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Abstract

Background: Collective cell migration is a significant and complex phenomenon that affects many basic biological
processes. The coordination between leader cell and follower cell affects the rate of collective cell migration.
However, there are still very few papers on the impacts of the stimulus signal released by the leader on the follower.
Tracking cell movement using 3D time-lapse microscopy images provides an unprecedented opportunity to
systematically study and analyze collective cell migration.

Results: Recently, deep reinforcement learning algorithms have become very popular. In our paper, we also use this
method to train the number of cells and control signals. By experimenting with single-follower cell and multi-follower
cells, it is concluded that the number of stimulation signals is proportional to the rate of collective movement of the
cells. Such research provides a more diverse approach and approach to studying biological problems.

Conclusion: Traditional research methods are always based on real-life scenarios, but as the number of cells grows
exponentially, the research process is too time consuming. Agent-based modeling is a robust framework that
approximates cells to isotropic, elastic, and sticky objects. In this paper, an agent-based modeling framework is used
to establish a simulation platform for simulating collective cell migration. The goal of the platform is to build a
biomimetic environment to demonstrate the importance of stimuli between the leading and following cells.

Keywords: Collective migration, Leader-follower mechanism, Deep reinforcement learning

Background
Cell migration is a complex and highly dynamic phe-
nomenon which is primarily driven by the action net-
work beneath the cell membranes and is essential to a
variety of biological processes such as the development
of an organism, wound healing, cancer metastasis and
immune response[1]. For example, during morphogen-
esis, there is a targeted movement of dividing cells to
form tissues and organs. For wound healing to occur, cells
such as neutrophils (white blood cells) and macrophages
(cells that ingest bacteria) move to the wound site to
kill the mocroorganisms that cause infection, and fibrob-
lasts (connective tissue cells) move there to remodel
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damaged structures [1–3]. Active directional collective
cell migration is basic mechanism of cell migration that
enables the coordinated movement of groups of cells that
remain connected via cell-cell junctions during morpho-
genesis, wound repair and cancer invasion [4, 5]. The
guide of collective migration often involves the coordina-
tion between two functionally distinct populations, leader
and follower cells. Leader cells localize at the front of a
moving group, where they receive the guidance signals
and instruct, with cell-cell junctions at their rear, follower
cells into directional migration through chemical and/or
mechanical signaling [6, 7].

There are massive recordings, which can efficiently
track large numbers of migrating cells in 4D movies
of morphogenesis model, provide a unique oppor-
tunity for cellular-level behavior recognition as well
as simulation-based hypothesis testing [8]. Recently
development in cutting-edge live microscopy and image
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analysis provide an unprecedented opportunity to sys-
tematically investigate cell migration and simulate leader-
follower cellular behaviors movement extended period of
time [9, 10].

Agent-based modeling is a powerful approach that
approximates cells as isotropic, elastic and adhesive
objects. Cell migration is modeled by an equation of
motion for each cell [11]. In which all cells and environ-
ment parameters can be independently varied which facil-
itates species specific simulation and allows for detailed
analyses of growth dynamics and links between cellu-
lar and multi-cellular phenotypes [12–14]. Therefore the
framework of agent-based modeling is used in our present
work to simulate collective cell migration driven by leader-
follower mechanism.

Reinforcement learning dates back to the early days
of cybernetics and work in statistics, psychology, neuro-
science, and computer science [15, 16]. An agent that must
learn behavior through trial-and-error interactions with
a dynamic environment by obtaining reward and punish-
ment without needing to specify how the task is to be
achieved. So far, reinforcement learning had some suc-
cesses in many aspects [17, 18]. But previous approaches
lacked scalability and were inherently limited to fairly low-
dimensional problems. These limitations exist because
reinforcement learning algorithms share the same com-
plexity issues as other algorithms: memory complexity,
computational complexity, and in the case of machine
learning algorithms, sample complexity [19]. What we
have witnessed in recent years—the rise of deep learning,
relying on the powerful function approximation and rep-
resentation learning properties of deep neural networks—
has provided us with new tools to overcoming these
problems [20, 21].

In this paper, we not only consider the case of a sin-
gle agent, but also consider the situation of multi-agents.
A multiagent system [22] can be defined as a group of
autonomous, interacting entities sharing a common envi-
ronment, which they perceive with sensors and upon
which they act with actuators [23]. Unlike the previ-
ous single-agent reinforcement learning, multi-agent pro-
motes its own strategy while also considering the cumu-
lative rewards of other agents. Furthermore, most of the
times each learning agent must keep track of the other
learning (and therefore, nonstationary) agents [24]. Only
then will it be able to coordinate its behavior with theirs,
such that a coherent joint behavior results [25]. The non-
stationarity also invalidates the convergence properties
of most single-agent RL algorithms [26]. In addition, the
scalability of algorithms to realistic problem sizes, already
problematic in single-agent RL, is an even greater cause
for concern in multiagent reinforcement learning (MARL)
[27]. The second experiment of this article is based on
multiagent.

This paper proposes a new research method to study the
relationship between this stimulus signal(including chem-
ical and mechanical signaling) and collective cell move-
ment by using deep reinforcement learning in an agent-
based model to control the stimulation signals released to
the leading cells following the cell. In our current work,
an individual cell is modeled as an agent, where model-
ing includes the environment in which the cell is located,
the size of the cell itself, the rules of the biological envi-
ronment that the cell needs to follow, and the relative
location of the cell neighbor cells. Of course, the process
of cell migration generally includes two aspects, one is its
own mode of movement as a single individual cell, and the
other is the mode of movement of the collective cells of
the group in which the cells are located. The experiments
herein focus on the second aspect described above.

The writing framework of this article is roughly as
follows: firstly, the background and significance of the
migration of collective cell migration are highlighted. In
addition, in this part, the methods of this paper are also
defined, including the model, construction and setting of
specific algorithms, etc. Then, in the second section, the
details of the experiment and the results are elaborated.
Finally, in the third quarter, we propose the direction that
is worthwhile to continue research in the future.

Collective cell migration
First, a brief introduction to collective cell migration can
be defined that cells move together, making contact at
least some of the time, and if they affect one another while
migrating.

For all animals, cell migration is an essential and highly
regulated process [28]. In a system of collective cell migra-
tion, individual cell movement can be a part of the system
with specific communication between them. Among cells,
chemical and mechanical signals are considered as spe-
cific communication methods [29]. The collective migra-
tion of cells is affected by many specific factors. Among
them, the influencing factors considered in this paper
are specific biological signals and the inherent biologi-
cal relationships between cells and cells, while ignoring
other factors. Biological signal can also be understood
as an alternating medium between biological cells. This
medium helps guide, shape and ensure the final formation
of new cell morphology. If there is no biological signal as
a bridge, the movement of the cells will begin to control
and begin to move randomly, which will not help to repair
the biological function. This article does not describe how
specific biological signals are produced and functioned in
cells, primarily by simulating the importance of the pres-
ence of biological signals and how to control them to affect
the migration of collective cells.

Many cells can move in distinct situations or at a spe-
cific developmental time which can places, shapes or
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repairs the tissue of which they are part [30]. Combined
with the first single cell experiment in this article, we
will study how the migration process of collective cells is
implemented on a bionic platform.

Leading-following mechanism
In the system of collective cell migration, there is a mecha-
nism by which the leading cell interacts with the following
cell. Many results may indicate that pulling forward by
the migrating leader cell is a mechanical trigger for sub-
sequent migration of follower cells [31, 32]. The so-called
leading cells, that is, located in front of the collective cell
migration, can play a guiding role for other cells. When
cells begin to migrate collectively, the leading cells are
induced by some trigger factors and simultaneously are
activated to initiate departure from the epithelium but
remains attached to adjacent follower cells that are also
able to reorganize. At the same time, the following unit
is simulated by the leader unit and begins to move to the
leader unit. Without being known by the leading cells, col-
lective cell migration loses its ability to move in a certain
direction and becomes a random exploratory move.

What is said above is the main role of the leading cells in
the collective migration, then how is the leading cell and
the following cells established and how the connection
is established. The bio-stimulation signal that leading the
cell is communicated to the follower’s cells. By studying
this communication relationship on the simulation plat-
form, it will help future biologists to study biology on a
bionic platform.

Method
Deep reinforcement learning
Reinforcement learning(RL) is learning what to do—how
to map situations to actions—to maximize a numerical
reward signal. The learner is not told which actions to
take but instead must discover which actions the most
rewards by trying them. In the most interesting and chal-
lenging cases, actions may affect not only the immediate
reward but also the next situation and, through that, all
subsequent rewards [33, 34]. The thing learner or decision
maker interacts with, comprising everything outside the
agent, is called the environment. An agent directly inter-
acts with its environment without relying on exemplary
supervision or complete models of the environment. RL
can be defined as a tuple (S, A, R, P, γ ). S represents the
state space and A represents the action space. R represents
the immediate reward function, R : S × A → R. P repre-
sents the state transition dynamics, S×A×S →[ 0, 1]. γ ∈
(0, 1) called the discount rate, use to calculate the cumu-
lative return. The whole reinforcement learning process is
demonstrated in Fig. 1.

Although reinforcement learning has made great suc-
cess in many domains, previous approaches lacked

scalability and were inherently limited to fairly low-
dimensional state spaces. Here we witnessed in the
popular deep reinforcement learning which has been
developed in recent years. The most important prop-
erty of deep learning is that deep neural network can
automatically find compact low-dimensional features of
high-dimensional data. Deep learning also enables RL
to resolves more intractable problems which is high-
dimensional state and action space—with the use of deep
learning algorithms within RL defining the field of "deep
reinforcement learning"(DRL). In recent years, there are
massive novel algorithms in the DRL field that can effec-
tively solve large and complex problems, but in this paper,
the Deep-Q-Network(DQN) is mainly used to research
the collective cell migration and this specific algorithm
introduction will be elaborated later.

Simulation framework
1) ABM platform: ABM(Agent-based modeling) is an
effective framework to simulate fundamental cells behav-
iors which contains cell fate, cell division, cell migration
[35]. It transforms biological problems into mathemati-
cal models and computer models to track the complex
processes of cell movement and cell migration. In the
modeling process of agent-based modeling, it is necessary
to make the shape of cell movement under the simulated
scene as close as possible to the shape of cell movement
under the real scene. Based on the AMB model, the envi-
ronmental information obtained by using 3D image pro-
cessing technology establishes a complete motion model
for different states of cells at different times. In this model,
the influence process of the stimulation signal is added.
Among them, it will involve the frequency of the stim-
ulation signal, the amount of the stimulation signal, and
the like, and the change of the rate of collective migra-
tion under the influence of different factors. The source of
the specific cell position is the data mentioned in the lit-
erature [35]. The relative positional relationship between
cells and neighboring cells represents the environment in
which the cells are located. These relative relationships
are essential and affect many fundamental biological pro-
cesses, including cell signaling, cell migration, and cell
proliferation.

Among them, the cell movement is not at random but is
subject to specific rules. As described in literature [35], in
the deep reinforcement learning scenario, this rules that
guide cell movements can be transformed to reward func-
tion as an evaluation of how well a cell moves during a
certain period based on those mechanisms. In our present
work, we mainly consider the following three rules(the
setting of these rules’ rewards will be described later):

• the Boundary Rule: Cell can’t break through the
eggshell. With a certain range of cell and eggshell, the
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Fig. 1 The reinforcement learning framework: leader cell or follower cell which are seen as the agent, continually interact with environment. The
agent selects actions and the environment responds to these actions and presents new situations to the agent. The environment also gives rise to
rewards, special numerical values that the agent seeks to maximize over time through its choice of actions

closer a cell is to the eggshell, the higher the penalty it
will receive from the environment. Therefore, the cell
must learn to keep an appropriate distance with
eggshell.

• the Collision Rule: Cell can’t excessively squeeze cells
around it. When the distance between two cells is less
than a certain range, they will receive a punishment
from environment. Therefore, the cell must learn to
keep an appropriate distance with cells around itself.

• the Destination Rule: Cell movement is always
directional and usually chooses the optimal path to
reach the target. For the leader-follower mechanism,
leader cell seeks the optimal path to reach the target,
meanwhile the follower cell behind leader cell track
the trajectory of the leader cell to move.

The introduction of these rules will be used later when
the rewards set in the DQN algorithm. However, this
paper will not discuss in detail how these rules appear,
mainly to contrast the effect between leader cell gives fol-
lower cell stimulating signals and leader cell does not give
stimulating signals.

2):Deep-Q-Network: In this algorithms, an individual
cell is seen as an agent and the position of the cell is
regarded as the state—S. The relative positional rela-
tionship between cells and rules to be considered to be
the environment. The direction in which each cell can
move can be seen as action—A, a total of 8 actions.
At each discrete time step t, the cell senses its envi-
ronment state St ∈ S from an embryo and selects an
action At ∈ A. The environment returns a numeri-
cal reward Rt ∈ R to the cell as an evaluation of
that action at that state. The reward includes three
rules as mentioned in the previous section, for bound-
ary rule and collision rule, once a threshold of distance is
reached, a terminal condition is triggered and the process
restarts. For the destination rule, when the cell is closer
to the target, the environment gives the cell a greater

reward, which in turn stimulates the cell to move toward
the target.

The main algorithm of this paper is still based on
the DQN algorithm of deep reinforcement learning that
has been studied before, which is mainly inspired by
the innovative significance of application. More research
paradigms of artificial intelligence can be extended to the
industry to help researchers in different fields. The net-
work is trained with traditional Q-learning [36] and use
deep convolutional neural network [37, 38] which is fed
with cells’ state and outputs a value for each cell’s action
to approximate the optimal action-value(as known as Q)
function. The optimal action-value is defined as Eq. (1),
where π is a policy mapping sequences to actions of cells
(or distributions over actions). That is, in the environ-
ment, each individual cell is considered an agent. At each
state the agent selects an action at at from eight legal
actions, then it receives a reward rt represent the imme-
diate rewards. The agent’s goal is to maximize the total
amount of reward it receives. This means maximizing not
immediate reward, but cumulative reward in the long run.
In other words, the goal of agent can be thought of as the
maximization of the expected value of the cumulative sum
of a received reward. If the sequence of rewards received
after time step t is denoted rt , rt+1, rt+2, rt+3, . . . , then
the return is the sum of the rewards: rt+rt+1+rt+2 + . . . .
The additional concept that we need is that of discount
rate. The discount rate determines the present value of
the future rewards: a rewards received k time steps in the
future is worth only γ (k − 1) time what it would be worth
if it were received immediately. The agent select actions
to maximize the expected discounted return: rt+γ rt+1 +
γ 2rt+2 + . . . .

Reinforcement learning is known to be unstable or even
to diverge, the specific reasons for it can be found in the
[37, 38]. Deep reinforcement learning combines the per-
ception of deep learning with the decision-making ability
of reinforcement learning. It can be directly controlled
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according to the input image. It is an artificial intelli-
gence method that is closer to the human way of think-
ing. DQN can improve these two shortcomings, mainly
including changing the data distribution and correlations
between the action-values(Q) and the target values r +
γ maxa′ Q(s, a).

Q∗(s, a) = max
π

E
[

rt + γ rt+1 + γ 2rt+2 + . . .
∣
∣ st

= s, at = a, π ]
(1)

DQN combines convolutional neural network with Q
learning, and solves the problem of combining DL and RL
by the following methods: (1)firstly, DQN used a biologi-
cally inspired mechanism termed experience replay—D =
e1, e2, ..., eN that randomizes over the data, thereby remov-
ing correlations in the observation sequence of cells and
smoothing over changes in the cells’ data distribution. In
this algorithm, an approximate value function Q(s, a; θi)
is parameterized using the deep convolutional neural net-
work, in which θi are the weights of the Q-network at
iteration i. In our present work, we store the agent’s expe-
rience into replay buffer at each time-step t in a data
et = (st , at , rt , st+1), and then randomly select samples for
training at each time and use the fixed length representa-
tion of histories produced by a function φ. (2) secondly,
DQN uses an iterative update that adjusts the action-
values(Q) towards target value that is only periodically
updated, thereby reducing correction with the target. In
the target network, rather than updating the weight in the
single neural network, the weight remains unchanged for
all n iterations until they are updated with θ−

i from online
network.

Leader cell and follower cell are trained using DQN
algorithm, and their update process can be achieved by
minimizing the loss function L defined as Eq. (2). Then
backpropagating the loss through the whole neural net-
work to update θ by θt + 1 = θt − α∇L(θt), where α is
the learning rate. For leader cell and follower cell an ε-
greedy strategy was implemented, which is the most of
time agent always exploits current knowledge to maximize
their immediate reward and meanwhile with small proba-
bility ε independently of the action-value estimates. This
method can balance exploration and exploitation.

L(St , At|θt)=
[
Rt +γ max

a
Q(St+1, At+1|θt)−Q(St , At|θt)

]2

(2)

yj =
{

rj for terminal φj+1
rj + γ maxa Q∗(φ(st), a; θ) for non-terminal φj+1

(3)

The full algorithm of DQN, in the general case, is out-
lined in Algorithm 1.

Algorithm 1 Deep Q-learning with Experience Reply
1: Initialize replay memory D to capacity N
2: Initialize action-value function Q with random

weights
3: for episode = 1, M do
4: Initialise sequence s1 = {x1}
5: preprocessed sequenced φ1 = φ(s1)
6: for t = 1, T do
7: With probability ε select a random action at
8: otherwise select at = maxa Q∗(φ(st), a; θ)

9: Execute action at in emulator and observe
reward rt and image xt+1

10: Set st+1 = st , at , xt+1 and preprocess φt+1 =
φ(st+1)

11: Store transition (φt , at , rt , φt+1) in D
12: Sample random minibatch of transitions

(φj, aj, rj, φj+1)from D
13: Set yj according to Eq. 3
14: Perform a gradient descent step according to

Eq. 2
15: end for
16: end for

3):Algorithm Setting: Next, I will mainly introduce the
work related to algorithm setting. During the experiment,
it is necessary to ensure that the relative positional rela-
tionship between the cells and the cells is unchanged, and
the appropriate reward function is used to indicate how
the stimulating factors before the cells affect the migration
of the collective cells.

• Relative Position of Cells: It is critical to ensure that
the information entered is as similar as possible to the
real environment. We take the same approach as
literature [35], in which we assign different numbers
to the cells according to the relative positional
relationship between cells, and then feed the these
fixed positions with the serial numbers into the
convolutional neural network.
This location information is used as the environment
for leader cell and follower cell, in which DQN is
used to train cells. During the training process, the
cell takes action according to strategy and selects one
of the eight directions. Leader cell and follower cell
will take as much action as possible to increase
cumulative rewards, but their set of reward function
are different that will be explained next.

• Reward Function: For the leading cell, its reward is
similar to the setting method of the aforementioned
paper, and is proportional to the Euclidean distance
of the target position. The difference is that following
the arrangement of the cells, in addition to
considering the distance from the target cells, it is
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also necessary to use the stimulation signal as a
function of suppression or acceleration. Leader cell
moves according to the optimal motion trajectory,
training follower cells to maintain the same direction
and speed as the leader cell. The follower receives the
stimulus signal from the leader, which speeds up the
movement of the follower. If follower cell doesn’t
match leader cell, the environment will give it a
penalty.

Experiments and results
Regarding the influence of stimulation signals on the
migration of collective cells, this paper focuses on two sets
of experiments to focus on, which proves that appropriate
stimulation signals and release time of stimulation signals
can have a huge impact on the migration rate of collective
cells. The experimental environment of the cells is similar
to the literature [35] and the cell morphology data is also
referred to in this literature. We mainly want to compare
the effects of stimulating signals and no stimuli on the
simulation platform for the movement speed of collective
cells. However, due to limited equipment and resources,
we did not verify in the real cell scene. As the cell grow-
ing exponentially, the calculation time increases as it is
positively correlated.

In the first set of experiments, there was only one recip-
ient of the stimuli signal released by the leading cells. The
difference is that in the second set of experiments, there
were two recipients of the stimulus signal released by the
leading cells. Therefore, when there are two recipients, it
is also necessary to consider the competition and coop-
eration between the two agents for resources, because
the two agents do not necessarily receive as many sig-
nals. The same is true for the two sets of experiments,
during training the behavior policy was ε-greedy with ε

gradually increasing from 0.35 to 0.9 and then remained
unchanged. In all experiments, we trained the agent 3000
epochs to ensure that the experimental results were more
fitting. After training, the action-value function of the net-
work prediction has stabilized. Of course, in the process of
training, each experience will be stored in the experience
replay pool, after which each experience will be randomly
selected from the experience pool for later training.

Since the experimental comparison results are also car-
ried out on the simulation platform, in order to ensure
the rationality of the experimental comparison, the setting
of the reward function is different, and it is necessary to
ensure the consistency of other hyperparameters.

One leader cell and one follower cell
Figure 2 shows how the following cell moves with the lead-
ing cell if there is only one recipient of the stimulus signal
released. It can be seen that as the leading cell move over
time, they gradually move toward the target direction until

they reach the target position, and a cycle of the entire
simulation ends. During a single simulation cycle, the fol-
lowing cell is always at a safe distance from the leading
cell and are also moving toward the same target posi-
tion as the leading cell. During the entire movement, the
morphology and fate of other neighboring cells will also
be considered, including the basic processes of cell divi-
sion, growth, reproduction, and movement. But whether
neighbor cells will also move toward the target direction
of the leading cells is ignored in this experiment.

We use the relative positional relationship between cells
and cells as well as the state of the cells as input to the
neural network. The DQN algorithm is used to train the
leading cells to obtain its optimal motion trajectory, and
the motion trajectory after it is fixed as the optimal tra-
jectory. The Pt0

l was used to indicate the starting center
position of leading cell at time t0, Pt0

f to indicate follower’s,
and the Pt 0

Target was represented as the target position.

DL
t0 =

∣
∣∣Pt0

f − Pt0
l

∣
∣∣ (4)

Therefore, Eq. (4) represents the starting distance at time
t0 between leader cell and follower cell, Eq. (5) represents
the distance between follower and target.

DT
t0 =

∣
∣
∣Pt0

f − Pt 0
Target

∣
∣
∣ (5)

When the leading cell does not release a stimulus signal to
follow the cell, only use the change of DT

t between the next
time t′ and the current time t to set rewards. If DT

t remains
the same or gets smaller, it indicates that it is moving in
the direction of target cell, so the environment will give
it a positive reward, on the contrary, it gives a negative
punishment.

If the leading cell releases a stimulating factor to the
following cell, then the reward function be related to the
release of the stimuli signal. We used It to represent the
interval of release signal, it will obtain reward based on
DT

t and DL
t0 , not just DT

t . If DT
t and DL

t0 start reducing
or unchanging, the action-value will change accordingly.
Because in the training process of the neural network,
small changes will bring great fluctuations.

It can be seen from the contrast effect of the experiment
that the following cell subjected to the stimulation signal
are more efficient and more likely to converge than the
cells without the stimulation signal. Figure 3 describes the
evolution of the quantitative descriptors of behavior dur-
ing training. From Fig. 3 we can also see that I = 3s is
faster to learn than I = 5s, therefore with increasing the
frequency of stimulation signals agent also learn faster.

One leader cell and multi-follower cells
When we increase the number of following cells to two,
the moving process of multi-follower cells followed the
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Fig. 2 The movement process of a leader cell and a follower cell. Among them, the red ellipse represents the leader cell, the green ellipses
represents the follower cell, the black open circle represents the target of the leader cell, and the remaining cells represent the neighboring cells
during the movement. The relative positional relationship can be seen as environment of agent

leader cell to is shown in Fig. 4. The meaning of the ellipse
color is the same with Fig. 2. As the leader cell moves
toward the target, the two follower cells that maintain an
appropriate distance from the leader cell are also moving
toward the target.

The method of training multi-follower cells and leader
cell are also consistent with the first set of experiments.
We use Pt0

f1 , Pt0
f2 to respectively indicate the starting center

position of two follower cells at time t0. Follower cell-1 and
follower cell-2 also use similar approach to calculate the
distance just like the first experiment. We need to replace
Pt0

f in Eqs. 4 and 5 with Pt0
f1 and Pt0

f2 ,respectively.
In the process of multi-following cells, we do not con-

sider the phenomenon of competition and cooperation
between them, so the training process for multiple fol-
lowers and single followers is the same. As shown in
Fig. 5, for multiple followers, the stimulation signal still
increases its learning speed. So we can get that the number

of stimulation signals is related to the learning speed,
and there is a proportional relationship between them.
However, the leader cell must consider two follower cells
simultaneously in multi-follower. The agent that receiving
the stimulation signals requires an average of 210 steps,
while agents that do not receive the stimulation signals
require an average of more steps, which typically require
222 steps.

Discussion
Accelerating the speed of collective cell migration can play
a important role in many biological areas, such as organi-
zational development, wound healing, cancer metastasis,
and immune response. By studying the effect of stimu-
lation signals on the moving speed of follower cell, we
get the conclusion that stimulation signals can control the
movement of follower cells, thereby accelerating the rate
of collective cell migration.But due to the truth that there

Fig. 3 A quantitative behavioral representation of single follower cell. On the left, the abscissa is represented as the number of training, and the
ordinate is expressed as the total rewards obtained by the agent. On the right side, the abscissa is also expressed as the number of training, and the
ordinate represents the action-value of the agent. Among them, the green curve indicates that no stimulus signal is received, the red representative
receives a stimulation signal every five seconds (It = 5s), and the blue color indicates that the stimulation signal is received every three
seconds(It = 3s)
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Fig. 4 The movement process of a leader cell and multi-follower cells. The representation of the color is the same as the process of a single follower
cell. The difference is that there are two follower cells here

is no mature way to control the signal release from the
leader cell in the real scene, so we can not effectively use
the real cell migration scenario to do experiments, and just
do it in simulation environment.

There are some aspects can be improved in the exper-
iment: (1) First of all, in the reward setting function of
our experiment, a fixed number stimulation signals were
released to the follower cell at equal time interval.In the
future, the leader cell can be trained to learn to control the
signal interval so that it can automatically release signals
instead of manually setting the same time interval. (2) Sec-
ond, the interaction between the leader and the follower
only obtains the location information of each other in this
experiment.But there are other informations in the cells,
which may effect the state. So we can make the follower
and leader cells receive more informations such as the
direction and speed about the current state in the future.
(3) Third, we study the leader cells and the follower cells

which will move toward the target direction, while other
cells which may also move toward the same target are
ignored. In the actual scene the resources shared by the
cells are limited, so there will be competition and coop-
eration between the cell which move toward the same
direction.This phenomenon of competition and cooper-
ation can also continue to be studied in depth in future
work.

Conclusions
For the algorithm itself in the simulation environment,
this paper is based on a simple DQN. Therefore, in the
following work, we can also concentrate more on improv-
ing the current algorithms. In addition, this paper only
considers the relationship between leader cells and fol-
lower cells, but in fact the relationship between cells is
considerable complexes, and the follower cells are also
stimulated and acted upon by other cells.

Fig. 5 A quantitative behavioral representation of multi-follower cells. The representation of the abscissa is the same as single-follower cell, but the
ordinate is calculated as the average of the total rewards
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