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Abstract

Background: Supercomputers have become indispensable infrastructures in science and industries. In particular,
most state-of-the-art scientific results utilize massively parallel supercomputers ranked in TOP500. However, their use
is still limited in the bioinformatics field due to the fundamental fact that the asynchronous parallel processing service
of Grid Engine is not provided on them. To encourage the use of massively parallel supercomputers in bioinformatics,
we developed middleware called Virtual Grid Engine, which enables software pipelines to automatically perform their
tasks as MPI programs.

Result: We conducted basic tests to check the time required to assign jobs to workers by VGE. The results showed
that the overhead of the employed algorithm was 246 microseconds and our software can manage thousands of jobs
smoothly on the K computer. We also tried a practical test in the bioinformatics field. This test included two tasks, the
split and BWA alignment of input FASTQ data. 25,055 nodes (2,000,440 cores) were used for this calculation and
accomplished it in three hours.

Conclusion: We considered that there were four important requirements for this kind of software, non-privilege
server program, multiple job handling, dependency control, and usability. We carefully designed and checked all
requirements. And this software fulfilled all the requirements and achieved good performance in a large scale analysis.
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Introduction
The use of supercomputers in bioinformatics has become
common with the unprecedented increase in the amount
of biomedical data, e.g., DNA sequence data, and also
demands of complex data analysis using multiple software
tools. The growth of data size has been due to drastic
improvements of measurement devices in the last decade.
For DNA sequence data, the speed of data generation and
reduction of the cost were over-exponential due to the
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development of so-called Next-Generation Sequencers
(NGSs) [1].

DNA analyses of variant diseases have been estimated to
require tens of thousands of sample analyses [2]. Further-
more, the size of sample such as read length and coverage
tends to be larger rapidly. However, only a few studies
have utilized massively parallel supercomputers ranked in
TOP500 [3–6]. One of the main reasons is lack of Grid
Engine (GE) services, e.g., Sun Grid Engine and Univa
Grid Engine, on most of those supercomputers; the use
of GE-like service is currently almost a prerequisite for
large-scale biological data analyses..
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Most software and programs that run on such TOP500-
like supercomputers are paralleled using Message Pass-
ing Interface (MPI)[7], wherein all subprocesses work
synchronously. On the other hand, array jobs, automat-
ically paralleled subprocesses of software pipelines by
GE are asynchronous. Therefore, the GE conflicts with
MPI-based systems from the perspective of the job-filling
factor.

Here, the MPI parallelization of software pipelines
requires expert knowledge and experience. It is necessary
for the MPI parallelization of software pipelines to use C
or Fortran language wrapper programs or to commission
High Performance Computing (HPC) experts to overwrite
them fundamentally, which will be difficult for users.

Recently, Cloud-base systems, such as Amazon Web
Services (AWS), have been popular in NGS data analy-
sis [8]. Cloud computing services are very useful for small
laboratories and companies that do not have computa-
tional resources. However, they still require significant
costs for large-scale analyses [9]. In addition, there are
still several problems to be overcome, such as data trans-
fer time, data corruption checking, and data security
management.

From the perspective of HPC, DRAGEN [10] achieved
drastic acceleration of the GATK pipeline [11]. The hard-
ware implementation of all the processes in GATK using
FPGA caused this great acceleration. This approach is the
ultimate software-tuning technique. On the other hand,
it makes it quite difficult to improve the implemented
workflows. GATK is one of the most popular pipelines
for germline mutation calling, so this tuning is extremely
efficient for it.

However, there is a great variety of target vari-
ants for NGS data analyses for each study, and it is
inevitable for algorithms and pipelines to be designed
for the study. Therefore, general software pipelines
still have merits in many studies and massively paral-
leled supercomputers are useful for accelerating their
analyses.

In this study, we developed MPI-based middleware
named Virtual Grid Engine (VGE) that enables software
pipelines based on GE system to run on massively parallel
supercomputers.

Implementation
Goal and requirements

Supercomputers are always used by many users.
Thousands of jobs from users will be submitted
to the system. Required system resource such as
calculation time, necessary nodes, memory size,
etc., are varies from job to job. Therefore, job
management system (JMS) that controls the assign-
ment of jobs efficiently is inevitable for large scale
supercomputers.

There are some JMS and GE-like tools. Sun Grid Engine,
Univa Grid Engine, and TORQUE [12] are pure GE sys-
tems. GNU parallel enables users to employ commands
or software in parallel [13]. While those GE-like tools are
useful, it is a problem that not all of the supercomputer
system do not implement them. That has prevented to
analyze biological data on those massively parallel super-
computer systems.

GE is a kind of server service program that works with
JMS. JMS is one of the core service programs of super-
computers, so that a user cannot install or change it on a
target machine. Thus, it is extremely hard for bioinformat-
ics pipelines to work on a supercomputer that does not
equip any GE.

Our goal is to perform user pipelines efficiently on
supercomputers on which GE has not been installed. VGE
is the first application for this field, which must be a user
program and act like a server service. To achieve this
objective, there are the following four requirements:

1. Non-privilege server program VGE must be a user
program and also works as a server service pro-
gram. In order to utilize thousands of CPUs, it must
be a MPI parallel program, and also provide a job
submission mechanism for user pipelines.

2. Multiple job handling VGE must accept a number of
jobs (many samples, multiple type analyses, etc.)
simultaneously. Most MPI programs running on
large-scale supercomputers often use thousands to
tens of thousands of processes; thus running a job
with a small number of processes a dozen times is
inefficient.

3. Dependency control VGE must handle dependencies
among tasks. Tasks in pipelines often contain depen-
dencies, meaning that a certain task must wait for the
former task to be accomplished.

4. Usability VGE must be friendly for medical and bioin-
formatics researchers. For example, file formats and
programming languages must be widely used in this
research area, and the modification of user pipelines
for using VGE must be minimal. This is the most
important point.It must be noted that software that
does not satisfy this requirement will have severe
problems in their dissemination.

Algorithms
To satisfy the most important requirement of the sys-

tem, that is, the fourth requirement, VGE was written
in Python. We also employed the MPI4PY package for
the MPI environment of Python [14–16]. The system
uses a Master-Worker model, which enables it to accept
jobs with different processing details or different num-
ber of processes concurrently. Figure 1 shows the concept
of the VGE system. The VGE system consists of two
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Fig. 1 VGE system

programs: a Master-Worker type MPI paralleled main
program (VGE: Virtual Grid Engine) and a job controller
program (VGE job controller) that controls the job infor-
mation between the VGE and user pipelines.

Job submission is performed by vge_task() function in
place of GE commands, such as qsub of SGE. Scripts for
submission and the number of array jobs are passed to
vge_task() as arguments. vge_task() then sends the job
information to VGE using socket communication.

The information is stored in the main job pool of VGE
on the Python shared object. The VGE master process,

rank 0 of VGE MPI processes, plays this role, assigns
registered jobs in the main pool to sleeping workers
for execution, then waits for the completion signal from
workers.

The VGE job controller uses two types of communica-
tion: the socket communication of the vge_task() function,
and the Python shared object for the main job pool. User
pipelines, the VGE job controller, and the VGE maser
process must be executed on the same physical com-
puter unit (master node) to allow these two types of
communication.
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The key point in the master-worker algorithm is the
overhead cost for assigning jobs to workers. The master
node executes three processes: the user pipeline, VGE job
controller, and VGE master process. However, the for-
mer two processes only perform the registration of jobs to
VGE, and their calculation loads are negligible.

Therefore, the computational cost of the VGE master for
assigning jobs to workers is critical for the performance
of this system. Its cost is closely related to the access
frequency to the main job pool and its size.

To overcome these two problems, the VGE master cre-
ates two local job pools in itself. One pool (the second job
pool) is used for reducing the access frequency by copying
all jobs from the main job pool to it at a certain time (the
blue dashed line in Fig. 1). The other pool (the first job
pool) extracts jobs equal to the number of VGE workers
from the second job pool (the red arrow in Fig. 1).

By assigning jobs from the first job pool, VGE reduces
the size of the job pool to access and minimize its over-
head.

Results
In this section, we conducted several tests to check the
performance of VGE. As described above, the VGE basic
performance depends on the overhead time for assigning
jobs. Therefore, we first checked this using an elementary
code with a number of array jobs. Then, we performed a
large-scale analysis test using practical data.

Overhead measurements
Here, we conducted basic tests to check the time required
to assign jobs to workers by VGE. The test code comprised
only 120 seconds of sleep. The numbers of array jobs were
10,000 (Case 1) and 100,000 (Case 2). The numerical envi-
ronment was 2000 nodes of the K computer [17]. Table 1
shows the specification of the K computer. VGE used a
node for the master process, so the number of workers was
1999.

Figure 2 shows the start time of each job. In Case 1
(Fig. 2), workers executed five or six jobs. The red points
indicate an ideal situation where the overhead is equal to
zero. It is clear that the result in this figure shows this step,
so the VGE master smoothly assigned jobs to workers.

The larger the number of jobs, the bigger the overhead.
In Case 2 (Fig. 2), the number of jobs was ten times of
Case 1, but the assignment was still performed smoothly.

Table 1 Specifications of the K computer

CPU SPARC64 VIIfx 2.0 GHz 8 cores/socket

RAM 16 GB/node (2GB/core)

Node 82,944

Capability 10,510 TFlops

In Case 2, the ideal elapsed time for execution was 6120
seconds and the measured time for execution was 6145
seconds. Thus, the total VGE overhead was approximately
24.6 seconds and the assignment overhead for one job to
a worker was 246 microseconds. This is sufficiently small
to handle a large number of jobs.

Simultaneous analyses of many samples
In this test, we focused on the massively parallel analysis
of multiple samples simultaneously. The numerical envi-
ronment was the K computer, the same as in the previous
section. The test code included two tasks, the split and
BWA [18] alignment of input FASTQ data [19], which is
standard in high-throughput sequencer data analysis. The
details of the input data are shown in Table 2. Here, we
used 25,055 nodes (200,440 cores) for this calculation and
accomplished it in three hours.

This result indicates that VGE has enough capability for
controlling thousands of workers and handling multiple
samples simultaneously.

Discussion
Performance and usability
We defined four requirements of VGE in “Goal and
requirements” section. The first requirement (Non-
privilege server program) has been described in “Algo-
rithms” and “Results” section. Thus we focused on the
other requirements in this part.

The second requirement is handling multiple tasks.
Figure 3a shows a short extraction of the job-submitting
script used in “Simultaneous analyses of many sam-
ples” section. Fourteen samples were named Data 0
to Data 13, respectively, and their tasks of FASTQ
data division and BWA alignment were written in sim-
ple_pipeline.py.

A line starting with “simple_pipeline.py” corresponded
to one sample analysis. In this example, fourteen sample
jobs were submitted to VGE independently. In this way,
VGE accepts multiple job submissions at once. Of course,
different pipelines can also be submitted simultaneously.

Here, we focus on the results of job assignment and
filling to workers. We used the same pipeline and data
used in “Simultaneous analyses of many samples” section.
The only difference was the number of workers. In this
case, we used 5,000 workers which was much less than the
number of total jobs. Thus, the workers had to perform
the assigned jobs many times.

Figure 4 shows how the workers executed the jobs based
on time. In the first twenty minutes, only a few work-
ers performed jobs and the majority of the others did
not work. This is because fourteen pipelines submitted
fastq_splitter, which contained only two jobs. The results
indicate that VGE successfully handled the dependency
between tasks.
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Fig. 2 The results of VGE job assignments. (a) Case1 10,000 jobs (b) Case2 100,000 jobs

Table 2 Details of sample data

Number of samples 14

Data type Whole-genome sequencing (WGS)

Data format FASTQ

Read length 152 bp, paired-end

Total size 4.2 TByte, 3.8 Tbp

After this task, the FASTQ files were split into thou-
sands of files that were aligned with BWA by all the
workers. The number of split files was much larger than
that of workers, so all workers continued to perform their
jobs. From this figure, it can be concluded that the assign-
ment was tightly arranged; thus, job management of VGE
was very effective in a real case.

The third requirement is dependency control among
tasks. Python is an interpreter language and performs a
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Fig. 3 Sources of the scripts used for multiple sample analyses (short extraction). (a) job-script. (b) pipeline-script (simple_pipeline.py). (c)
command-script

process per line. Using its characteristics, VGE controls
task dependencies by tuning the task writing order in a
script.

Figure 3 shows a short extraction of simple_pipeline.py
used in “Simultaneous analyses of many samples” section.
It consists of two tasks, the division of input FASTQ

files (fastq_splitter) and alignment of decomposed files by
BWA (bwa_align). Here, bwa_align must wait for comple-
tion of fastq_splitter task.

As described in “Algorithms” section, job submission
to VGE is performed by using vge_task() function. It is
clear from Fig. 3 that the simple_pipeline.py contains
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Fig. 4 The results of filling jobs to workers. The colored bars mean that workers performed assigned jobs. The white space means workers waited for
assigned jobs. Workers that performed jobs from a coinciding task were given the same color. Colors were used cyclically. The number of workers
was 5,000. Figure (a) is an enlarged image of Figure (b) framed by a light green box. (1) Workers performed fastq_splitter tasks. The number of these
tasks were 28, so that most of workers were sleepingt. (2) The first three tasks of bwa_align were assigned to workers and started at almost the same
time. There were still sleeping workers because the other fastq_splitter had been calculating. (3) These workers first performed jobs belonging to a
red-colored task and accomplished them. Then, they immediately started the next jobs belonging to a yellow-colored task. The complicated results
shown in Figure (a) indicate that each worker worked independently and continuously despite the computational costs of each task being quite
different

two tasks; the former is fastq_splitter and the latter is
bwa_align.

The vge_task() written on the eighth line in Fig. 3 han-
dles fastq_splitter task, and the process is accomplished
after finishing the division of FASTQ files by VGE work-
ers. Therefore, the vge_task() that is written later and
corresponds to bwa_align does not submit to VGE before
its accomplishment of the first task. The dependencies
among tasks will be controlled by the order of tasks
written in a script in this manner.

The final requirement is friendliness to medical and
bioinformatics researchers. Pipelines using VGE consist

of three parts: describing the concrete contents of tasks
(hereinafter referred to as command-script), denoting the
flow of the pipelines (pipeline-script), and submitting
tasks to VGE (job-script) (Fig. 3).

The command-script and the pipeline-script can be writ-
ten either in the same file or in independent files. The
command-script can also be described in shell script.
Therefore, legacy scripts can be used on VGE. However,
development of scripts from scratch is also possible as
researchers in this field are familiar with coding in Python.

On the other hand, pipeline-script must be writ-
ten in Python. However, only vge_task() needs to be
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described. vge_task() requires three arguments: COM-
MAND, MAX_TASK, and BASENAME_FOR_OUTPUT.
These arguments indicate the task name defined in
command-script, the number of workers neccesary for
the task (in short, the number of array jobs), and the
unique ID (arbitral strings) used for log files, respec-
tively. The value assignments are very clear, as shown in
Fig. 3 (5-7 lines).

As discussed, VGE is very straightforward and friendly
software for users.

Issues associated with distributed file systems
At the test described in “Simultaneous analyses of many
samples” section, we encountered an unexpected severe
problem. General behavior of a job using VGE is shown in
Fig. 5. There are two intervals before the pipeline starts.
First one is the initialization time of the system such as
environmental value settings (a), and the other is the ini-
tialization time of MPI and VGE. Both intervals are from
seconds to a minute in usual, but the total time of them
was over 2 hours in the first trial.

This problem had observed first in this large-scale
computation test, or it never appeared at smaller scale
tests such as two thousand nodes. Therefore, VGE didn’t
mainly cause this problem. We carefully investigated the
cause of this problem with K computer operating team.
According to the result of this investigation, both initial-
ization intervals ((a) and (b)) took 1 hour respectively.
In the system initialization interval (a), the operating
system and JMS do various processes such as assign-
ing of nodes, but we found that the file system became
overload.

In this study, we mainly used the K computer that is one
of the biggest supercomputers in the world. Of course, it
equips a very large storage. Its size is over 30 PB thus tradi-
tional storage systems cannot handle such a huge storage.
The K computer employs Fujitsu Exabyte File System [20]
that was based on Lustre [21].

Lustre is one of distributed file systems. Lustre family
file systems consist of three parts, one is physical disks,
another is object storage servers (OSS), and the other is
metadata servers (MDS). Thousands of physical disks and
OSSs are used in Lustre family system, but the number
of MDS is usually small. Therefore, MDS may become a
bottleneck of Lustre family systems.

According to the investigation, we found that the job
sent too much requests (e.g., make files, remove files, etc.)
to the MDSs of FEFS at VGE launching. The observed
value was over 20,000 per second. Applicable value of
request to MDSs is 1300 per second, so that it was an
extremely high value. The requests was caused by making
log files of each workers. VGE workers make each log files
in which the received task information and worker status
are stored. The number of these files is proportional to the
number of workers, thus we can’t find this problem in the
previous tests. To avoid this problem, we made log files for
VGE workers using only 1 process before MPI launched
VGE.

Figure 6 shows FEFS structure in the K computer.
The unique characteristics is that the whole file sys-
tem consists of two layer: Global file system (GFS)
and Local file system (LFS). Each system is com-
plete as an independent file system. Programs and
data that is required for a job send from GFS to
LFS by the job management system (staging function)
through the data transfer network. Thus user jobs are
not affected by the others miscellaneous works on the
login nodes.

The initialization time of MPI and VGE (b) was also
related to MDS. In this initialization period, the system
proceeds MPI startup and loads python modules that VGE
imports. Each MPI process loads python module files
respectively so that the requests to MDSs become very
high in large scale tests. This problem is widely known in
the dynamic linking library research field [22]. To avoid
this problem, you may use tools that improve a library
loading performance. In this study, we prepared python
main system and all modules on the local disks of all
calculation nodes. Since VGE master and workers didn’t
access to the files of python on the FEFS, we reduced
the number of access to the MDSs at this initialization
intervals.

These issues were occurred in the large-scale computa-
tion of multiple sample analysis, so that you may consider
that it is a very particular situation. However, it may occur
in all types of bioinformatics analysis. As described before,
one sample data size become quite large and it has already
become over 5TB in the state-of-the-art studies. In such
cases, typical protocols of sequence analysis hold potential
risks for file systems.

Fig. 5 General behavior of a job using VGE
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Fig. 6 Fujitsu Exabyte File System (FEFS) [20]

Conclusion
In this study, we developed MPI-based middleware named
Virtual Grid Engine (VGE), that employs the Master-
Worker algorithm and provides grid engine services. It
achieved extremely low overhead costs in large-scale com-
putation. In the test calculation on the K computer, we
accomplished alignments of 4.2 TB, 3.7 Tbp FASTQ data
in three hours, and the results indicate that this will
contribute to the rapid analysis of multiple large-scale
samples. We found problems related to distributed file
systems in the large scale computation. These problems
are usually hard to recognize and solve for bioinformati-
cians. We successfully overcame them by collaborating
with the K computer operating team.

Availability and requirements
Project name: Virtual Grid Engine
Project home page: https://github.com/SatoshiITO/VGE
Operating system(s): Linux
Programming language: Python
Other requirements: MPI4PY 2.0.0 or higher, MPICH or
OpenMPI 2.0 or higher
License: MIT license
Any restrictions to use by non-academics: no

Abbreviations
FEFS: Fujitsu exabyte file system; GE: Grid engine; GFS: Global file system; JMS:
Job management system; LFS: Local file system; MDS: Meta data server; NGS:
Next-generation sequencer; OSS: Object storage server; VGE: Virtual grid
engine
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