated diseases in human, there are
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intensive research about miRNA gene annotation, target
search, function identification etc. A fundamental step in
miRNA research is the identification of miRNA genes in
genomes. In the canonical miRNA biogenesis pathway,
miRNAs are processed from longer transcripts named as
primary miRNAs (pri-miRNAs) [3]. The hairpin struc-
tures of pri-miRNAs are cleaved by a member of RNase
II family of enzymes, Drosha and produce precursor
miRNA (pre-miRNA) in the nucleus [8, 9]. Pre-miRNAs
are then exported to the cytoplasm, where Dicer cleaves
off the loop region of the hairpin and further processes
it to mature miRNA(s) of about 21 nucleotides [10, 11].
MiRNA gene annotation usually refers to identification of
pre-miRNAs and mature miRNAs.

Existing miRNA annotation tools can be generally
divided into two groups depending on whether reference
miRNA genes are used. Homology-based miRNA search
identifies pre-miRNAs by conducting sequence and/or
secondary structural similarity search against existing
miRNA genes. Like other ncRNAs, pre-miRNAs preserve
strong secondary structures [2]. Thus, homology search
models [12, 13] that can explicitly encode both sequence
and structural similarities usually achieve high sensitiv-
ity and accuracy in classifying query sequences into their
originating homologous families. However, the high sen-
sitivity comes with a price of high computational cost.
For example, structural homology search models based on
context-free grammar have cubic running time complex-
ity [14]. Even with various heuristic filtration techniques,
it can be still very time-consuming to conduct large-
scale sequence classification using both sequence and
structural alignments. Sequence similarity-based homol-
ogy search tools such as BLAST [15] can be also applied
to classify pre-miRNAs to their native families. However,
remote homologs with high structural but low sequence
conservation tend to be missed. Another group of tools
[16–18] do not use reference sequences for pre-miRNA
search. These de novo miRNA search methods mainly
use features such as hairpin structures of pre-miRNAs
to identify putative pre-miRNAs in genomes. As a large
number of regions in a genome can form hair-pin struc-
tures, features from RNA-Seq [19] data such as expression
levels and read mapping patterns are often used to reduce
the false positive rate of miRNA search [20–23]. Both
types of tools are useful for miRNA search and annotation.
De novo methods have the advantage of identifying possi-
bly novel miRNAs but additional processing is needed to
validate the findings.

Homology search-based miRNA search methods can
take advantage of accumulating characterized miRNAs.
For example, MiRBase [24] is an online database for
miRNA sequences and annotation. The current release
22 contains 1983 miRNA families from 271 organ-
isms, including 38,589 pre-miRNAs and 48,860 mature

miRNAs. Rfam [25] is a comprehensive ncRNA family
database with over 3,000 ncRNA families. The release 14.1
contains 529 pre-miRNA families and 215,122 precursor
sequences.

These classified pre-miRNA sequences can be used as
training data for deep learning based models. Depending
on the choice of the training sequences and the design
of the model architecture, deep learning-based miRNA
search can be applied to distinguish miRNAs from other
types of ncRNAs and also to conduct finer scale clas-
sification for different types of miRNAs. In this work,
we explore whether using convolutional neural network
(CNN) has advantages in distinguishing different types
of miRNAs over powerful covariance models. In partic-
ular, we investigated how the input sequence encoding
and training set construction affect the performance of
miRNA characterization using CNN.

We choose CNN as the deep learning model because
of its recent success in other sequence classification stud-
ies [26–29]. Empirical analyses have shown that CNN can
be applied to extract “motifs” from a set of homologous
sequences. Motifs are essential features to distinguishing
different groups of sequence families including miRNAs.
DeepBind [26] used a single convolution layer to cap-
ture the motif from protein binding sites. DeepFam [29]
applied the CNN on the protein classification and found
that the frequently activated convolution filters are consis-
tent with known motifs. As different miRNA families tend
to have different conserved sequences, the convolution
layers in CNN are expected to capture distinctive fea-
tures for fine-grained classification. DanQ [30], proposed
by Qiang et al., added additional long short term mem-
ory (LSTM) layers above the convolution layers to capture
the dependency between the separated motifs extracted
by convolution layers. But as miRNAs are relatively short,
the sequential features within a filter are sufficient for
classification.

Related work
In this section, we summarize related work on homol-
ogy search-based miRNA identification. Some homol-
ogy search tools are designed for comprehensive ncRNA
search and can divide miRNAs into different types. For
example, there are hundreds of different miRNA fam-
ilies in Rfam. The associated tool, Infernal [12], con-
ducts homology search by incorporating both sequence
and secondary structure similarities in context-free gram-
mar based models. Input sequences can be classified
into different miRNA families for functional inference.
For identifying miRNAs with high sequence similarity,
generic homology search tools such as BLASTn [15] can
be applied as well.

Most tools designed specifically for miRNA search aim
to distinguish miRNAs from other types of sequences
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[31–33]. The most successful ones usually employ tran-
scriptomic data to improve the identification accuracy.
When the reference genomes are available, reads from
small RNA-Seq data are mapped to the reference genomes
to locate possible pre-miRNA genes. Features such as the
conserved hairpin structure, read mapping patterns on
the mature miRNA vs. other regions, expression levels
across multiple samples are utilized to screen miRNAs in
those candidate regions. From the perspective of machine
learning, distinguishing miRNAs from other regions can
be formulated as a binary classification problem. Pre-
miRNAs have the positive label and all others have the
negative label. Classification models such as SVM [34, 35],
Random Forest [36], and CNN [37] have been applied for
miRNA search. Being different from these binary classifi-
cation tools, ours focuses on classifying input sequences
into different miRNA families for more detailed function
annotation. Unrelated sequences including other types of
ncRNAs are rejected using a threshold in the softmax
value.

CNN was also employed by Genta Aoki [38] for ncRNA
classification. The authors took ncRNA pairwise align-
ments and associated features as input to CNN and got
98% accuracy for 6 types of ncRNA.

Advances of feature selection and classification mod-
els in machine learning have enhanced the sensitivity and
precision for miRNA search. However, highly unbalanced
training set is still a challenge for various learning models
[39]. Being formulated as a binary classification prob-
lem, there are significantly more negative samples (non-
miRNAs) than positive samples (miRNAs). In addition,
there are many different types of non-miRNA sequences.
It is not clear how to compose the negative training data
from such large and highly diverse sequences.

In this study, we intend to formulate miRNA search
as a multi-label classification problem. Instead of using
non-miRNAs as training data, we reject those un-relevant
sequences using methods from open set problem [40]. In
addition, we implemented two types of encoding meth-
ods based on whether we explicitly encode the secondary
structure information.

Method
The deep learning model we choose is Convolutional
Neural Network (CNN), which has demonstrated some
success in ncRNAs classification [38]. We implemented
and compared two different encoding methods for
CNN-based miRNA classification. In the first encoding
method, we explicitly encode secondary structure infor-
mation into matrices and use these matrices as train-
ing/testing data. In the second method, we use one-
hot encoding matrix to represent the input sequences
and do not take into account predicted secondary
structures.

Explicitly encode secondary structures into matrices
We implemented three types of matrix to encode the
secondary structure information from sequences: proba-
bility matrix, pair matrix, and mixed matrix. The first
two are inspired from adjacency matrix for modeling sec-
ondary structures. The structural information is derived
from the sequences using RNAfold [41], which is one
module in the ViennaRNA [41] package. As the opti-
mal structure predicted based on Minimum Free Energy
(MFE) is often not accurate, we use RNAfold to output
both the optimal and suboptimal structures. In addition,
we also use the base pairing probabilities computed by the
software.

Probability matrix simply contains the values of the
base pairing probability outputted by RNAfold. For a
sequence s, the size of the matrix is |s| × |s|. Pi,j is the
predicted base pairing probability between the ith and jth
base in s if the probability p is above a given threshold
T. The equation for defining the value of each cell can be
found below.

Pi,j(probability matrix) =
{

p if p ≥ T
0 if p < T .

Being different from probability matrix, pair matrix
distinguishes different base pairs including Watson-Crick
pairs and G-U pair. If the base pairing probability is above
a given threshold, we will record this base pair using its ID
number, which is used to distinguish different base pairs.
Depending on whether we take into account the order of
the bases in a base pair, different base pairs can be con-
verted into 6 or 3 different values. The conversion rules
are summarized in the following equations. Xi,j refers to
an element at position (i, j) in a pair matrix. si refers to the
ith base in sequence s. T is a given threshold.

Xi,j(pair matrix with order) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if p < T
1/6, if (sisj = AU) and p ≥ T
2/6, if (sisj = UA) and p ≥ T
3/6, if (sisj = CG) and p ≥ T
4/6, if (sisj = GC) and p ≥ T
5/6, if (sisj = GU) and p ≥ T
6/6, if (sisj = UG) and p ≥ T

or
Xi,j(pair matrix without order) = ⎧⎪⎪⎪⎨

⎪⎪⎪⎩

0, if p < T
1/3, if (sisj =AUor sisj =UA)and p ≥ T
2/3, if (sisj =CGor sisj =GC)and p ≥ T
3/3, if (sisj =GUor sisj =UG)and p ≥ T

Combining these two features together, the original 2D
matrix will become a 3D matrix with two layers, which
is called mixed matrix, as shown in Fig. 1c. One layer of
size |s| × |s| is the probability matrix and another layer
of the same size is the pair matrix. Essentially, this matrix
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Fig. 1 Examples of different encoding matrices. (a) Probability matrix; (b) Pair matrix; (c) Mixed matrix; (d) One-hot encoding matrix

integrates different base pairs with the predicted pairing
intensities.

The pair and mixed matrices can be conveniently visu-
alized as images. We presented the corresponding images
for one miRNA and one tRNA in Fig. 2. The thresh-
old T is 0.0001 in all the matrices. It is not hard to
observe the stacking base pairs of the hairpin and clover-
leaf structures of the miRNA and tRNA, respectively. The
secondary structures are less obvious in the pair matrix
because the cell values in the pair matrix are decided by
the base pairs rather than the base pairing probabilities.
Given a small T, cells with low pairing probabilities might
still get a relatively big value because of the conversion
rules.

CNN architecture for the matrices containing base pairing
information
The CNN model contains two convolutional layers, fol-
lowed by max pooling layers and three fully connected
layers. Figure 3 sketches this architecture. To prevent
overfitting, dropout is also applied. During the training
of the CNN model, several hyperparameters were tuned
within the given ranges, which are shown in Table 1. The
parameters with best performance were selected. Finally,
the hyperparameters were set as follows: number of con-
volution layers = 2, kernel size for each convolution layer
= 2, the number of kernels in the two convolution layer =
64: 128, pooling method = max pooling, number of units
in two fully connected layer = 256: 128, learning algo-
rithm = Adam, dropout rate = 0.5, learning rate = 0.001,

batch size = 32. The CNN model was implemented in
Keras [42].

Encoding the sequence using one-hot matrix
One-hot encoding matrix has been successfully used in
encoding genomic sequences for deep learning models.
Essentially, the sequence is converted to a |s| × 4 one-
hot encodidng matrix, where |s| is the length of an input
sequence and 4 is the number of different bases. Let the
matrix be M, where Mi,j is 1 if the ith base in the input
sequence is the jth character in the alphabet. For any other
characters, Mi,j is 0

(
k �= j

)
. An example one-hot encoding

matrix is given in Fig. 1d.

The CNN architecture for one-hot encoding matrices
Inspired by Yoon Kim’s work in sentence classification
[43], a similar model is used in this work. Several con-
volution layers with different size of kernels, followed by
global max pooling layer, are connected to input layer
directly. The outputs of all pooling layers are concatenated
together and then fed into two fully connected layers.
Dropout is also employed to overcome overfitting. Tuned
parameters are shown in Table 1. Finally, the hyperparam-
eters are set as follow: the number of convolution layers
= 1, the size of the convolution filters = [2, 4, 6, 8, 10,
12, 14, 16], the number of kernel in convolutional layer =
512, the number of units in first fully connected layer =
1024, dropout rate = 0.7, learning rate = 0.001, learning
algorithm = Adam, batch size = 64. Figure 4 shows the
architecture.
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Fig. 2 The probability, pair and mixed matrix images of miRNA and tRNA. (a), (b), (c) correspond to probability matrix, ordered pair matrix, mixed
matrix of a miRNA sequence respectively. (d), (e), (f) correspond to probability matrix, ordered pair matrix, mixed matrix of a tRNA sequence
respectively. For the mixed matrices, the color green is from the layer of probability matrix while blue represents the layer of the pair matrix

Excluding other ncRNA sequences using softmax
probability threshold
As next-generation sequencing data such as small RNA-
Seq data have become the major source of new miRNA
discovery, useful miRNA search tools should be able to
distinguish miRNAs from other types of ncRNAs, which
usually co-exist with miRNAs in RNA-Seq data. Identify-
ing miRNAs in RNA-Seq data is open set and thus any
useful system must reject unknown/unseen classes in test
set [40]. Existing binary classification tools often treat all
the non-miRNA sequences as negative and need to choose

non-miRNAs as the negative training samples. This often
creates a highly unbalanced training set because there
are significantly more non-miRNAs than miRNAs. In
addition, it is not clear how to sample negative train-
ing sequences from many different types of ncRNAs. Our
CNN model does not use an extra label for other ncR-
NAs. Instead, we reject out-of-distribution samples using
the probability output of the softmax layer [44].

There are previous studies showing that the softmax
probabilities of out-of-distribution samples are smaller
than the probabilities of targeted samples [44]. Intuitively,

Fig. 3 CNN structure of the probability/pair/mixed matrix
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Table 1 The list of the tuned hyperparameters

Hyperparameter Prob/pair/mixed
matrix

One-hot matrix

Number of
convolution layers

2, 4, 6 1

Kernel size for
convolution

2, 3, 5 [8, 16], [4, 8, 12, 16], [2, 4,
6, 8, 10, 12, 14, 16]

[2, 4, 6, 8, 10, 12, 14, 16]

[2, 4, 6, 8, 10, 12, 14, 16]

Number of kernels
(1st convolution layer)

16, 32, 64 64, 128, 256, 512

Number of kernels
(2nd convolution
layer)

32, 64, 128 not applicable

Pooling method Max pooling,
average pooling

Number of units (1st
fully connected layer)

64, 128,256 128, 256, 512

Number of units (2nd
fully connected layer)

32, 64, 128 not applicable

Learning algorithm Adam, SGD

Dropout rate 0.7, 0.5

out-of-distribution queries tend to produce a softmax
probability vector with similar (small) values while an in-
distribution query often yields a large softmax probability
for one class. Thus, we will use carefully chosen softmax
probability threshold to reject out-of-distribution sam-
ples, which in our case can be other types of ncRNAs
in small RNA-Seq data. In addition, not all miRNA fam-
ilies are used in our training data. Any unseen miRNA
families are also out-of-distribution samples. The soft-
max probability threshold should be used to reject them

as well. We will use ROC curves to empirically choose a
threshold.

Experimental results
We will first compare the classification accuracy of the
two types of encoding methods. In particular, we will
examine whether explicitly encoding the structural infor-
mation in input matrices can improve the performance
of miRNA classification. As real data such as small RNA-
Seq data contain different types of transcripts, we will
examine whether the softmax output can be used to reject
non-miRNA sequences. Then, we will compare the per-
formance of the CNN-based miRNA classification with
other ncRNA classification tools.

Experimental data and pre-processing
For most of our training process, we use pre-miRNA fam-
ilies from Rfam as the training and testing data because
we would like to compare our method with Infernal [12],
which can conveniently use trained covariance models
from Rfam. The current release of Rfam contains 529
pre-miRNA families and 215,122 precursor sequences.
Another popular miRNA database is miRBase [24], which
currently contains 1983 miRNA families from 271 organ-
isms, including 38,589 pre-miRNAs and 48,860 mature
miRNAs. In the experiment where we only use the mature
miRNAs as the training data, we use miRBase because
miRBase provides easy access to collect all the mature
miRNAs.

We noticed that some of the pre-miRNA families
in Rfam contain repeated sequences. Thus, in our
pre-processing step, we will remove all the redundant
sequences from the 529 pre-miRNA families in Rfam.
As a result, 17.6% sequences were removed and 177,160
sequences were kept for downstream analysis. Each family

Fig. 4 The CNN architecture of the one-hot encoding matrix encoding method
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contained different number of sequences (from 1 to
95,247) with different length. The distribution of the fam-
ily size is shown in Fig. 5.

To train in mini-batch, a fixed size of the input matrix
should be set. Although there are a few pre-miRNA fam-
ilies with particularly long sequences, 96.88% miRNAs in
Rfam were less than 200nt. Thus, we only keep the families
with size at most 200nt. Although commonly seen pre-
miRNAs are about 70nt, we did not exclude the long ones,
such as those occurring in plant genomes, before pre-
processing. The input matrix has size 200. All the shorter
sequences were converted into 200nt sequences by insert-
ing zero padding at the end. These padded zeros will lead
to zero during the scanning of a convolution filter and thus
won’t affect the downstream layers after maxpooling.

Classification performance of probability and pair matrix
Following our definition of the probability and pair
matrix, a threshold T is needed to decide the values of
these matrices. In this experiment, we evaluate the change
of T on the classification performance. At the same
time, we also compare the performance of ordered and
unordered pair matrices. These experiments were con-
ducted using 30 randomly selected pre-miRNA families
with at least 100 member sequences.

Considering that the probabilities may not be linearly
distributed from 0 to 1, we sorted all the pairing proba-
bilities (greater than 0.0001) of each miRNA sequence in
Rfam and then used the values of different percentiles as
the thresholds. The 0th, 10th, 20th, 30th and 40th per-
centile are selected; the corresponding values are 0.0001,
0.00487, 0.00772, 0.01307, and 0.02411.

For the 30 pre-miRNA families, 100 sequences were
randomly selected from all member sequences. Then we
used 5-fold cross validation so that there were 80 train-
ing sequences vs. 20 test sequences. CNN models with
30 classes are trained using different types of encoding

Fig. 5 Rfam characteristics. Percentage of families in family size

methods. As there are 10 different types of matrices
using 5 thresholds combined with two types of base pairs
(ordered vs. unordered), 10 CNNs are trained. Note that
the test sequences are encoded using the same method as
the corresponding training data. We first compared the
classification accuracy of using different thresholds with
boxplot in Fig. 6a. For each threshold, there are 10 classi-
fication accuracy values for 5-fold cross validation results
of both ordered and unordered cases. The comparison
shows that allowing small base pairing probabilities yields
higher average accuracy but also a slightly larger devia-
tion. Overall, because of the higher average accuracy, we
set the default threshold T as 0.0001 in all the following
experiments. Figure 6b compares the classification accu-
racy of ordered vs. unordered matrices. The results show
that they have very similar accuracy, with median accu-
racy around 0.92. By default, we use ordered base pairs in
the pair matrix.

Performance on pre-miRNAs classification
One-hot encoding matrix has been widely adopted for
converting genomic data as inputs to deep learning mod-
els. Although it does not explicitly incorporate any struc-
ture information from the sequences, it has successful
applications in protein homology search [29]. Thus, we
will conduct a comprehensive experiment to compare the
performance of one-hot encoding matrix and probabil-
ity/pair matrix using pre-miRNA families from Rfam.

As different pre-miRNA families have different num-
bers of sequences, which can affect the performance of
classification, we built 4 different datasets based on the
size of families. Each dataset has different number of
“classes” or “labels”. The details about the four groups can
be found in Table 2. Taken the Rfam-300 dataset as an
example, there are 47 families in this dataset and each
family contains 300 sequences (including 250 training
sequences and 50 testing sequences). The model trained
using this dataset needs to classify queries into one of the
47 families (or classes). We will compare the classification
performance of CNNs on the four groups of training data
and examine how the training set size affects the accuracy.

In order to quantify the prediction perfor-
mance, we use two metrics: accuracy and F-score(

F − score = 2×Precision×Recall
Precision+Recall

)
. Classification accuracy

quantifies the percentage of the correct predictions
in all the test sequences. For each family, we also
computed the recall

(
Recall = TP

TP+FN

)
and precision(

Precision = TP
TP+FP

)
. Here, TP, TN, FP, and FN corre-

spond to the numbers of true positive, true negative, false
positive, and false negative, respectively. The average
F-score for all different families for one trained CNN is
reported in Table 3. We evaluated the performance by
the average accuracy of 5 independent experiments, each
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Fig. 6 Performance comparison on classification accuracy using different secondary structure encoding methods. a 5 different thresholds (T ) of
base pairing probabilities. b ordered vs. unordered base pairs

of which was measured with randomly selected testing
sequences.

The results show that using one-hot encoding matrix
led to much better performance than other methods even
though it does not integrate base pairing information. In
addition, it was less susceptible to the reduction of train-
ing data size. On the other hand, matrices focusing on
base pairs need bigger training data to achieve better clas-
sification accuracy. These comparisons indicate that using
one-hot encoding matrices is able to distinguish different
types of miRNA families. One possible reason behind the
inferior performance of using base pairing information is
that all these pre-miRNA families have similar secondary
structures and thus it is more difficult to conduct finer
scale classification within the big family of miRNAs. For
using one-hot matrix is less vulnerable to the decreased
size of the training dataset, one possible reason is that one-
hot matrix model has much fewer trainable parameters.
For example, inputting the same sequence of length 200nt,
one-hot model can update 4,485,255 parameters while
the pair matrix model can update 78,748,399 parameters.
Fewer parameters can help the model maintain high accu-
racy even if the training set is relatively small.

Table 2 Four groups of pre-miRNA families with different
training set sizes

Datasets No. of families (i.e. classes) No. of sequences per
family (train : test)

Rfam-300 47 300 (250 : 50)

Rfam-120 106 120 (100 : 20)

Rfam-60 165 60 (50 : 10)

Rfam-30 241 30 (25 : 5)

However, our additional experiments (next section)
showed that these matrices cannot distinguish miRNAs
from C/D box snoRNAs with high accuracy either, prob-
ably because of the similarity in the secondary structures,
indicating that it is more difficult to train effective CNNs
for matrices encoding base pairs. Larger training data are
needed to improve the classification accuracy, which may
not be always available for some miRNA families.

Use softmax probability threshold to reject other types of
ncRNA sequences
Transcriptomic data such as small RNA-seq data can con-
tain reads from other types of ncRNAs or miRNA families
that are different from the many data. In this experiment,
we will show that appropriate softmax probability value
can be chosen as the threshold to distinguish targeted
miRNAs from out-of-distribution samples.

As an example, we demonstrate the softmax out-
put using the CNN model trained on Rfam-60 dataset
(including 165 miRNA families). The positive set includes
155,392 test sequences from the Rfam-60 dataset while
the negative (i.e. out-of-distribution) set contains all
sequences from untrained miRNA families and randomly
selected sequences from all other types of ncRNA in Rfam.
There are 186,112 sequences in the out-of-distribution
set. For each test sequence, the softmax layer will out-
put a vector of normalized probabilities for all the 165
classes. The test sequence is assigned to the class with the
the highest probability in the vector. We will set a thresh-
old on this value so that a test sequence with maximum
softmax output below this threshold will be rejected. We
empirically determined the threshold by analyzing the dis-
tribution of the maximum softmax values for each input
sequences.
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Table 3 Prediction accuracy(%) and F-score(%) of CNNs trained on families of different sizes

Method Rfam-300 Rfam-120 Rfam-60 Rfam-30

Acc.1 F-score Acc. F-score Acc. F-score Acc. F-score

Pair matrix 89.91 89.99 77.71 76.87 71.27 68.82 60.60 56.32

Prob matrix 83.69 83.28 72.86 71.61 69.83 67.66 59.37 54.72

Mixed matrix 87.78 87.32 74.94 73.67 66.15 63.67 53.31 48.71

One-hot matrix 99.25 99.25 98.87 98.88 98.48 98.45 97.76 97.71

1Acc. refers to accuracy (%)

We first plot the distribution of softmax values of the
targeted miRNAs and other ncRNAs. Then we show
the receiver operating characteristic (ROC) curve, which
is constructed using false positive rate

(
FPR = FP

FP+TN

)

and true positive rate
(

TPR = TP
TP+FN

)
computed under

different thresholds. Figure 7a and c show the distribution

of the softmax probabilities for targeted miRNAs and neg-
ative samples. The comparison of (a) and (c) shows that
using one-hot encoding matrix leads to smaller overlaps
between the two distributions, which is consistent to the
comparison of the ROC curves in Fig. 7b and d. Most of
softmax values of the targeted miRNAs are greater than
0.9 and the area under the ROC curve for one-hot encod-

Fig. 7 Choosing appropriate softmax probability threshold to reject out-of-distribution samples.

(a)and (c) are the distributions of the softmax output for one-hot matrix and pair matrix, respectively; the bin width
is 0.01; (b) and (d) are the ROC curves of distinguishing targeted miRNAs from negative inputs using one-hot and
pair matrix, respectively
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ing matrix is very close to 1. By using one-hot encoding
matrix, we can find an appropriate probability thresh-
old to reject a majority of the negative samples (high
precision) while still keeping targeted pre-miRNAs (high
sensitivity). According to Fig. 7b, we choose the thresh-
old leading to a large F-score. The default softmax value
threshold for our trained CNNs is 0.977, with associated
FPR of 0.05. Any test sequence with maximum softmax
probability below 0.977 will be rejected.

We hypothesized that using pair and probability matrix
cannot distinguish different pre-miRNA families because
of their similar secondary structures. These matrices
should thus be able to distinguish different types of ncR-
NAs with different secondary structures. Thus, we con-
structed a smaller negative data set containing tRNA, C/D
box snoRNA, and other unseen miRNA families, includ-
ing 20,000, 60,000 and 6,500 sequences, respectively. The
secondary structure of tRNA is cloverleaf, which is very
different from miRNA’s hairpin structure. But the C/D
box’s stem box structure is somewhat similar to miRNA’s.
According to Fig. 8b, probability/pair matrix can dis-
tinguish tRNA from miRNA well, but still has difficulty
rejecting C/D box snoRNAs. Considering that different
types of ncRNAs might share globally or locally simi-
lar structures, pair and probability matrices have limited
utilities in ncRNA classification.

Directly classifying mature miRNAs
As many small RNA-seq datasets contain only mature
miRNA, we evaluated whether deep learning could be
used to directly classify mature miRNAs. As mature miR-
NAs in the same family can be well conserved because of
their binding preference, using either mature miRNAs or
pre-miRNAs as the training data may lead to similar clas-
sification accuracy for mature miRNAs. We again conduct

the comparison using Rfam-60 set, where 50 sequences
are used for training and 10 for testing. As we can-
not conveniently obtain the mature miRNA annotation
in the pre-miRNA families in Rfam, we downloaded the
mature miRNAs from MiRBase. Thus, two CNN models
are trained on pre-miRNAs and mature miRNAs, respec-
tively. All the test sequences are mature miRNAs. For all
the sequences, only one-hot matrix is used because of
its superior performance. The mature miRNA classifica-
tion accuracy of using pre-miRNAs and mature miRNAs
as training data is 65.26% and 92.43%, respectively. Thus,
when there are no reference genomes and read mapping
cannot be used to identify possible pre-miRNAs, mature
miRNAs should be used as training data for CNNs.

Performance on the input sequences with extra bases
Determining the exact boundary of pre-miRNAs in
genomes is still challenging. For example, reads from
small-RNA seq data can be mapped to reference genomes
to identify possible mature miRNAs. Then those regions
plus possibly mapped miRNA regions will be extended
to identify candidate pre-miRNAs. The extension can go
beyond the true pre-miRNA boundaries. Thus, we inves-
tigate whether having extra bases affects the classification
accuracy. We still use Rfam-60 as our dataset, but 5, 10,
15 or 20 random nucleotides are added around each test
sequence. The results can be found in Table 4.

Comparison with other tools
In addition to the classification accuracy, the running
time is also an important consideration for practical appli-
cations, especially when identifying miRNAs from next-
generation sequencing data. Here, we compared the clas-
sification accuracy and running time of our trained CNNs
with Infernal and miRClassify [45]. We also evaluated the

Fig. 8 Distribution of softmax values for unseen miRNAs, tRNAs, and C/D box snoRNAs. In both plots, the bin width is 0.01. (a) uses the one-hot
encoding matrix model; (b) uses the pair matrix model



Tang and Sun BMC Bioinformatics 2019, 20(Suppl 23):646 Page 11 of 14

Table 4 Classification performance on the test sequences with
added bases

Number of added bases Accuracy F-score

5 97.52% 97.63%

10 96.88% 97.16%

15 95.47% 95.27%

20 94.70% 94.48%

performance of each method as the number of miRNA
families (i.e. classes) increased. Four testing dataset were
constructed by randomly selecting 1000 sequences from
Rfam-300, Rfam-120, Rfam-60, and Rfam-30 respectively.
Note that all these testing sequences are chosen from
the set excluding training sequences and thus have no
overlap with the training data for our CNN models. This
experiment was repeated for five times and the average
performance was reported in Table 5. The variance of each
experiment in one-hot matrix method and Infernal is very
small (less than 5e- 3). And for the miRClassify, the vari-
ance is slightly bigger and the biggest variance is 0.02. In
order to run Infernal, we directly downloaded the covari-
ance models associated with the corresponding dataset
from Rfam. Thus, it is possible that some of these test
sequences were used for training the covariance models.
MiRClassify uses a hierarchical random forest model to
classify the miRNAs into different families. The models
of MiRClassify were downloaded from their website and
they were constructed from miRBase version 16.0.

To ensure a fair comparison in the running time, we
used single core for all the three tools because miRClassify
is single-threaded. For Infernal, we set the option ‘–cpu’ as
1. All other options for Infernal are the default parameters.
The command is:

> cmscan –cpu 1 rfam_60.cm rfam_60.fa
Here, ‘rfam_60.cm’ contained all the required covari-

ance models and ‘rfam_60.fa’ is the test sequence set. For
each query sequence, Infernal might generate several hits.
In that case, we only kept the one with the lowest E-value.
CNN model was implemented by Keras so we added extra
commands to make sure only one core was used. In addi-
tion, the mini-batch size used in CNN was 64. Table 5
summarized the results.

The result in Table 5 shows that despite the possible
overlaps between training and testing data for Infernal and
MiRClassify, our trained CNN models still have high accu-
racy with minimum running time. We then conducted
the χ2-test between the 20 accuracy values output by the
three methods. The p-value between the one-hot matrix
method and Infernal was very close to 1 (0.999), indicating
that their accuracy is comparable. On the other hand, the
p-value between ours and miRClassify is 4.59e- 275. The
running time comparison also shows that Infernal took
more time as the number of families increased. The other
two methods were not affected by the number of families.

Frequently activated filters represent part of mature
miRNAs
To interpret why the one-hot encoding method performed
well, we visualized some motifs extracted by our CNN
model. Employing the method used in DeepFam [29], we
utilized the most frequently activated filters in trained
Rfam-300 model to extract motifs from the RF00247
training sequences. We compared the motifs obtained by
CNN with the motifs produced by MEME on training
sequences, as shown in Fig. 9. Because the convolution
layer used filters of different sizes, this model can identify
motifs with various lengths. We found that the identi-
fied motifs represented part of the mature miRNA. We
tested other families and had the same observation. This
is consistent to the findings by DeepFam.

Discussion
We evaluated and compared the classification perfor-
mance using different encoding methods and CNN archi-
tectures. Based on the experimental results, simple one-
hot matrix performed much better than other encoding
methods that explicitly incorporate predicted secondary
structures. This could be caused by similar secondary
structures among different types of pre-miRNA families.
As shown by Do et al. [37], it is possible that encoding
secondary structures will benefit distinguishing miRNAs
from other ncRNAs in the binary classification problem.

In practice, input data such as small RNA-Seq can
contain sequences from other types of ncRNAs. Use-
ful miRNA classification must be able to reject out-
of-distribution samples. Our experiments demonstrated

Table 5 Comparison with Infernal and miRClassify

Tool Rfam-300 Rfam-120 Rfam-60 Rfam-30

Acc.1 Time2 Acc. Time Acc. Time Acc. Time

one-hot matrix 98.94 4.52 98.60 4.53 97.86 4.52 97.45 4.54

Infernal 98.30 265.92 99.06 322.43 99.34 405.15 99.42 486.78

miRClassify 36.50 250.53 46.23 252.76 48.24 254.56 48.80 258.12

1Acc. refers to accuracy (%).
2Time refers to running time (s)
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Fig. 9 Visualizing and comparing the motifs extracted by MEME [46] and CNN model in RF00247. (a) Motifs extracted by MEME and CNN and the
corresponding convolution filter of length 8. (b) Motifs extracted by MEME and CNN and the corresponding convolution filter of length 16. (c) The
secondary structure of RF00247 with highlighted mature miRNA

that using softmax output can achieve an optimal trade-
off between sensitivity and precision in distinguish-
ing targeted miRNAs from other sequences. Thus, the
designed classification models are practically useful in
conducting finer scale miRNA analysis. By comparing
our tool with a general ncRNA classification tool Infer-
nal and also another machine learning based miRNA
classification tool, we conclude that ours can achieve
high sensitivity and accuracy with significantly reduced
running time.

Conclusion
In this work, we developed CNN-based classification
models for identifying different types of miRNAs. By
using the output of the softmax probability as a threshold,
our model can reject other types of ncRNAs and out-
of-distribution miRNAs with high precision. Comparing
with two existing methods, our one-hot encoding method
takes much less time and still has high accuracy.

Although this work only concerns miRNAs, the trained
CNNs can be extended to classify other types of
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ncRNAs. The method holds the promise to achieve
comparable performance while achieving significant
speedups compared to Infernal. It is our future work
to extend and optimize our model for other types of
ncRNAs.
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