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Abstract

Background: Feed-forward loops (FFLs), consisting of miRNAs, transcription factors (TFs) and their common target
genes, have been validated to be important for the initialization and development of complex diseases, including
cancer. Esophageal Carcinoma (ESCA) and Stomach Adenocarcinoma (STAD) are two types of malignant tumors in
the digestive tract. Understanding common and distinct molecular mechanisms of ESCA and STAD is extremely
crucial.

Results: In this paper, we presented a computational framework to explore common and distinct FFLs, and
molecular biomarkers for ESCA and STAD. We identified FFLs by combining regulation pairs and RNA-seq data.
Then we constructed disease-specific co-expression networks based on the FFLs identified. We also used random
walk with restart (RWR) on disease-specific co-expression networks to prioritize candidate molecules. We identified
148 and 242 FFLs for these two types of cancer, respectively. And we found that one TF, E2F3 was related to ESCA,
two genes, DTNA and KCNMA1 were related to STAD, while one TF ESR1 and one gene KIT were associated with
both of the two types of cancer.

Conclusions: This proposed computational framework predicted disease-related biomolecules effectively and
discovered the correlation between two types of cancers, which helped develop the diagnostic and therapeutic
strategies of Esophageal Carcinoma and Stomach Adenocarcinoma.

Keywords: Esophageal carcinoma, Stomach adenocarcinoma, Molecular mechanism, Feed-forward loop, Random
walk with restart

Background
Esophageal Carcinoma (ESCA) and Stomach Adenocar-
cinoma (STAD) are two types of cancer in the digestive
tract. ESCA ranks sixth in its cancer-related mortality
rate [1, 2]. ESCA is classified histologically as esophageal
adenocarcinoma (EAC) and esophageal squamous cell
carcinoma (ESCC) [3]. Stomach Adenocarcinoma is one
of common malignancies of digestive tract [4, 5]. Despite
the advances in the treatment of STAD, the 5-year
survival rate is 5~15% [6]. Both ESCA and STAD belong
to digestive tract cancer, and the sites of their incidence

are very close, so it is significant to explore the molecu-
lar mechanisms and the relationship between these two
types of cancer.
Recently, comprehensive analysis of molecular charac-

teristics of many types of cancer was performed, includ-
ing STAD and ESCA. For example, Yin et al. conducted
a case-control study based on their own patients and
provided the first evidence that RANK rs1805034 T>C
polymorphism was associated with susceptibility of
ESCA [2]. A study by Pan et al. showed that lncRNA
CASC9 in ESCA tissue was up-regulated [7]. SLC52A3
was proved to be useful for proliferation and colony
formation of ESCA [8]. Baffa R et al. focused on loss of
heterozygosity for chromosome 11 in STAD as early as
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1996 [9]. An allelotype analysis was performed to iden-
tify chromosomal regions which were frequently deleted
in STAD [10]. Korean researchers analyzed protein ex-
pression profiles of five STAD suppressor genes [11].
The Cancer Genome Atlas (TCGA) Research team
performed a comprehensive molecular analysis of 559
patients of Stomach Adenocarcinoma and Esophageal
Carcinoma, and found that EAC was closely resembled
Stomach Adenocarcinoma by analyzing mRNA expres-
sion, DNA methylation and SCNA data [12]. In a recent
study, the researchers questioned the use of PD-L1 as a
biomarker in both of ESCA and STAD [13]. Most of the
studies focused on ESCA or STAD separately, ignoring
their potential common molecular characteristics, so it
is of great importance to compare these two types of
cancer.
Gene expression is regulated by many factors, among

which TFs and miRNAs are two most important factors,
and a feed-forward loop (FFL) consisting of two regula-
tion factors and a common target gene plays an essential
role in many biological processes [14]. FFLs were proved
to be relevant to diseases, so some studies were per-
formed to identify significant FFLs in complex diseases,
including schizophrenia, Glioblastoma, T-cell acute
lymphoblastic leukemia and so on [15–17]. There were
also some studies identifying common FFLs in pan-
cancer [18, 19]. Besides, TF-miRNA-lncRNA FFLs were
identified [20]. However, FFLs in ESCA and STAD have
not been studied yet as far as we know.
In this paper, we investigated the common and distinct

regulatory properties of ESCA and STAD. Firstly, we
identified miRNA-TF-gene FFLs by integrating gene/
miRNA expression profiles and transcriptional/post-
transcriptional regulation pairs. Then, we built and ana-
lyzed disease-specific co-expression networks based on
the identified FFLs. Finally, we prioritized candidate
disease-related biomolecules based on their scores.

Results
Overview of the proposed computational framework
The proposed computational framework consisted of the
following five steps (Fig. 1), and we described each step
briefly.

Step 1. Preprocessing of regulation pairs and expression
profiles. We combined TF-target pairs and miRNA-
target pairs from different algorithms and databases,
and dealt with noisy data. For expression profiles, we
filtered out the genes with low expression level and
miRNAs with many missing values. We also calculated
differentially expressed genes and miRNAs for ESCA
and STAD using Limma [21] with adjusted p-value
smaller than 0.05 and |log2FC| greater than 1.

Step 2. Construction of disease-specific regulatory
networks. We constricted the target genes as
differentially expressed genes and the miRNAs as
differentially expressed miRNAs. And then we
contained the regulation pairs whose spearman
correlation coefficient (SCC) was greater than 0.3.
As a result, the disease-specific regulatory networks
for ESCA and STAD were constructed.
Step 3. Identification of 3-node FFLs. Three types of
typical FFLs were identified from the disease-specific
regulatory networks for ESCA and STAD.
Step 4. Construction of disease-specific co-expression
networks. We calculated SCC for each pair of the
molecules in the identified FFLs and then constructed
diseased-specific co-expression networks using those
pairs with coefficient absolutely greater than a
predefined threshold.
Step 5. Prioritization of candidate molecules. Random
walk with restart (RWR) was used to calculate the
score of each biomolecule in the co-expression
networks. The higher the score was, the more likely the
biomolecule was a disease-related molecular.

Disease-specific regulatory network analysis
First of all, we combined differentially expressed mole-
cules with preprocessed regulation pairs. And then we
calculated SCC for each regulation pair. We chose the
threshold with correlation as 0.3 and p-value as 0.05 so
that we obtained the disease-specific regulatory networks
for ESCA and STAD. The results were shown in Table 1.
There were 79 miRNAs, 325 TFs, 1830 genes, and

5801 regulation pairs in ESCA-specific regulatory net-
work (Fig. 2a). And the obtained STAD-specific regula-
tory network consisted of 116 miRNAs, 461 TFs, 2093
genes, and 9037 regulation pairs (Fig. 2b).

MiRNA-TF-gene FFLs
We identified three categories of FFLs from the disease-
specific regulatory networks for ESCA and STAD, re-
spectively. And we named the FFLs identified from the
ESCA-specific regulatory network as ESCA-specific FFL
and the FFLs identified from the STAD-specific regula-
tory network as STAD-specific FFL. The results were
summarized in Table 2.
There were 7 TFP-FFLs, 14 TFN-FFLs and 127

miRNAN-FFLs for ESCA, respectively. An ESCA-
specific regulatory network was constructed based on
the identified FFLs, which consisted of 26 miRNAs, 12
TFs, 60 genes and 240 regulation pairs (Fig. 3a).
What’s more, there were 38 TFP-FFLs, 46 TFN-FFLs

and 158 miRNAN-FFLs for STAD. A STAD-specific FFL
network was constructed based on the identified FFLs,
which consisted of 47 miRNAs, 31 TFs, 87 genes and
401 regulation pairs (Fig. 3b).
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Fig. 1 Flowchart of the proposed computational framework. (1) Preprocessing of regulation pairs and expression profiles (2) Construction of
disease-specific regulatory networks (3) Identification of 3-node FFLs (4) Construction of disease-specific co-expression networks (5) Prioritization
of candidate molecules
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For both of ESCA and STAD, the number of
miRNAN-FFL was the largest one, which meant that this
FFL model was the most common regulatory pattern,
and the genes were mainly down-regulated.
We further investigated the common FFLs in the

ESCA-specific FFL and STAD-specific FFL, and found
that there were 3 TFP-FFLs, 8 TFN-FFLs, and 41
miRNAN-FFLs. It is exciting that STAD and ESCA
shared so many FFLs, which provided a strong evidence
for the potential closely relationship between STAD and
ESCA. We further constructed a regulatory network for
ESCA and STAD based on these common FFLs (Fig. 4),
which was made up of three subnetworks. What’s more,
there were 16 miRNAs, 6 TFs, 20 genes and 90 regula-
tion pairs in this common network.

We investigated the in-degree and out-degree proper-
ties of the regulatory network. Figure 5 showed the in-
degree and out-degree distribution of this network. We
found that the nodes which only had in-degree were all
genes, and the number of nodes was 20. And there were
11 miRNAs and 2 TFs which only had out-degree in this
network. 5 miRNAs and 4 TFs not only had in-degree
but also had out-degree. Among these nodes, one TF
ESR1 had highest in-degree and highest out-degree. We
found it was related to both of ESCA and STAD. Gen-
etic variations in ESR1 were associated with an increased
risk of ESCA [22]. ESR1 regulated stomach-specific
tumor suppressor gene TFF1, further influenced the
development of STAD [23].

Gene set enrichment analysis
Gene set enrichment analysis is a meaningful way to
understand the functions of genes in living cells. We
applied the online tool DAVID [24] to perform gene set
enrichment analysis for those genes. With the DAVID
online tool, we set the threshold p-value as 0.05 and
then obtained a list of entries.
For the STAD-specific FFL, there were 114 biomole-

cules, including 33 TFs and 81 genes, and they were
enriched in a total of 191 annotation entries, including
162 GO terms and 29 BIOCARTA and KEGG pathways.
For the ESCA-specific FFL, there were 72 biomolecules,
including 12 TFs and 60 genes, and analyzed them with
DAVID online tool. They were resulting in a total of 53
annotation entries, including 42 GO terms and 11 BIO-
CARTA and KEGG pathways. An additional file showed
this in more detail [see Additional file 1].

Table 1 Disease-specific regulatory networks for ESCA and
STAD

Cancer Relationship RegulationType Pairs miRNAs TFs Genes

ESCA TF-gene positive 2096 – 154 1353

negative 1383 – 101 1032

TF-miRNA positive 136 54 51 –

negative 68 31 36 –

miRNA-gene negative 1674 48 – 579

miRNA-TF negative 444 47 165 –

STAD TF-gene positive 2454 – 199 1534

negative 1307 – 153 942

TF-miRNA positive 154 70 51 –

negative 165 78 45 –

miRNA-gene positive 3689 80 – 847

miRNA-TF negative 1304 80 277 –

Fig. 2 Disease-specific regulatory networks. a ESCA b STAD
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We further found 32 common entries, including 27
GO terms and 5 KEGG pathways. We selected 10 en-
richment entries for further analysis (Table 3). Among
these entries, the disease-specific FFLs had similar num-
ber of genes. For biological processes, the genes in both
types of disease-related FFLs were enriched in negative
regulation of transcription from RNA polymerase II pro-
moter, which also indicated that these genes played an
important role in transcriptional regulation. For molecu-
lar components, the genes were enriched in the nucleo-
plasm. The nucleus was a necessary component in the
cell, which also showed that these genes were vital and
had an indispensable effect on the cell body and even
the living body. For molecular function, the genes were
enriched in transcription factor activity, sequence-
specific DNA binding.
For biological pathways, genes were enriched in the

cell cycle which was a continuous process passing from
one generation to the next. The enriched members of
this pathway for the ESCA-specific FFL were 4 TFs,
E2F1, E2F3, MYC, TFDP1 and 1 gene GADD45B. And
the enriched members of this pathway for the STAD-

specific FFL were 4 TFs, E2F1, SMAD4, SMAD2, MYC
and 3 genes which included CDKN1C, CDK1,
GADD45B. The common members which were 2 TFs,
E2F1, MYC and 1 gene GADD45B, were all related to
both of two types of cancer. All these categories showed
that these enriched genes may have a critical impact on
the emergence and development of the disease.

Co-expression network analysis
We further focused on the molecules in the identified
FFLs and investigated their SCC for all pairs of mole-
cules to build disease-specific co-expression networks.
We observed different sizes of co-expression network
for different thresholds. Figure 6 showed the relationship
between thresholds and the size of co-expression net-
works for STAD and ESCA. This relationship could be
fitted to a cubic function. The cubic function’s inflection
point is very meaningful. Before this point, the network
size decreases sharply with the increase of threshold,
and after this point, the network size decreases slowly
with the increase of threshold. So the network at this
point is more representative. The thresholds correspond-
ing to the inflection points of the fitting functions of
disease-specific co-expression networks for ESCA and
STAD are about 0.6. Consequently, we chose 0.6 as the
cut-off value in these two networks, and meanwhile p-
value was less than 0.05. Finally, there were 98 nodes
with 2666 pairs and 158 nodes with 5117 pairs in the
disease-specific co-expression networks for ESCA and
STAD, respectively.
Specifically, compared with the STAD-specific FFL,

there were 3 molecules lost in the STAD-specific co-

Fig. 3 Disease-specific FFL networks. a ESCA b STAD

Table 2 The number of FFLs identified

Cancer FFL FFLs miRNAs TFs Genes

ESCA TFP-FFL 7 3 2 7

TFN-FFL 14 6 4 13

miRNAN-FFL 127 19 8 46

STAD TFP-FFL 38 12 9 21

TFN-FFL 46 16 9 32

miRNAN-FFL 158 38 21 48
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expression network. Because these 3 molecules had weak
association with the other molecules.

Random walk with restart in co-expression network
analysis
We investigated the molecules in the disease-specific co-
expression networks for ESCA and STAD. We collected
15 and 39 disease-related molecules in disease-specific
co-expression networks for ESCA and STAD, respect-
ively, as we have mentioned in Methods. Taking these
disease-related molecules as seed nodes, and the other
83 and 119 molecules as candidates, we ran RWR on the
disease-specific co-expression networks for STAD and
ESCA, respectively. As a result, we could obtained the
scores for each candidate molecule. The higher the score

was, the more relevant the candidate molecules were
with the specific disease.
In order to evaluate and select the appropriate restart

probability r, the AUC value of sorting correctness was
calculated when the value r varies from 0.1 to 0.9 step
by 0.1 using leave-one-out cross validation, following the
method proposed by RWRMDA [25]. Table 4 shows the
relationship between the restart probability and the cor-
responding AUC. And we found that the AUCs for both
of two types of cancer were really great when r varied
from 0.1 to 0.9. When the restart probability is 0.9, we
obtained the highest AUC, so we assigned 0.9 to the re-
start probability.
We listed the top 20 candidate molecules for both

ESCA and STAD (Tables 5 and 6). Also there were 12

Fig. 4 The common regulatory network for ESCA and STAD
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out of 20 candidate molecules supported by literature in
PubMed for ESCA (Table 5), and 13 out of 20 candidate
molecules were supported by literature in PubMed for
STAD (Table 6). And details of the all candidate
molecules can be showed in additional file [see
Additional file 2]. These results showed that our analysis
was reliable in a certain degree. And the molecules un-
supported by literature may be potential disease-related
molecules.
Furthermore, we investigated the molecules in the

ranking lists, and found four interesting genes RAI2,
KCNMA1, NBEA and KIT. These four genes ranked
relatively closely in their disease-specific ranking list,
and ranked in the first half among the whole candidate
molecules (Table 7). And KCNMA1, NBEA and KIT
were all related with STAD supported by published liter-
atures [26–28], and KIT was also related with ESCA

[29]. According to the enrichment analysis results of
ESCA and STAD, RAI2, KCNMA1 and KIT are involved
in protein binding. NEBA is involved in protein kinase
binding.
Then we investigated the expression level of these 4

genes. And all these genes were down-regulated in these
two types of cancer, as shown in Fig. 7, which showed
that these two types of cancer shared similar molecular
characteristics.

Discussion
We identified 148 and 242 FFLs for ESCA and STAD,
respectively, and 52 FFLs were common for both of the
two types of cancer, which meant that ESCA and STAD
shared common regulatory properties. Gene set enrich-
ment analysis for the genes in the FFLs also showed that
they share many functional entries, including GO terms

Fig. 5 The in-degree and out-degree distribution of the regulatory network for ESCA and STAD

Table 3 The common enrichment entries for ESCA and STAD

Category Term Genes in ESCA Genes in STAD

BP (GO:0000122) Negative regulation of transcription from RNA polymerase II promoter 12 27

BP (GO:0045944) Positive regulation of transcription from RNA polymerase II promoter 11 28

BP (GO:0009791) Post-embryonic development 3 5

CC (GO:0005654) Nucleoplasm 18 28

CC (GO:0005667) Transcription factor complex 5 11

CC (GO:0043234) Protein complex 6 10

MF (GO:0005515) Protein binding 42 72

MF (GO:0003700) Transcription factor activity, sequence-specific DNA binding 12 26

MF (GO:0019901) Protein kinase binding 6 7

KEGG (hsa04110) Cell cycle 5 7
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and biological pathways. For the top 20 candidate mole-
cules in the ranking list, we validated 13 and 12 mole-
cules in literature for ESCA and STAD, respectively,
which also showed that our analysis is effective. We also
investigated four genes, RAI2, KCNMA1, NBEA, and
KIT, in the two ranking lists, and their potential func-
tions for these two types of cancer. In all, we found that
ESCA and STAD were close related with each other
from the gene regulation prospect.

Conclusions
We proposed a computational framework to investigate
the regulatory properties of ESCA and STAD. In detail,
we integrated gene/ miRNA expression profiles and TF/
miRNA-target pairs from different data sources. Then
we constructed disease-specific regulatory networks for
ESCA and STAD, respectively, and identified FFLs from
these two regulatory networks. We further analyzed the
molecules in the identified FFLs and built two disease-
specific co-expression networks. Finally, we prioritized
candidate disease molecules using random walk with re-
start in these two disease co-expression networks. The
results showed that ESCA and STAD shared common
gene regulatory properties and molecular characteristics.

In this study, we performed a systematic analysis of
gene regulatory properties of two types of cancer in the
digestive tract. We focused on three points: firstly, we
compared the molecular mechanisms of these two types
of cancer, ESCA and STAD. Secondly, we built disease-
specific regulatory networks and identified FFLs. Thirdly,
we built disease-specific co-expression networks and
predicted candidate molecules with RWR.
However, there are some problems in our study.

Firstly, our analysis was heavy influenced by the incom-
plete and noise public data. Secondly, more omics data
should be included to provide a more comprehensive
model for the complex biological system.

Methods
Data source and pre-processing
Transcriptional/post-transcriptional regulations
For transcriptional regulations, we obtained TF-target
pairs from Transcriptional Regulatory Relationships Un-
raveled by Sentence-based Text mining (TRRUST) [30]
and Human Transcriptional Regulation Interactions
database (HTRIdb) [31] and obtained TF-miRNA pairs
from mirTrans [32] and TransmiR [33]. As for the data
in mirTrans, we reserved the pairs with affinity score no
smaller than 1 and conservation score no smaller than
0.95. The TFs to be studied were derived from these four
data sources. And then TF-target pairs were divided into
TF-gene and TF-TF by the obtained TF, and the TF-TF
pairs were removed.
For post-transcriptional regulations, we downloaded

the miRNA-target pairs from miRanda [34], PITA [35],
and TargetScan [36]. The pairs that appeared at least
twice in these three databases were kept. Meanwhile, the
miRNA-target pairs were divided into miRNA-TF pairs
and miRNA-gene pairs.

Fig. 6 The relationship between thresholds and edge numbers. a ESCA b STAD

Table 4 The relationship between the restart probability and
the corresponding AUC

r 0.1 0.2 0.3 0.4 0.5

ESCA 0.5550 0.6137 0.6442 0.6667 0.6796

STAD 0.6124 0.6660 0.7128 0.7468 0.7778

r 0.6 0.7 0.8 0.9

ESCA 0.6996 0.7060 0.7181 0.7229

STAD 0.7992 0.8214 0.8375 0.8500
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Finally, there were 13,768 miRNA-TF pairs, 124,393
miRNA-gene pairs, 53,855 TF-gene pairs and 7036 TF-
miRNA pairs, respectively.

Disease related genes and miRNAs
We collected disease-related genes from Online Mendelian
Inheritance in Man (OMIM) [37] and the Catalogue Of
Somatic Mutations In Cancer (COSMIC) [38]. OMIM is a
database which collects data, including human genes, gen-
etic phenotypes and the relationships between diseases and
genes, while COSMIC is a database which explores the im-
pact of somatic mutations in human cancer. We also col-
lected disease-related miRNAs from miR2Disease [39],
PhenomiR [40] and the Human microRNA Disease Data-
base (HMDDv2.0) [41].
At last, we obtained 17 ESCA-related genes and 186

ESCA-related miRNAs, 30 STAD-related genes and 381
STAD-related miRNAs.

Gene and miRNA expression profiles
Clinical data and gene/miRNA expression profiles were
downloaded from TCGA [42]. First, we retained the sam-
ples which satisfied the following three conditions. (1) They
should be paired, i.e. there should be a corresponding nor-
mal sample for a tumor sample; (2) They should have gene
expression profile; (3) They should have miRNA expression
profile. We obtained 20 (10 tumor samples and 10 normal
samples) and 64 (32 tumor samples and 32 normal sam-
ples) samples for ESCA and STAD, respectively.
We filtered the genes whose expression levels were

less than 1 in half of the samples. And the miRNAs
whose expression levels were missing in greater than
10% of samples were removed. For the remaining miR-
NAs, we retrieved miRNAs which were related to the
specific disease, and then we deleted the miRNAs whose
expression levels were missing in more than half of the
samples.
After preprocessing, there were 17,150 genes and 471

miRNAs in gene/miRNA expression profiles for ESCA.
And there were 17,059 genes and 477 miRNAs in gene/
miRNA expression profiles for STAD.
The differential expression analysis is an important way

to study the molecular mechanisms, which could help ex-
plain the mysteries of organisms. We can obtain differen-
tially expressed molecules using the preprocessed
expression data. We used the R package Limma [21] to cal-
culate differentially expressed genes and differentially
expressed miRNAs with adjusted p-value < 0.05 and
|log2FC| >1.
For ESCA, we obtained 2769 differentially expressed

genes and 105 differentially expressed miRNAs, which
contained 1329 down-regulated genes, 1440 up-regulated
genes, 17 down-regulated miRNAs, and 88 up-regulated

Table 6 Top 20 candidate molecules for STAD

Ranking Molecules Score(10−3) PMID

1 CNN1 1.5602 –

2 hsa-miR-15a-5p 1.5177 26894855

3 REEP1 1.2745 –

4 DTNA 1.2160 27858295

5 FOXP2 1.1572 27382302

6 hsa-miR-188-5p 1.1426 29471891

7 hsa-miR-590-3p 1.1182 29516678

8 DLG2 1.0800 –

9 KCNMA1 1.0594 28231797

10 RELN 1.0589 19956836

11 CFL2 1.0466 29342841

12 hsa-miR-590-5p 1.0191 27757042

13 NECAB1 1.0111 –

14 PRICKLE2 0.9895 16273260

15 TUSC3 0.9824 22447362

16 hsa-miR-424-5p 0.9587 27655675

17 GPRASP2 0.9453 –

18 MEIS1 0.9435 28545608

19 MAPK10 0.9298 –

20 PCSK2 0.9209 –

Table 5 Top 20 candidate molecules for ESCA

Ranking Molecule Score(10−3) PMID

1 RBPMS2 1.8594 29301256

2 hsa-miR-15b-5p 1.7756 25943911

3 GADD45B 1.7477 16026601

4 hsa-miR-365a-3p 1.6981 –

5 SECISBP2L 1.6595 –

6 TFDP1 1.6582 14618416

7 hsa-miR-222-3p 1.6557 26258795

8 AURKA 1.6530 24953013

9 SORCS1 1.6250 –

10 hsa-miR-106b-5p 1.6121 27619676

11 hsa-miR-18a-5p 1.5999 23643275

12 TXNIP 1.5953 29934340

13 ARHGEF37 1.5939 –

14 FBXL17 1.5910 –

15 E2F3 1.5658 28751461

16 hsa-miR-17-5p 1.5597 28002789

17 RAI2 1.5583 –

18 ITPR1 1.5563 –

19 SOX9 1.5302 29936467

20 MITF 1.5277 –
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miRNAs, respectively. For STAD, we obtained 3208 and
148 differentially expressed genes and miRNAs, which
contained 1752 down-regulated genes, 1456 up-regulated
genes, 14 down-regulated miRNAs and 134 up-regulated
miRNAs, respectively.

MiRNA-TF-gene FFL
The FFL is one of the most important principles in
regulating the responses of living cells, in which one
TF A regulates another TF B, while A and B regulate
their common target gene C [43]. In this study, we
considered two kinds of regulation factors, TFs and
miRNAs, so our FFL consists of three elements, one
TF, one miRNA and one gene. Besides, we defined
the molecule in one FFL regulating the other two
molecules as the main regulation factor, and the

expression level of the target gene depends on the
main regulation factor. As a TF activates or regresses
its target, while a miRNA regresses its target, and a
TF and a miRNA may regulate mutually, these three
elements may constitute multiple categories of FFL
models. We focused on three models here (Fig. 8).
These three models are really typical on the studies
of molecular mechanisms of diseases [44].
We named these three FFLs as TFP-FFL, TFN-FFL

and miRNAN-FFL, respectively. As shown in Fig. 8,
TFP-FFL describes that a TF inhibits its target
miRNA and activates its target gene, and meanwhile
the target miRNA inhibits the same target gene. In
contrast, TFN-FFL describes that a TF activates its
target miRNA and inhibits its target gene, and mean-
while the target miRNA inhibits the same target gene.

Fig. 7 The expression levels of four genes in different samples. a RAI2 b NBEA c KCNMA1 d KIT

Table 7 The common molecules supported by PubMed

Candidate Molecule ESCA_Ranking STAD_Ranking ESCA_PMID STAD_PMID

RAI2 17 36 – –

KCNMA1 36 9 – 28231797

NBEA 37 52 – 28035468

KIT 41 50 21626441 25741136
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Similarly, miRNAN-FFL describes that a miRNA in-
hibits its target gene and inhibits its target TF, mean-
while, the target TF activates the same target gene.
The first two models take the TF as the main regula-
tion factor, while the last one takes the miRNA as
the main regulation factor. The final effect of TFP-
FFL is to up-regulate the expression level of the tar-
get gene, while the other two FFLs will down-regulate
the expression level of the target gene.

Random walk with restart
The random walk on a graph describes a walker
walks from a current node to one of its neighbors
randomly from a certain initial node s [45]. When a
random walker is allowed to walk from the initial
node s at each time step with a certain probability r,
which is called random walk with restart [46].. Ran-
dom walk with restart (RWR) has been successfully
applied in ranking candidate disease genes by walking
on biological molecular networks [46–48]. RWR with
a restart probability r (0 < r < 1) is defined as Eq. (1).

plþ1 ¼ 1−rð Þ Wpl þ rp0 ð1Þ
W is a column-normalized adjacency matrix of the net-
work, pl is a vector in which the i-th element holds the
probability of being at node i at time step l [49]. p0 is an
initial vector. Assuming we have m seed nodes, in p0,
each seed node has a same initial probability which is 1/
m, while each non-seed node has zero probability. The
whole iteration process will stop when the difference
between pl and pl + 1 is very small, say, less than 10− 6.
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