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Abstract

Background: How small, fast-growing bacteria ensure tight cell-size distributions remains elusive. High-throughput
measurement techniques have propelled efforts to build modeling tools that help to shed light on the relationships
between cell size, growth and cycle progression. Most proposed models describe cell division as a discrete map
between size at birth and size at division with stochastic fluctuations assumed. However, such models underestimate
the role of cell size transient dynamics by excluding them.

Results: We propose an efficient approach for estimation of cell size transient dynamics. Our technique
approximates the transient size distribution and statistical moment dynamics of exponential growing cells following
an adder strategy with arbitrary precision.

Conclusions: We approximate, up to arbitrary precision, the distribution of division times and size across time for the
adder strategy in rod-shaped bacteria cells. Our approach is able to compute statistical moments like mean size and
its variance from such distributions efficiently, showing close match with numerical simulations. Additionally, we
observed that these distributions have periodic properties. Our approach further might shed light on the mechanisms
behind gene product homeostasis.
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Introduction
Stochastic modeling of bacterial cell division has been
widely used in systems biology[1–4]. Basic problems con-
cerning the stochastic nature of cell biology include mod-
eling of cell size distributions[5], effects of fluctuations
in division control in terms of population fitness[6] and
auto-correlation and spectral analysis of division strate-
gies through several generations[7]. The importance of a
stochastic outlook of the cell division control has been
highlighted in literature considering physiological impli-
cations that potentially affect DNA concentration, surface
transport and biosynthesis rates, as well as proteome
composition[8].
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Stochastic models can achieve high level of detail.
Nowadays, predictions of stochastic modeling have been
challenged experimentally by increasingly accurate high-
throughput measurements of cellular variables enabled by
time-lapse imaging, image processing and micro-fluidic
devices for fine environmental control. These experiments
have elucidated division strategies in rod shaped microor-
ganisms like bacteria[2, 3], yeast[9] and archea[10].

Stochastic models for bacterial division control aim
to explain how bacteria decide when to split into two
descendants. These models can be divided in two main
groups: Discrete stochastic maps (DSM) and Continuous
Rate Models (CRM)[11]. DSM, the most used, are based
on the idea that at a phenomenological, coarse-grained
level, a size regulation strategy can be studied using the
properties of division events. Hence, the division strategy
is a map that takes cell size at birth sb to a targeted cell size
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at division sd trough a deterministic function sd = f (sb)
plus stochastic fluctuations that have to be assumed[1, 7].

Depending on the mapping sd = f (sb), or traditionally
between the added size � = sd − sb and sb, division strate-
gies are classified into three main paradigms: one is the
timer strategy, in which a cell waits for a fixed time, on
average, and then divides (� decreases with sb). Another
is the sizer, in which a cell grows until it reaches a certain
volume[12]before dividing (� increases with sb). The third
one is the adder, a recently observed division strategy [2, 13],
in which the cell grows adding, on average, a fixed size
since the last division event (� does not depend on sb).

In contrast to the simple description given by a DSM
approach, continuous rate models (CRMs) explain not
only these mapping but other interesting phenomena.
CRM consider, besides discrete division events, the cell
cycle dynamics. This class of models describes the division
as a continous-time stochastic process with an associated
division rate h (also known as splitting rate function) that
sets the probability of division into an infinitesimal time
interval. Currently, the main problem with CRM is that it
is not obvious a priori how to parametrize the division rate
h given experimental setups [11].

Here, we propose an efficient approach for the analy-
sis and estimation of the division of rod-shaped organisms
based on CRMs. We will show how CRMs allow us to
reproduce observed correlations between key cell-size
variables for the adder strategy, as well as time dynam-
ics of the cell size distribution, which are unavailable for
traditional DSMs.

Our splitting rate function (h) is assumed proportional
to the current cell-size. With this h, we build a continuous
time Markov chain (CTMC) which transient dynamics
can be estimated numerically using the finite state projec-
tion (FSP)[14] approach. FSP maps the infinite set of the
states n ∈ N of a Markov chain onto a set with a finite
number of states (for example n ∈ {0, 1, 2, 3, 4}). The tran-
sient probability distribution of such finite state Markov
chain can approximated by using standard numerical
ODE solvers.

Methods
CRM of bacteria cell-size transient dynamics
Consider a bacterial cell growing exponentially in size
(s(t)) as

ds(t)
dt

= μs(t), s(0) = s0, (1)

where μ is the cell growth rate with individual cell-size
doubling time τ = ln 2/μ. s0 is the initial size of the cell.
Let the cell divide at time t1; then the size after division
(assuming no partitioning errors) is given by

s(t) = s0eμt1

2
eμ(t−t1), t > t1. (2)

After n(t) divisions, the size can be written as

s(t) = s0eμt1

2

n(t)∏

i=2

eμ(ti−ti−1)

2
eμ(t−tn), t > tn · · · > t1 > 0,

(3)

= s0eμt

2n(t) . (4)

Hence, the cell size dynamics can be rewritten as the
dynamics of the counting process n(t). Let the rate of the
counting process n(t) be

h(t) = ks(t), (5)

As we show in Additional file 1, using this rate, we con-
clude that the size at division in a cell cycle given the
newborn size sb is an exponential random variable with
probability distribution

ρ(sd|sb) = ρ(�) = 1
�̄

exp
(

− �

�0

)
, (6)

where � = sd − sb is the the added size, and � = μ
k . By

this result we get:

E(sd|sb) = E(�) + sb = �̄ + sb, (7)

which corresponds to an adder DSM model with average
added size �̄. Next, we present the transient dynamics of
the size distribution that can be obtained using this CRM.
Further details describing this CRM have been published
in past studies[15].

Results
Cell-size transient distribution for the adder strategy
Let Pi(t) represent the probability of the counting process
n(t) being in the state n(t) = i (cell divided i times at time
t) and the transition rate h = ks with s given by (3). Then,
the master equation that describes the dynamics of Pi(t)
is given by

dP0(t)
dt

= −ksP0(t) = −ks0eμtP0(t),

dPi(t)
dt

= ks0eμt

2i−1 Pi−1(t) − ks0eμt

2i Pi(t), Pi(0) = δi,0,
(8)

where δi,j is the Kronecker delta. The solution for Pi(t)
knowing Pi−1(t) is given by

Pi(t) = ks0
2(i−1)

exp
[
− ks0

μ2i eμt
] ∫ t

0
K(t′)Pi−1(t′)dt′,

(9)

where
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K(τ )=exp
[
μτ + ks0

μ2i eμτ

]
, P0(t)=exp

[
−ks0

μ

(
eμt −1

)]
.

(10)

Analytic expressions for the first five Pi(t) are shown
in Additional file 1, this distribution �P can be efficiently
obtained, either analytic or numerical, through the solu-
tion of the truncated set of ODEs defined in (8). An
numeric solution in addition to (9) can be obtained
using finite state projection[14] and computing the matrix
exponential associated to the master equation(8). This
approach is shown in Additional file 1.

Once solved (9), we obtained time trends for some Pi(t)
which are plotted in Fig. 1.

Using this Pis, the transient dynamics of the mean
number of divisions 〈n〉 = ∑

nPn(t) and their variance
var(n) = ∑

n(n − 〈n〉)2Pn(t) can be calculated. These
dynamics are in perfect agreement with the results based
on stochastic simulation algorithms (SSA) as can be seen
in Fig. 2. After a few divisions, the distribution −→Pi reaches
a mean 〈n〉 → t

τ
and the variance reaches a finite limit

when t → ∞ around 0.75 (no exact expression was
calculated).

As we show in Additional file 1, in the limit of t → ∞
the distribution of Pi satisfies

lim
i→∞ ‖Pi(t) − Pi−1(t − τ)‖ = 0, (11)

suggesting an asymptotic invariance under translation on,
simultaneously, n → n + 1 and t → t + τ . This invari-
ance is also satisfied by the size s(t) = s0eμt

2n(t) . This property
will be used to obtain the limit cell-size distribution in the
following section.

Size distribution of independent cells
Consider a set of independent cells, all of them grow-
ing exponentially at rate μ. We assume that once one cell
divides, we only keep one of the descendant cells, the

Fig. 1 Time dynamics of the first five Pis defined by (9)

other descendant is discarded. Hence, the size popula-
tion is fixed at all times. Experimentally, this is usually
obtained in microfluid-based experiments like the mother
machine[2, 16].

For simplicity, let us assume that all cells started at t = 0
with size s0, i.e. with initial distribution

ρ(s|t = 0) = δ(s − s0). (12)

Our goal is to compute the distribution of cell sizes over
the population at time t > 0.

Using (12) and (9), the probability distribution of cell
sizes after a time (t) of a population of independent cells is
given by

ρ(s|t) =
∞∑

i=0
δ

(
s − s0eμt

2n

)
Pi(t). (13)

Distribution (13) corresponds to a sum of weighted
Dirac delta distributions δ(x) with positions centered on
sizes (3). The mean and variance of the size are given by

〈s(t)〉 =
∞∑

i=0

s0eμt

2i Pi(t) (14)

var(s(t)) =
∞∑

i=0

(
s0eμt

2i − 〈s(t)〉
)2

Pi(t) (15)

Figure 3 shows moment dynamics (14) projected over
the ten first states (Pi) on the time interval (0, 7τ). Theo-
retical and SSA simulations over 10K cells are compared.

As consequence of the periodic conditions (11), the size
distribution (13) is the same after a division time τ . Equiv-
alently, for a fixed t, the position of the Deltas will change
depending on the initial size s0. Figure 4 shows how
this effect arises. Note how the deltas draw an envelop-
ing curve changing s0 or equivalently advancing on time.
Deltas of cells starting from different starting sizes (from
s0 to 2s0) measured at time t = 7τ are shown. These deltas
are compared with data computed using SSA showing
excellent agreement.

This envelope distribution could be important in future
estimations of cell distributions in actual experiments.

Discussion
Some details here are worth being discussed. First, as
was pointed out previously[17], the proposed splitting rate
function reproduces the adder DSM, this is, the observed
decorrelation between the added size (� = sd − sb) and
the size at birth. This behavior was found by most exper-
imental studies[2, 16]. However, the noise in added size
taken as the CV 2

� seems to be higher than the one exper-
imentally observed (while our typical CV 2

� is 1, exper-
imentally it is as small as 0.1). This low noise can be
reached considering a multi-step process as suggested by
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Fig. 2 Transient dynamics of the first moments of Pn a. Asymptotic behavior of 〈n〉 showing that limt→∞〈n〉 = t
τ

. b. Var(n) = ∑
n(n − 〈n〉)2Pn(t)

reaches a steady value as t → ∞. The shaded area corresponds to a 95% confidence interval of the mean and variance of 10K SSA trajectories

[17], although this would make our model more complex.
We will elaborate on this idea in upcoming studies.

The idea behind this control mechanism relies on the
definition of a splitting rate function dependent of the size.
As pointed out by some authors [2, 13], the splitting could
correspond to the formation of the FtsZ ring. Here, our
assumption would be that the formation of this ring has
a rate proportional to the size of the bacteria. The depen-
dence on size has been suggested by previous observations
[18, 19].

Although the assumption that all cells start at a fixed
size seems quite unrealistic, extensions to cases where
the initial cell size correspond to a distribution can be
easily done. Note that such distribution should be convo-
luted with the distribution obtained using our proposed
approach. Some effects of a starting size distribution with
finite variance are shown in additional file 1.

Extrapolation of this approach to division strategies
away from the adder strategy is not too difficult. As we
have shown in [15], we can get other strategies by consid-
ering a SRF that is non-linearly dependent on the size; i.e.
h = ksλ. Further discussion is implemented in Additional

file 1 and the full description of this approach will be done
in upcoming publications.

Biological implications of this approach are extensive.
Transient dynamics of cell size might unveil details on
the mechanisms behind gene product homeostasis [8, 20].
Additionally, this dynamics might provide tools for quan-
tifying the noise transmitted by the stochasticity of divi-
sion events. The relationship between SRF functions
and cell size control strategies further enable the use of
recently proposed frameworks for gene expression[21]
and cell lineage[22] analysis of experimental data from
proliferating cell populations.

Conclusions
Continuous rate models (CRM) for division control of
rod-shaped bacteria are uncommon due to scarce map-
pings to experimental results. Here, starting from a split-
ting rate function proportional to the size, we explore
its implication on the division control. We compute the
expected number of divisions during a given time interval
and its variance, and the dynamics of the size distribution
of a population of independent cells.

Fig. 3 Time dynamics of size distribution ρ(s, t) defined by Eq. (13) with initial conditions ρ(s, t) = δ(s − s0). Red is the 95% confidence interval for a
MonteCarlo simulation for 10000 cells (Stochastic Simulation Algorithm) and Black is the expected value obtained by the integration of Pn(t) using a
Finite State Projection algorithm. a. Expected relative mean size vs. time. b. Variance of size population vs. time
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Fig. 4 Limit ρ(s) defined as the envelope of the Dirac delta
distributions for different initial conditions (s0, 4

3 s0, 5
3 s0) after a time

t = 7τ . Every stem is the result of 10K SSA simulations

Size dynamics of rod-shaped organisms can be
described by a continous-time Markov chain. This model
describes the division as a single-step process with occur-
rence rate proportional to the cell size. In past studies, we
showed how this rate yields to an adder strategy which is,
usually, taken as the main paradigm of cell division. Here,
we explore the transient dynamics of cell size distribution
considering this division strategy. Numeric estimations
were done using the finite state projection algorithm.

We consider cells starting at same conditions and see
how size statistics evolves. We perform some preliminary
predictions like the distribution of division times and the
size distribution along the time showing the evolution of
mean size and its variance. We also observe that these
distributions have periodic properties with an associated
period of one division time.

Supplementary information
Supplementary information accompanies this paper at
https://doi.org/10.1186/s12859-019-3213-7.

Additional file 1: Supplementary information.
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