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Abstract

Background: Current technologies for understanding the transcriptional reprogramming in cells include the
transcription factor (TF) chromatin immunoprecipitation (ChIP) experiments and the TF knockout experiments. The
ChlIP experiments show the binding targets of TFs against which the antibody directs while the knockout techniques
find the regulatory gene targets of the knocked-out TFs. However, it was shown that these two complementary
results contain few common targets. Researchers have used the concept of TF functional redundancy to explain the
low overlap between these two techniques. But the detailed molecular mechanisms behind TF functional
redundancy remain unknown. Without knowing the possible molecular mechanisms, it is hard for biologists to fully
unravel the cause of TF functional redundancy.

Results: To mine out the molecular mechanisms, a novel algorithm to extract TF regulatory modules that help
explain the observed TF functional redundancy effect was devised and proposed in this research. The method first
searched for candidate TF sets from the TF binding data. Then based on these candidate sets the method utilized the
modified Steiner Tree construction algorithm to construct the possible TF regulatory modules from protein-protein
interaction data and finally filtered out the noise-induced results by using confidence tests. The mined-out regulatory
modules were shown to correlate to the concept of functional redundancy and provided testable hypotheses of the
molecular mechanisms behind functional redundancy. And the biological significance of the mined-out results was
demonstrated in three different biological aspects: ontology enrichment, protein interaction prevalence and
expression coherence. About 23.5% of the mined-out TF regulatory modules were literature-verified. Finally, the
biological applicability of the proposed method was shown in one detailed example of a verified TF regulatory
module for pheromone response and filamentous growth in yeast.

Conclusion: In this research, a novel method that mined out the potential TF regulatory modules which elucidate
the functional redundancy observed among TFs is proposed. The extracted TF regulatory modules not only correlate
the molecular mechanisms to the observed functional redundancy among TFs, but also show biological significance
in inferring TF functional binding target genes. The results provide testable hypotheses for biologists to further design
subsequent research and experiments.
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Introduction

Cells usually respond to environmental and physiological
stress by reorganizing their DNA transcription programs,
leading to correct spatial and temporal expression of dif-
ferent genes [1-3]. To subtly control the DNA transcrip-
tion programs, transcription factors (TFs) coordinately
bind to the promoter regions of their target genes and
regulate the expression of these genes [4]. The precise reg-
ulation of the binding of TFs depends on the interaction
of different TFs, regulatory proteins and the epigenetic
materials such as nucleosome and histone modifications
[5-7]. Hence understanding the roles and mechanisms
of TFs in transcriptional regulation is an important task
and remains the on-going research in systems biology and
molecular biology.

Current genome-wide experimental methods for under-
standing the behaviors of how TFs control cellular gene
expression can be divided into two categories [8, 9].
The first type of experiment is based on the chromatin
immunoprecipitation (ChIP) techniques. Using the anti-
bodies designed to recognize specific TFs followed by
tiling arrays or next generation sequencing methods, the
binding target genes of these specific TFs can be found
if the identified binding sequences are mapped to the
promoter regions or the proximal genic regions of the
target genes [4]. Recent studies also showed that dis-
tal binding regulatory sites exist in cells and can be
further analyzed in the identified ChIP binding events
[10]. Whether with binding sequences in the proxi-
mal/promoter regions or in the distal regions, together
the identified target genes are called the direct bind-
ing targets of the TFs under study. Overall the ChIP
experiments can provide the cellular TF binding datasets.
The second type of high-throughput technology is the
TF knockout technique. Using the TF knockout exper-
iments, the expression difference of genome-wide gene
expression levels between the mutant-type and wild-
type cell lysates generated by the knockout of certain
TFs can be measured using the tiling arrays or high-
throughput sequencing methods [2, 11]. These TF knock-
out experiments can identify the direct and indirect
regulatory target genes for the knocked-out TFE. Since
these two techniques convey different aspects for gene
transcription regulation, different researches have been
conducted to try to dig out the molecular mechanisms of
TF regulation in gene transcription based on integrating
these two experimental data and/or other different
genome-wide datasets [12, 13].

While integrating the TF binding data and the TF
knockout data can help reveal some novel findings in the
transcription regulation mechanisms of TFs, it is some-
what surprising that researchers have found that these
two datasets overlap with each other at a very low per-
centage [12, 13]. This raises an interesting issue that
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most of the TF binding events identified by the ChIP
experiments do not show significant expression level
change after these TFs are knocked-out. Different sta-
tistical data analysis pipelines have been proposed for
analyzing the TF binding datasets and the TF knock-
out datasets. Their results all led to this puzzling phe-
nomenon and hence the results showed that experimental
noises and data analysis techniques do not account for the
low overlap percentage between these two experiments
[2, 4, 13, 14]. Therefore, it is believed that some other pos-
sible biological explanations should be proposed for this
puzzling issue.

Researchers have been trying to find possible cellular
reasons for the low overlap percentage of the TF bind-
ing data and the TF knockout data. It is shown that TFs
that have biological back-up functions shared with some
redundant paralogs have lower agreement between the
ChIP targets and the expression level changes in knock-
out experiments [13]. These TF’s evolutional homology
relationships indicate that back-up mechanisms may exist
in cells thus compensating the effects when some TFs
were lost in some cellular conditions. This observation
is later further explored by considering the functional
redundancy of different TFs [15]. TFs with higher func-
tional redundancy calculated based on Gene Ontology
information have fewer common gene targets in the
binding dataset and the knockout regulatory dataset.
These results demonstrated that TFs with similar func-
tions and evolutionarily conserved sequences/structures
tend to show higher functional redundancy, resulting in
the masking effect in the knockout experiments when
compared with the ChIP results. While using the con-
cepts of TF functional redundancy and evolution com-
parison can successfully correlate the low overlap to
the functional behavior in cells, they did not pro-
vide the real molecular mechanisms behind this puz-
zling question. There is no easy way for biologists to
further design subsequent experiments for unraveling
the functional redundancy effects in cells if no such
potential molecular mechanisms are extracted and pro-
posed.

Transcription factors are thought to cooperate with
one another and regulate target genes coordinately [16].
Various methods have been proposed to identify regu-
latory sets that extract the participating genes and TFs
in certain cellular responses [17, 18]. But to elucidate
the molecular mechanisms behind the functional redun-
dancy that cause the low overlapping between the TF
ChIP experiments and knockout experiments, one needs
to further genome-widely consider detailed cooperative
TF regulatory modules as a whole to understand the
molecular basis of back-up mechanisms in transcription
programs since TF regulatory modules include differ-
ent interactions between the TFs and related regulatory
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proteins that may involve in the regulation process [19].
In yeast, researchers have tried to figure out the pos-
sible TF combinations that may involve in TF regula-
tory modules using the concepts of fuzzy set theory
[20]. However, this only fuzzily scanned through few
combinations of the transcription factor binding sites
(TEBSs). This type of scanning of TF combinations did
not reveal the complete TF regulatory modules, which
may contain other non-TFs, non-DNA binding regula-
tory proteins or mediator proteins that coordinate the
modular regulation. Further, this fuzzy method did not
take functional redundancy into consideration and did
not provide good correlation to functional redundancy.
Hence in this study, we tried to devise an algorithm
based on the biological knowledge of cooperativity in
regulatory modules to help extract the potential TF reg-
ulatory modules and elucidate the molecular mecha-
nisms behind the functional redundancy observed among
TFs.

In this research, a novel algorithm that helps mine
out the potential molecular mechanisms for the func-
tional redundancy observed among TFs and thus elu-
cidate the reasons of the low overlap between ChIP
results and the knockout experiments is proposed. The
overall method can be divided into three stages: candi-
date search stage, module mining stage and noise reduc-
tion stage. Based on the biological concepts that TFs
may cooperate with one another thus contributing to
the functional backup and redundancy phenomenon, the
proposed three-staged method integrated the cellular
protein-protein interaction information and the genome-
wide mRNA expression data of the TF-encoding genes
to mine out the potential TF regulatory modules from
the TF ChIP binding dataset. The mined-out TF reg-
ulatory modules were then demonstrated that they are
highly correlated to the concept of functional redundancy.
Further, these TF regulatory modules provided possible
molecular mechanism hypotheses behind the idea of TF
functional redundancy. In addition, using these mined-
out TF regulatory modules, one could identify the so-
called module-inferred functional binding target genes of
TFs from the original binding data. Then the biological
significance of these module-inferred functional bind-
ing target gene sets was tested and the results showed
that module-inferred functional binding targets are more
biological significant than the original binding data. In
summary, the proposed method can extract biologically
significant and testable molecular mechanism hypothe-
ses for TF functional redundancy. About 23.5% of the
mined-out TF regulatory modules have been experi-
mentally verified in the literature. In the last, a cellular
example was described in detail to show some of the
proven results of the mined-out pheromone response TF
regulatory module.
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Results

Overview of the algorithm

The proposed method to mine out the potential TF
regulatory modules that help elucidate the molecular
mechanisms behind functional redundancy observed
among TFs is summarized in Fig. 1. The algorithm can be
divided into three stages. First, candidate TF sets that may
be involved in the same modules were selected by inte-
grating the binding data with the expression data adopted
from the work of IThmels et al., which consists of 1011
published expression experiments for different cellular
conditions [21]. Since TFs that involve in the same regu-
latory module tend to have similar cellular expression, the
k-means data clustering methods [22] was applied on the
ChIP-identified binding TFs of a given gene to group co-
expressed TFs into candidate TF sets. Next the protein-
protein interaction network was constructed based on
the data from the STRING Database [23] for extracting
the molecular mechanisms of these selected candidate TF
sets. A weighted network was built based on the protein-
protein interaction information where the weights of the
edges were defined as one minus the literature confidence
provided by the STRING Database. To infer molecular
mechanisms for a given candidate TF set, the module
mining algorithm was devised to find the most confident
but minimal-sized connected cooperative interaction sub-
graph, which not only contains the candidate TFs but may
also include potential non-TF regulatory proteins that are
not in the given candidate TF set. In this step, the pos-
sible molecular mechanisms of TF regulatory modules
were mined out. Details of the module mining algorithm
can be found in the “Datasets and methods” section.
Finally, to reduce the effect of noises inherited from the
high-throughput technologies of expression experiments
and protein-protein interaction identification experi-
ments, the Mann-Whitney U test [24] was applied to
test the confidence of the extracted modules under the
hypothesis that a true TF regulatory module should have
statistically higher literature confidence than the litera-
ture confidence of the whole protein-protein interaction
network. The final TF regulatory modules were picked
out by the algorithm based on a p-value threshold of 0.05
for confidence tests followed by FDR multiple hypotheses
correction.

The identified tF regulatory modules

The proposed TF module identification strategy was
applied to the TF binding dataset extracted from the TF
ChIP-chip experiments performed by Harbison et al. [4].
A p-value threshold of 0.05 was used to pick the poten-
tial TF-gene binding pairs in the TF binding dataset. To
get the starting candidate sets, the mRNA expression
data collected by Ihmels et al., which consists of 1,011
published expression experiments for different cellular
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Fig. 1 The overview of the proposed module mining algorithm. The proposed method for mining out the molecular mechanisms for functional
redundancy can be divided into three stages. First, we searched for candidate TF sets from the TF binding dataset. Then based on these candidate
sets, we performed the TF regulatory module mining by the modified Steiner Tree construction algorithm. In the third stage, we filtered out the
noise-induced random results by confidence tests

conditions [21], was chosen to be integrated. Then the
devised method constructed the protein interaction mod-
ule using the interaction pairs obtained from the STRING
vl1 database [23]. As depicted in Fig. 1, the proposed
method tried to find out all possible combinations of
co-expressed TF sets in the candidate search stage. And
noise-induced modules were later carefully filtered out in

the noise reduction stage. After the second stage of the
proposed module mining strategy (Module Mining Stage
in Fig. 1), 30,588 possible TF modules were obtained.
Then a multiple hypotheses-adjusted TF-module p-value
threshold of 0.05 was adopted in the confidence tests
and the method finally extracted 238 final confident TF
regulatory modules that may involve in Saccharomyces
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cerevisiae transcription regulation. The distribution of the
number of extracted TF regulatory modules per gene/TF
was further checked and compared with the distribution
of the number of TF binding sites per gene/TF (See
Fig. 2a, b). As we can see in Fig. 2, the number of extracted
TF regulatory modules per gene (Mean = 3) is smaller
than the number of binding TFs per gene (Mean = 9). And
the number of extracted participating TF regulatory mod-
ules per TF (Mean = 3) is also smaller than the number of
binding targets per TF (Mean = 294). The noise-induced
modules were mostly eliminated in the process. Moreover,
the module coherence was defined as the average of all
squared correlations between any two TFs in this mod-
ule. The final extracted confident potential TF regulatory
modules showed higher coherence (average coherence =
0.029) than both the average coherence between any two
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TFs in yeast (average coherence = 0.016) and the average
coherence of the noised-induced modules (average coher-
ence = 0.023) (Figure 2c). Hence TF co-expression was
ensured in the proposed method. The details of these 238
TF regulatory modules can be found in Additional file 1.
In summary, 143 of the 203 TFs studied in the Harbison
TF binding dataset were shown to be involved in at least
one TF regulatory module.

TFs that involve in regulatory modules show higher
functional redundancy

It has been shown that functional redundancy of tran-
scription factors accounts for the reason why most of
binding targets are not observed in the TF knock-out
results [15]. And the biological mechanisms behind the
concept of functional redundancy can be unraveled by

b)

Fig. 2 The histograms of the extracted TF regulatory modules per gene/TF and the module coherence comparison. a The average number of
extracted TF regulatory modules per gene is smaller than the average number of binding TFs per gene. b The average number of participating TF
regulatory modules per TF is also smaller than average the number of binding targets per TF. € The extracted potential TF regulatory modules
showed higher coherence (average coherence = 0.029) than the coherence of the filtered-out noise-induced modules (average coherence = 0.023).
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mining out TF regulatory modules that may co-regulate
the specified target gene. To illustrate this, the correla-
tion of the concept of functional redundancy in TFs to the
extracted TF regulatory modules was investigated. First
the functional redundancy scores of TFs were calculated
using the definition proposed by Wu and Lai [15] based
on the Dice coefficient:

2| F,NE,|
FRS(t) = max ———
q |Ft|+|Fq|

where F; and F is the set of cellular functions annotated
by Gene Ontology Consortium [25] for TF ¢ and TF g,
respectively. | F;NF, | is the number of common functions
annotated by GO Consortium for both F; and F,. The
functional redundancy scores are ranged between 0 and
1. The higher the score is, the more functional redundant
the TF is.

Using the ¢-test, the functional redundancy scores of
the TFs that involved in at least one TF module were
compared with the functional redundancy scores of the
TFs that were shown to not participate in any TF mod-
ules. The result is shown in Fig. 3. As the test results
shown in the figure, the 143 TFs that were shown to be
involved in at least one mined-out TF regulatory mod-
ule got statistically higher functional redundancy scores
(mean FRS = 0.85) than the 61 TFs that were shown to be
not involved in any TF modules (mean FRS = 0.73) with
p-value 0.0003*. From this analysis, it was demonstrated
that TFs that involve in the mined-out TF regulatory mod-
ules are more functionally redundant than those TFs that
do not cooperate in any TF modules. Hence the proposed
method extracted TF regulatory modules that help explain
the molecular mechanisms behind the concept of func-
tional redundancy observed among transcription factors
in yeast.

The original TF binding data consist of 30.8%
module-inferred TF-gene functional binding pairs

Since the extracted TF regulatory modules are to help
biologists elucidate molecular mechanisms behind the
functional redundancy observed among TFs, these mod-
ules are also supposed to be able to help identify the TF
functional binding target genes from the original statis-
tically analyzed TF binding dataset [13, 26]. Thus, one
can utilized these extracted modules to assist the iden-
tification of functional TF binding target genes from the
TF binding data, which were obtained from the ChIP
experiments performed by Harbison et al. [4]. Based on
the concept of backup-regulation mechanisms that may
be involved in a TF regulatory module [2, 4, 27], a tar-
get gene of a specific TF is called a functional target if
the target gene is also a knockout target or the follow-
ing two conditions are satisfied for the target gene: (i)
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Fig. 3 TFs categorized to function in regulatory modules showed
higher functional redundancy. TFs that were shown to be involved in
at least one mined-out TF regulatory module got statistically higher
functional redundancy scores than TFs that were shown to be not
involved in any TF modules (p-value = 0.0003*). The error bar in this
plot indicates the standard error of the functional redundancy scores
of TFs

we can observe knockout evidence showing experimen-
tally that some TF in the mined-out TF regulatory module
regulates the target gene (ii) there exists another bind-
ing signal from some TF in the regulatory module to
the target gene. The knockout evidence was taken from
the work of Hu et al. [2], in which the cellular condi-
tions used were the same as the conditions applied in
the binding dataset. In this research, knockout-inferred
functional binding pairs are the TF-gene binding signals
that also demonstrate expression changes when the bind-
ing TFs are knocked-out while the pure module-inferred
functional binding pairs are the TF-gene binding signals
that can only be explained by using the extracted TF
regulatory modules. Since the knockout-inferred func-
tional targets can be regarded as trivial/degenerate cases
in the above module-assisted functional target identifi-
cation, these deduced functional binding TF-gene pairs
in both cases will together be called the module-inferred
functional pairs throughout this research.

For the 203 TFs considered in the ChIP experiments
of Harbison et al, 186 TFs underwent TF knockout
experiments performed by Hu et al. and thus were
used in inferring functional targets. After applying
the proposed criteria to the original 54,218 TF-gene
binding pairs of these 186 TFs, 16,713 module-inferred
functional pairs for 182 out of the 186 TFs were iden-
tified (See Fig. 4). Four TFs got no functional binding
targets according to the above criteria. The details
of the deduced module-inferred functional bind-
ing target genes can be found in Additional file 2.
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Among these 16,713 module-inferred functional bind-
ing pairs (30.8% of the original binding data), only
2452 functional TF-gene pairs (4.5% of the origi-
nal binding data) show expression level difference
when the binding TFs are knocked-out. That is,
only 4.5% of the original binding pairs, which are
called knockout-inferred functional binding targets
or knockout-inferred direct regulatory targets in
this research, can be found to be functional using
direct overlapping of the knockout data and the bind-
ing data. The low percentage of direct overlap of
these two datasets were partially explained by the
concept of functional redundancy observed for the
involving TFs [15]. The proposed TF module iden-
tification strategy can help elucidate the biological
mechanisms for TF functional redundancy, identify-
ing extra 14,261 (26.3% of the original binding data)
pure module-inferred functional TF-gene pairs (See
Fig. 4).

TF regulatory modules help deduce biological significant
functional binding pairs from the original TF binding
dataset

To validate the biological significance of the extracted
TF regulatory modules and thus the regulatory mecha-
nisms of functional redundancy in yeast, these regulatory
modules were then checked if they could help iden-
tify biologically significant module-inferred functional
gene targets. The biological significance of the result-
ing module-inferred functional binding TF-gene pairs was

Original TF-gene
binding pairs

Pure
Module-inferred

TF-gene functional

binding pairs

(26.3%)
\‘4.5%
Binding pairs

that require further
investigation
(69.2%)

Knockout-inferred
TF-gene functional
binding pairs (4.5%)

Fig. 4 30.8% of the original TF binding data are found to be the TF
module-inferred functional binding pairs. In the original Harbison
ChIP dataset, 4.5% of the binding targets overlap with the TF
knock-out experiments of Hu et al. These are called the
knockout-inferred direct regulatory targets or knockout-inferred
functional binding targets in this research. And utilizing the
mined-out TF regulatory modules, extra 26.3% of the target genes
were derived as pure module-inferred functional binding targets. In
total, 30.8% of target genes are the module-inferred functional pairs
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demonstrated by three biological statistical tests: the TF
target gene set ontology enrichment test, the test of pro-
tein interaction prevalence for the target gene sets and the
expression coherence test for the target genes. The testing
results are summarized in Fig. 5, 6 and 7.

TF module-inferred functional targets show better ontology
enrichment

It is a common situation in cells that genes regulated by
the same TF are usually carrying similar molecular or cel-
lular functions [12, 26, 28]. Hence if the module-inferred
TF functional targets are of importance, the module-
inferred functional binding target gene sets should exhibit
biological enrichment significance in their molecular and
cellular ontology annotation. Using the Gene Ontology
(GO) [25] information, we can characterize the ontology
annotations of the target gene sets. We say that the target
gene set is ontology-enriched in a GO-term if the per-
centage of genes in this gene set carrying this GO-term
is more significantly statistical higher than the portion of
genes annotated with this GO-term in the whole genome.
We first constructed the GO graph for the yeast ontology
in three different categories (biological process, molecular
function and cellular component). Then the Hypergeo-
metric Test with FDR multiple hypotheses test correction
[12] was applied to calculate and calibrate the p-values
that indicate the significance of the overlap proportion.
In this result, a p-value threshold of 0.05 was used. After
calculating the GO-term enrichment, we took the minus
logarithm for the p-values of GO-term enrichment as the
log enrichment scores and then summed up the enrich-
ment scores of all statistically significant GO-terms for
every TF target gene set respectively for all three GO cate-
gories. To take the possible bias from target numbers into
consideration, we also calculated the odds ratio enrich-
ment scores by summing the odds ratios of the identified
GO terms for each GO category. These steps were done
both for the module-inferred functional binding target
gene sets and the original binding target genes. Finally, the
summary scores between the module-inferred functional
target gene set and the original binding targets for each TF
were compared.

Compared with the original TF binding dataset, the
module-inferred functional binding targets were shown to
be better ontology-enriched in all three categories (See
Fig. 5 and Additional file 3). First the ontology enrichment
tests were performed using the log enrichment scores.
For terms categorized in the biological process ontology,
86 out of the 182 TFs (47.2%) showed higher summary
enrichment scores in the module-inferred target gene sets
while only 29 TFs (15.9%) carried higher summary enrich-
ment scores in the original binding sets (See Fig. 5-a). And
for terms categorized in the molecular function ontology,
103 of the 182 TFs (56.6%) demonstrated higher summary
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Fig. 5 The extracted TF regulatory modules helped enrich biological significance in gene ontology. a For the biological process ontology, 86 (47.2%)
TFs showed higher log enrichment scores in module-inferred functional binding target genes while only 29 (15.9%) TFs showed higher log
enrichment scores in the original data. b For the molecular function ontology, 103 (56.6%) TFs showed higher log enrichment scores in
module-inferred functional binding target genes while only 22 (12.1%) TFs showed higher log enrichment scores in the original data. ¢ For the
cellular component ontology, 76 (41.8%) TFs showed higher log enrichment scores in module-inferred functional binding target genes while only

18 (9.9%) TFs showed higher log enrichment scores in the original data

enrichment scores in the module-inferred target gene sets
and only 22 TFs (12.1%) revealed higher summary enrich-
ment scores in the original target sets (See Fig. 5-b). As
for terms categorized in the cellular component ontol-
ogy, 76 of the 182 (41.8%) module-inferred functional TF

target gene sets obtained higher scores while only 18 TFs
(9.9%) got higher scores in the original binding dataset
(See Fig. 5-c). When the odds ratio scores were considered
as the ontology enrichment evaluation metric, the results
revealed that 124 (68.1%), 117 (64.3%), 92 (50.5%) of the
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odds ratios for the identified GO terms in the biolog-
ical process ontology, the molecular function ontology
and the cellular component ontology respectively. In sum-
mary, the module-inferred functional target gene sets are

40

Module-inferred Functional
— Binding Target Genes
[Z1 Origianl Binding Targets
35 A

30 A

25 A

20 A

15:

# of Conditions with more
correlated expression profiles

10 4

g 2

Expression Coherence

Fig. 7 Module-inferred functional binding targets were more
biologically significant in expression coherence. Module-inferred
functional binding target genes had higher expression coherence in
32 different conditions while in 7 conditions the original data got
higher expression coherence
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biologically significant by the ontology enrichment test.
Thus, the proposed method for mining out TF regula-
tory modules and inferring functional TF gene targets in
yeast is of biological significance in GO term ontology
enrichment.

TF module-inferred functional targets have better protein
interaction prevalence

Proteins usually cooperatively carry out cellular func-
tions through protein-protein interactions. This is usually
observed as the form of protein complex in cells [29].
Since genes with similar ontology annotation tend to be
regulated by the same TFs, these co-regulated protein-
encoding genes are also prone to reveal the prevalence
of protein-protein interaction when they involve in simi-
lar molecular functions via the form of protein complex.
The concept of a protein complex is computationally
defined as the definition used in the work of Reimand
et al. [14]. A protein complex comprises a core set with
protein-encoding genes and the corresponding neighbor-
ing gene set. Genes in the target sets are categorized
into the core set if they are translated to gene prod-
ucts with physical protein-protein interactions. And genes
that are not in the target sets but their gene products
are observed to have physical protein-protein interaction
with genes in the core set are grouped into the neigh-
boring gene set. Together the core set and the neighbor-
ing set form the protein complex of the target gene set.
The physical protein-protein interaction information was
downloaded from the most recently updated BIOGRID
Database [30].

The Hypergeometric Test was used to test the preva-
lence of protein interaction. A gene set is said to be
enriched in prevalence of protein interaction if the
proportion of the core gene set to the protein complex is
statistically higher than the ratio of the protein complex
to the whole genome. Then the FDR multiple hypothe-
ses test correction was applied with a p-value threshold of
0.05. Compared with the original TF binding dataset, 68 of
the 182 (37.4%) module-inferred functional binding target
gene sets were tested to be better enriched in prevalence
of protein interaction and only 12 TFs (6.6%) had better
protein interaction prevalence enrichment in the original
TF binding data (See Fig. 6 and Additional file 4). This
demonstrates that the proposed method for mining TF
regulatory modules and identifying module-inferred TF
functional binding gene targets is biologically significant
in the aspect of protein interaction prevalence.

TF module-inferred functional targets exhibit better mRNA
expression coherence

Genes that cooperatively involved in the same biologi-
cal process are known to have similar profiles when the
mRNA levels expressed by these genes were measured via
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bio-chips [21]. To fully capture this behavior in different
cell conditions, 40 different mRNA expression time series
profiles in yeast Saccharomyces cerevisiae were collected
from ExpressDB [31] and the work of Garten et al. [32].
These 40 different mRNA expression profiles range from
the condition of yeast budding sporulation [33], cell cycle
gene expression [34, 35], DNA damaging environments
[3, 36], yeast metabolism shift [1] and other conditions.
We can identify the correlation between the expression
profiles of any of the two genes in the target gene sets
by calculating their squared Pearson Correlation Coeffi-
cients. Then the one-tailed rank-sum test was used to
compare the correlation results for the module-inferred
functional target gene sets and the original binding target
gene sets. The p-values in the multiple hypotheses were
calibrated by the FDR correction. These three steps were
repeated for all TFs considered in this research for the
40 different conditions. A p-value threshold of 0.05 was
adopted in this test.

The counting summary of conditions with more TFs
having higher expression coherence for the 40 different
cell conditions is shown in Fig. 7 and Additional file 5 (the
details are in Additional file 6). Of the 40 expression con-
ditions, the module-inferred functional targets showed
higher number of expression coherent TF target gene sets
in 32 expression conditions while in only 7 expression
conditions the original binding data got higher expression
coherence in the target gene sets. From this result, it is evi-
denced that the proposed TF regulatory module mining
method provides biological significance in practice and
the module-inferred functional target genes of TFs can be
of real importance in molecular biology.

Discussions

Comparison with related works

In yeast, researchers previously have tried to figure out
the possible TF sets that might involve in regulatory
modules using the concepts of fuzzy set theory and pro-
posed a novel tool called CisMiner [20]. The functional
redundancy scores were calculated for the TF sets gen-
erated by CisMiner and were compared with the scores
of the mined-out modules of the proposed methods in
this research. In the work of CisMiner, they considered
102 TFs from the Harbison TF binding dataset and con-
structed 36 TF regulatory modules for these 102 TFs.
Using the Gene ontology (GO) [25] information and the
formula of FRS, the functional redundancy scores for the
102 TFs were calculated. Of the 17 TFs that were shown
to participate in the 36 CisMiner-proposed TF regulatory
modules, they did not have statistically higher functional
redundancy scores (mean FRS = 0.866) than the func-
tional redundancy scores of the rest 85 TFs that were
not categorized into any proposed TF regulatory modules
(mean FRS = 0.878). As a comparison, our proposed
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method can successfully correlate the functional redun-
dancy observed among TFs to the molecular mechanisms
of TF regulatory modules (See Fig. 3).

The proposed method provides experimentally testable TF
regulatory module hypotheses

The proposed method in this research tried to eluci-
date the biological mechanisms behind the functional
redundancy observed among TFs by identifying the TF
regulatory modules that involve in the co-regulation of
gene transcription. These TF regulatory modules pro-
vide experimentally testable hypotheses regarding to the
gene transcriptional regulation in yeast for biologists. The
238 identified statistically confident TF regulatory mod-
ules in yeast were manually checked whether they have
been experimentally verified by biologists in the past.
These identified TF modules were compared with the
YEASTRACT database, a database that manually gathers
literature evidence of TF-gene regulation information [9].
A TF module is considered to have literature evidence if
all its member TFs are validated to regulate the same gene
in experiments performed in one single literature. Overall,
56 (23.5%) of the identified TF regulatory modules were
experimentally verified (See Additional file 7).

Here one such verified TF regulatory module is
described in detail (See Fig. 8). In yeast, it is known
that the transcription factor Stel2, which is regulated by
the MAPK cascade, controls two different key develop-
mental programs of pheromone response and filamentous
growth [37, 38]. And in the genome-wide identification
of Stel2 binding sites adopted from the work of Harbison
et al. [4] and Zeitlinger et al. [39], the transcription fac-
tor showed binding signals for both the mating genes and
the filamentous growth genes. This raised the problem
of binding specificity and regulatory program of the TF
Ste12. When performing the hypergeometric test to con-
sider the overlap significance between Stel2 and any other
TFs in the TF-gene binding dataset, there were 87 TFs
showing significant target gene overlaps with Stel2, lead-
ing to a combinatorial explosion of possible TF modules
to be tested. From this combinatorial candidate explosion,
no regulatory program could be easily deduced. Since the
original binding dataset contains certain amount of inher-
ent noise signals from the high-throughput experiments,
we resorted to both the binding data and the knockout
data to get confident functional TF targets. To figure out
possible reasons and molecular mechanisms for the prob-
lem, the knockout experimental results were collected
from the work of Hu et al. [2] and Madhani et al. [40] for
subsequent analysis. To get confident functional targets of
Stel2 and other TFs, TF binding data and TF knockout
data were considered together. When only intersecting
the TF ChIP binding data and the TF knockout results,
the knockout-inferred functional binding targets of Stel2
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Fig. 8 The Ste12 regulatory module is experimentally verified in yeast pheromone response and filamentation. Ste12, Mcm1 and Tec1 are together
suggested by the proposed method to form a TF regulatory module. Several studies proved that when the cell is stimulated with mating
pheromone, Ste12 undergoes phosphorylation to recognize the PREs in mating genes with Mcm1 and Tec1 is degraded by the proteasome
machinery. And it has been verified that when filamentation signals are sensed, Tec1 tethers Ste12 to activate filamentation genes

MAPK Kss1

Filamentation Genes

consisted of only 53 genes. And considering the over-
lap significance between Stel2 and any other TFs using
the knockout-inferred functional binding target data, no
significance overlap with any TF could be found using
the functional binding targets identified by simply inter-
secting the binding data and the knockout data. There
is still no hint for the regulatory program and explana-
tory molecular mechanisms for the binding specificity of
Stel2.

To overcome this obstacle, by applying the proposed
TF module mining method to genome-wide ChIP exper-
iments and knockout data instead, possible module-
inferred functional binding targets were extracted and
it is suggested that three TFs Stel2, Mcml and Tecl
together form a TF regulatory module. Hence through
the proposed method, Stel2 is hypothesized to adjust its
function and activate the expression of genes that relate
to mating and filamentation respectively under differ-
ent environmental conditions via this TF module. Several
studies demonstrated that Stel2 interacts with Mcml
physically to regulate the mating genes [41, 42] and Tecl
tethers Ster12 to activate filamentation genes [39, 41, 43].
Stel2 undergoes phosphorylation to recognize the PREs

(pheromone-responsive element) in mating genes with
Mcm1 when the cell is stimulated with mating pheromone
[44]. This process also induces the degradation of Tecl
by the proteasome machinery, thus adjusting the cellular
function by mediating the regulatory module [45]. When
filamentation signals are sensed, Stel2 is phosphorylated
and forms a heterodimer with Tecl to control filamenta-
tion genes with FRE (filamentous responsive element) or
TCS (TEA consensus sequence) [46]. These experimental
findings coincide with the hypothesized Stel2 regulatory
module and provide literature evidence for it. In con-
clusion, the proposed method can provide valuable and
testable molecular mechanism hypotheses.

Module-inferred functional targets have equal or better
biological significance than pure knockout-inferred direct
regulatory targets

Using the proposed method to mine out TF regulatory
modules in yeast and then utilizing these results to iden-
tify the functional binding targets of TFs, 30.8% of the
original binding data were obtained to be the module-
inferred functional binding targets (See Fig. 3). The bio-
logical significance (the ontology enrichment, protein
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interaction prevalence and mRNA expression coherence)
of these module-inferred functional results were further
compared with the 4.5% pure knockout-inferred direct
regulatory targets obtained by direct intersecting the
binding data and the knockout data. As summarized in
Table 1, the module-inferred functional targets have equal
or better biological significance in all three aspects. In the
ontology enrichment analysis using the evaluation met-
ric of log enrichment scores, 128 (70.3%), 109 (59.9%),
150 (82.4%) of the 182 module-inferred TF target gene
sets showed equal or better ontology enrichment scores
while only 54 (29.7%), 73 (40.1%), 34 (18.7%) of the 182
direct regulatory target gene sets had higher ontology
enrichment scores in the biological process ontology, the
molecular function ontology and the cellular component
ontology respectively. If the odds ratio scores were used as
the ontology enrichment evaluation metric, 123 (67.6%),
106 (58.2%), 123 (67.6%) of the 182 module-inferred TF
target gene sets showed larger sums of enrichment odds
ratios for the identified GO terms while only 59 (32.4%),
76 (41.8%), 59 (32.4%) of the 182 direct regulatory gene
sets had higher sums of enrichment odds ratios for the
identified GO terms in the biological process ontology, the
molecular function ontology and the cellular component
ontology respectively. The module-inferred functional TF
target gene sets demonstrated better ontology enrich-
ment in both metrics. And 68 (37.4%) out of the 182
module-inferred TF functional binding target gene sets
were prevalent in protein interaction while only 13 (7.1%)
of the direct regulatory TF target gene sets showed protein
interaction prevalence. Finally, in the expression coher-
ence test, the module-inferred functional target gene sets
revealed higher expression coherence in 32 conditions
while the direct regulatory target gene sets got no higher
expression coherence in any of the cellular conditions.
In summary, the module-inferred functional target gene
sets showed equal or better biological significance than
the direct regulatory targets in all three different biologi-
cal aspects. Thus, the module-inferred functional targets
convey equal or higher biological significance as the direct
targets and should be of sufficient confidence to be further
explored in subsequent research experiments.

Some other causes may also account for the low overlap
between the binding data and the knockout data
Although functional redundancy was shown to help
explain the low overlap (4.5%) between the binding data
and the knockout data [15], via the proposed method that
mined out the molecular mechanisms behind functional
redundancy it was shown that functional redundancy only
accounts for an extra 26.3% proportion of the original
statistically identified TF binding gene targets. The total
module-inferred functional binding gene targets (about
31%) were shown to enrich the biological significance of
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Table 1 The module-inferred functional binding target gene sets
have equal or better biological significance than pure
knockout-inferred direct regulatory targets

Biological Aspects Results

Ontology Biological 128 (70.3%) TFs showed equal or

better log enrichment scores

in module-inferred functional
binding target genes while only

54 (29.7%) TFs showed higher log
enrichment scores in the

Enrichment Process

direct regulatory data.

109 (59.9%) TFs showed equal or
better log enrichment scores

Molecular

in module-inferred functional
binding target genes while only

73 (40.1%) TFs showed higher log
enrichment scores in the

Function

direct regulatory data.

150 (82.4%) TFs showed equal or
better log enrichment scores

Cellular

in module-inferred functional
binding target genes while only

34 (18.7%) TFs showed higher log
enrichment scores in the

Component

direct regulatory data.

68 (37.4%) of the module-inferred
functional binding gene

Protein Interaction

Prevalence sets reveled prevalence of protein

interaction while only

13 (7.1%) direct regulatory gene
sets did.

Expression Module-inferred functional binding

genes had higher

Coherence expression coherence in 32

different conditions while in no

condition the direct regulatory data
got higher expression

coherence.

the original binding dataset (See the “Results” section).
Hence functional redundancy originated from TF regula-
tory modules is of high possibility to be part of the reasons
for this low overlap. But notice that in this research, it was
not deduced that the remaining 69% binding targets to be
false positives. It needs to be further investigated to well
categorize these remaining 69% binding signals. There
may still be some other causes to be further explored.
Researchers have also shown that seven properties of
genes may be correlated to this low overlap percentage
[15]: low expression level, TATA box-less genes, nucleo-
some occupancy-free regions, low transcriptional plastic-
ity, low number of binding TFs, low number of TFBSs and
short average distances of TFBSs to the TSS (transcription
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start site). These properties might relate to other possible
functions of TFs on their target genes and some of them
were partially explored. For example, in recent researches
it is shown that TFs can help maintain the upstream
regions of the TSS in a nucleosome-free state and protect
the accessibility against ectopic transcription initiation
[47], demonstrating the effect of nucleosome-free regions
upstream a TSS on masking the TF-knockout expres-
sion change. The TF-gene relationship and the underlying
molecular mechanisms of these gene properties require
further detailed investigation in future studies.

Conclusions

Functional redundancy explains part of the reasons of
the low overlap between TF binding datasets and the TF
knockout datasets. In this research, the concept of TF
regulatory module is utilized to propose a novel mod-
ule mining method for providing biological interpretation
on molecular mechanisms of the functional redundancy
observed among TFs. It was also demonstrated that the
mined-out TF regulatory modules help retrieve functional
binding target genes with better biological significance
in the protein prevalence study, the ontology enrich-
ment study and the expression coherence study when
applied to the original TF binding dataset. Besides that,
the proposed method extracted biological significant TF
regulatory modules and provided experimental testable
hypotheses in the possible modular behavior of transcrip-
tion regulation in yeast. It is believed that this finding may
suggest future research on the modular behavior of the
transcription regulation in yeast and will help biologists
to further study and understand functions of the cis-
regulatory modules commonly found in metazo a species.

Datasets and methods

TF binding dataset

The genome-wide in vivo cellular TF binding target gene
dataset of 203 TFs in baking yeast Saccharomyces cere-
visiae was downloaded from the work of Harbison et al. [4]
and used in this study. They prepared the most compre-
hensive yeast transcription factor recognition antibodies
and used the microarray technology to identity the pos-
sible binding gene targets of the known 203 transcription
factor in the rich media condition. For interpreting and
further analyzing their dataset, a p-value of 0.05 as a sta-
tistical threshold was adopted for the data. The promoter
definition and binding target genes followed the ones used
in the study of Harbison et al.

The TF regulatory module mining algorithm

In this research, a new method to identify TF regulatory
modules that reveal the molecular mechanisms for the
functional redundancy observed among TFs is proposed.
The overall algorithm can be divided into three different
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stages (See Fig. 1): candidate search stage, module mining
stage and noise reduction stage. In the first stage of the
proposed algorithm, candidate TF sets were found from
the possible combinations of the TFs observed in the TF
binding dataset. After that, in the second stage, or the
module mining stage, the protein network built from the
STRING database was used to extract the most confident
but minimal-sized cooperating module for the candidate
TF sets. In the noise reduction stage, the random modules
that may be formed only by chance or by the noise inher-
ited from the inevitable nature of data integration were
eliminated.

Candidate search stage

The first stage in the proposed method is to search and
select candidate TF sets that may be involved in the same
modules. To mine out possible candidate TF sets that
may co-regulate a specific target gene, the k-means algo-
rithm [22] was used on the expression data since TFs that
involve in the same regulatory module tend to have similar
cellular mRNA expression profiles. The expression data
used in the proposed method consist of 1011 published
expression experiments for different cellular conditions
collected by Ihmels et al. [21]. In this research, all 1011
conditions were considered and no selection in types of
perturbations and treatments was performed. k-means is
a well-known data mining algorithm that helps learn the
group clustering in datasets. And the k-means clustering
method was applied on the binding TFs of a given gene
identified by ChIP experiments to find out possible can-
didate TF sets. Since the mRNA expression data are of
high dimension, special design and pre-processing should
be adopted to have k-means work in the space formed
by the expression dataset. To solve the problem, first the
statistical approach PCA (principal component analysis)
[48] was used to reduce the high dimensionality of the
mRNA expression data while keeping the variation pro-
files of these 1,011 conditions as a whole. The first three
most representative principal components were taken and
fed into the k-means algorithm in this study. The value
of k was enumerated from two to the number of binding
TFs of a target gene evidenced by the binding dataset. The
above steps were repeated for the corresponding binding
TF sets of each gene considered in the binding dataset to
get all possible candidate TF sets. After this stage, those
co-expressed candidate TF sets that may function in a
modular manner in regulating specific genes were found.

Module mining stage

To mine out the possible molecular mechanisms behind
the candidate TF sets, next a protein interaction net-
work based on the data obtained from the STRING
database [23] was built. The protein interaction network
was modeled as a weighted graph. Nodes in this network
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represented the proteins deposited in the database and
edges were added if there were some literature evidence
showing direct protein-protein interaction between the
two connected proteins. The weight of an edge was
defined to be one minus the confidence level of the evi-
dence. Since the protein interaction data were deposited
based on diverse literature evidence, cell conditions and
analysis statistical levels, this may contribute some extent
of noises to the network. To leverage the information
content and noise effect, we mined out the potential TF
regulatory modules, which contain the desired candidate
TF set and possibly other regulatory proteins, by enforc-
ing the constructed module to have the highest confidence
level but with minimal nodes in it. And the cost of an
extracted TF regulatory module is defined to be the sum
of all the weights of the edges included in the module.
Since the extracted potential TF regulatory modules were
taken to have the highest literature confidence, which cor-
responds to the lowest graph path weight sum, or the
minimum module cost, these criteria corresponded to
choosing the minimal cost Steiner Tree in the constructed
network [49].

Finding the minimal cost Steiner Tree of a given net-
work has been proven to be an NP-complete problem [50],
which means that it cannot be easily solved under cur-
rent computation architectures without any constraints
[51]. To overcome this obstacle, a modified approximation
algorithm based on biological constraints was devised. In
cells, the metabolism pathways and modules are usually
energy conserved [8, 52]. This means that cells prefer to
having fewer participating proteins if available. Based on
this assumption, the extracted modules were enforced to
have a reasonable weight cost (at most twice the mini-
mum cost [51]) but were constructed to lower the number
of participating proteins if possible. The designed method
for mining out modules first transformed the network into
a metric closure based on the shortest distances between
nodes in the interaction network. A metric closure is a
complete graph consisting of all the nodes in the protein-
protein interaction network. The edge weight between
two nodes in the metric closure is set to be the shortest
path weight sum between the two nodes in the original
network. Then the minimal participating nodes for the
given candidate TF set with the moderate weight cost on
paths connecting these nodes in this metric closure were
found by using the minimum spanning tree algorithm
[53]. The accompany proteins in the shortest path infor-
mation on the minimum spanning tree edges of the metric
closure were mapped back to the original protein-protein
interaction network and formed the mined-out potential
TF regulatory modules. In this way, the proposed method
mined out possible TF regulatory modules that provide
possible molecular mechanisms for elucidating functional
redundancy.
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Noise reduction stage

Since the integration of data from high-throughput tech-
nologies or literature mining is prone to be biased by
the intrinsic noises inherited from the experiments, data
analysis pipelines and data mining processes, the noised-
induced random results in the extracted potential TF
regulatory modules were filtered out in the final step of the
proposed algorithm. To reduce the effect of noises, it was
required that a confident TF regulatory module should
have a higher average value of literature confidence for the
interactions in this module than the average value of lit-
erature confidence for all protein-protein interactions in
the whole network. This was tested statistically by using
the Mann-Whitney U test [24]. Multiple hypotheses cor-
rection was applied to the potential modules mined out
for a given gene. The final TF regulatory modules were fil-
tered by a p-value threshold of 0.05 in this noise reduction
stage.
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