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Abstract

Background: Understanding cellular responses via signal transduction is a core focus in systems biology. Tools to
automatically reconstruct signaling pathways from protein-protein interactions (PPIs) can help biologists generate
testable hypotheses about signaling. However, automatic reconstruction of signaling pathways suffers from many
interactions with the same confidence score leading to many equally good candidates. Further, some reconstructions
are biologically misleading due to ignoring protein localization information.

Results: We propose LocPL, a method to improve the automatic reconstruction of signaling pathways from PPIs by
incorporating information about protein localization in the reconstructions. The method relies on a dynamic program
to ensure that the proteins in a reconstruction are localized in cellular compartments that are consistent with signal
transduction from the membrane to the nucleus. LocPL and existing reconstruction algorithms are applied to two PPI
networks and assessed using both global and local definitions of accuracy. LocPL produces more accurate and
biologically meaningful reconstructions on a versatile set of signaling pathways.

Conclusion: LocPL is a powerful tool to automatically reconstruct signaling pathways from PPIs that leverages
cellular localization information about proteins. The underlying dynamic program and signaling model are flexible
enough to study cellular signaling under different settings of signaling flow across the cellular compartments.
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Background
A fundamental goal of molecular systems biology is to
understand how individual proteins and their interactions
may contribute to a larger cellular response. Repositories
for experimentally derived or manually curated human
protein-protein interaction (PPI) information [1–7] have
been critical for achieving that goal. These databases con-
ceptualize the interaction information as a graph, or an
interactome, where edges connect proteins that are known
to interact. Such interactomes are useful for studying the
topology of signaling pathways by forming static networks
and focusing on the interconnections between proteins
and how signals flow between them. In particular, interac-
tion data have enabled the development of methods that
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aim to link extracellular signals to downstream cellular
responses.

Most methods that link signals with responses were ini-
tially applied to yeast studies [8–10]. A handful of the
initial methods were applied to human signaling, includ-
ing the apoptosis pathway [11] and the immune response
network [12]. Approaches for identifying relevant static
sub-networks have drawn on different graph theoretic
methods, including shortest paths [13, 14], Steiner trees
and related formulations [15, 16], network flow [9, 17] and
random walk approaches [18–20].

As the wealth of PPI information has grown, these
methods have been increasingly adopted to study human
signaling. PathLinker is a recent pathway reconstruction
approach that returns ranked paths for a specific human
signaling pathway of interest [13]. Given a weighted inter-
actome, a set of known receptors, and a set of known
transcriptional regulators (TRs), PathLinker returns the
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k-shortest paths from any receptor to any transcrip-
tional regulator, and the collection of these paths con-
stitute a pathway reconstruction. PathLinker reconstruc-
tions have been shown to outperform other pathway
reconstruction methods on human networks [13]. Path-
Linker predicted that CFTR, a chloride ion channel
transporter, was involved in Wnt signaling; RNAi and
Co-immunoprecipitation experiments confirmed CFTR’s
involvement in Wnt signaling in HEK293 cells [13].

Pathway Reconstruction Challenges. Despite Path-
Linker’s success, the problem of identifying accurate
pathway reconstructions remains challenging. PathLinker
paths are prioritized by their reconstruction scores that
are the product of a path edge weights. These paths
combined form a pathway reconstruction. We assessed
PathLinker reconstructions for four well-studied and
diverse signaling pathways: the Wnt pathway is critical
for the development of tissues cell fate specification [21];
the Interleukin-2 (IL2) pathway plays a major role in con-
trolling the immune system and regulating homeostasis
[22]; the α6β4 Integrin pathway regulates cell adhesion to
the extracellular matrix [23]; and the Epidermal Growth
Factor Receptor (EGFR1) pathway regulates cell proliferation,
survival, and migration [24]. Careful analysis of the ranked
paths across these pathways revealed two main challenges
in pathway reconstruction.

First, we found that many PathLinker paths have identi-
cal reconstruction scores. For example, about 52% of the
paths in the Wnt reconstruction had the same score. This

feature was not unique to Wnt; 64%, 82.6%, and 48.2%
of the paths were tied in the IL2, α6β4 Integrin, and
EGFR1 pathways, respectively. Strikingly, even the top-
ranked paths in the reconstructions were often tied (top
38 paths in Wnt, top 87 paths in IL2, top 57 paths in α6β4
Integrin, and top 330 paths in EGFR1). We found that the
tied paths were a result of many interactions with iden-
tical weights in the underlying interactome (Fig. 1). For
example, in the PathLinker interactome (PLNet1), nearly
68% of the interactions have only two distinct weight val-
ues. In the interactome used in this work (PLNet2), around
71% of the interactions have just three different weight
values. The coarse interaction weighting is also apparent
in the HIPPIE network [2], where 55% of the interactions
share the same edge weight (Fig. 1).

Second, we noted that paths in the reconstructions con-
tained a mix of pathway-specific signaling interactions
relevant to the pathway under study (positive interactions)
and non-pathway interactions (we will call them negative
interactions, though they may very well be signaling inter-
actions relevant to other pathways or pathway-specific
interactions that have not been annotated yet). Paths
are rarely comprised solely of positive interactions: in all
four pathway reconstructions, over 95% of the paths that
include at least one positive interaction also contain a neg-
ative interaction. PathLinker does not consider protein
localization in the pathway reconstructions, so interac-
tions within the same path may be unrealistic in terms
of compartment co-localization. Given the first challenge

Fig. 1 Proportion of edges with identical edge weights in the PathLinker and HIPPIE interactomes. PLNet1 is the PathLinker interactome [13], while
PLNet2 is the interactome used in this work. The HIPPIE High Quality (HIPPIE_HQ) interactome includes all HIPPIE edges with a weight ≥ 0.73 [2]. The
histogram number of bins is 10 with a size of 0.02 for each
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of coarse interaction weights, additional evidence about
protein localization could be useful for breaking tied path
scores.

To overcome the challenges described above, we sought
to incorporate an independent data type into the pathway
reconstruction problem. While many methods have inte-
grated gene expression data in pathway reconstructions
[9, 15, 20], we wish to improve “canonical" pathways that
are independent of a specific context (e.g. a condition or
disease). Instead, we make use of information about a pro-
tein’s localization within the cell to constrain the paths in
a reconstruction.

Contributions. We propose LocPL, an extended ver-
sion of PathLinker that reconstructs pathways by incor-
porating information about cellular localization in two
ways. First, LocPL uses localization information to dis-
card likely false positive interactions from the interac-
tome before running PathLinker, improving its specificity.
Second, LocPL incorporates the localization information
in a dynamic programming scheme to identify spatially-
coherent paths and re-prioritize tied paths (Fig. 2a). We
show that paths with larger proportions of signaling inter-
actions will be promoted higher in the k-shortest paths
list, and those of smaller proportions will be demoted.
We compare the LocPL pathway reconstructions to those
from PathLinker on two interactomes: a new interac-
tome, PLNet2, which quadruples the number of interac-
tions compared to the PathLinker interactome, and the
HIPPIE interactome [2]. We also compare LocPL to a
color-coding method [25, 26]. In addition to performing

a global performance assessment of paths, we present a
local measure to assess path quality individually. Visual
inspection of the top 100 paths in the Wnt, IL2, α6β4 Inte-
grin, and EGFR1 pathway reconstructions reveal that the
spatially-coherent approach changes the reconstruction
topology, in some cases removing paths that lead
to activation of other pathways. This work demon-
strates that incorporating protein localization information
into signaling pathway reconstruction improves pre-
dictions that are necessary for appropriate hypothesis
generation.

Methods
We first introduce ComPPI, the protein localization
database that LocPL uses to refine pathway reconstruc-
tions, and then we present an overview of LocPL. After
describing the model used for signaling flow, we present
a dynamic program for computing scores that reflect a
path’s consistency with the model of signaling. Then, we
describe the color-coding method that LocPL is com-
pared to. Finally, we detail the interactome and signaling
pathway datasets and the means of assessing pathway
reconstruction performance.

Localized protein-protein interactions from ComPPI
ComPPI is a database that predicts cellular compart-
ments for human proteins and PPIs [27] (Version 2.1.1,
September 10th, 2018 [28]). For each protein, ComPPI
computes localization scores describing the likelihood of
a protein to be found in one of the major six subcellular

Fig. 2 a Illustration of four PathLinker paths from receptors (diamonds) to transcriptional regulators (yellow boxes) that all have the same
reconstruction score rj . Blue edges represent true positive interactions, and red edges represent false positives. The goal of breaking ties is to re-rank
the tied paths so paths with more positives are ranked higher (black box). b Simplified model diagram for the signaling flow structure. Blue edges
represent valid interactions. The blue solid edges are between pairs of proteins sharing one cellular compartment, and the blue dotted edges are
proteins that traverse between two compartments. Paths that violate our signaling model assumptions are shown in red, where path (b) has a
single interaction between a pair of proteins without a common cellular compartment, and signaling in path (c) does not reside in the nucleus once
it reached the nuclear compartment
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compartments: (i) extracellular fluid, (ii) cell membrane,
(iii) cytosol, (iv) nucleus, (v) secretory pathway (e.g. trans-
port vesicles), and (vi) mitochondria. ComPPI uses three
types of information to infer the localization scores:
experimental verification, computational prediction, and
unknown sources, resulting in high, medium, and low
localization scores, respectively. The interaction score,
computed by ComPPI from localization scores of the
participating proteins, represents the probability that an
interaction takes place inside the cell.

LocPL: localized pathLinker
Signaling pathway analysis methods typically take an
interactome as input, represented as a graph G = (V , E)

where the nodes V are proteins and the edges E are PPIs.
In the case of LocPL, the graph is directed, each edge
(u, v) ∈ E has a weight wuv ∈[ 0, 1], and every interaction
is predicted to occur within some cellular compartment
according to ComPPI. LocPL uses the ComPPI database
to restrict the interactions of the interactome by removing
edges with an interaction score of zero – these interac-
tions could take place from a biophysical perspective, but
are less likely to occur within the cell due to the predicted
protein localization. After this filtration step, all edges
in the interactome have a non-zero probabilistic score
aggregated across all cellular compartments. For subse-
quent steps of LocPL, we use the ComPPI localization
scores that reflect individual proteins in specific cellular
compartments.

LocPL’s core method is a k-shortest path algorithm pre-
viously described as PathLinker [13]. Given a directed,
weighted interactome G, a set R of receptors and a set T
of transcriptional regulators (TRs) for a pathway of inter-
est, and a number of paths k, PathLinker outputs a ranked
list of the k shortest paths, P = 〈P1, P2, . . . , Pk〉, where a
path Pi = (v1, v2, . . . , vm) is comprised of m nodes that
begin at a receptor (v1 ∈ R) and ends at a TR (vm ∈ T).
Each path Pi is ranked by the product of its edge weights
(its reconstruction score ri), and ri ≥ ri+1 for every i.
Note that the shortest path is the one whose edge weights
product is the highest among all paths since PathLinker
takes the negative log-transform of the edge weights at the
reconstruction step.

After running PathLinker on the interactome, LocPL
breaks ties in the candidate list of paths P by considering
a model of signaling flow based on cellular compart-
ments. For each path Pi, a dynamic program identifies the
signaling score si of the most likely series of compartments
for each node that is consistent with the signaling flow
model. After this step, each path Pi will have two scores:
a reconstruction score ri computed by PathLinker and
a signaling score si computed by the dynamic program.
The signaling score is used to re-prioritize the tied recon-
struction scores by partitioning the paths into ties (e.g. all

paths with the same reconstruction score) and reorder-
ing the paths within each group in decreasing order of the
signaling score (Fig. 2a).

Signaling flow structure and assumptions
In order to use protein localization information in path-
way reconstructions, we first state some assumptions
about the pathways we aim to reconstruct. First, we only
consider intracellular signaling that begins with activation
of a membrane-bound protein receptor and is transmit-
ted to a DNA-binding transcription factor through PPIs
within the cytosol. Hence, we focus on three cellular com-
partments: a combination of extracellular fluid and cell
membrane (ExtMem), which represents where a receptor
may be located, Cytosol, and Nucleus. Second, we assume
a unidirectional signaling flow from ExtMem through
Cytosol to Nucleus. Third, multiple interactions may occur
within the same cellular compartment (e.g. multiple inter-
actions may occur within Cytosol). Fourth, signaling flow
advances through either interacting proteins that share
the same cellular compartment, or a protein that can tra-
verse different cellular compartments. These assumptions
impose an ordering on the compartments that must be
visited, which we will use in breaking tied paths. Figure 2b
illustrates these assumptions with three different paths as
examples of valid and invalid paths/interactions. Path a is
valid; however, path b is not valid because signaling goes
directly from the cellular membrane to the nucleus and
path c has one invalid interaction because signaling goes
in a direction against the assumed signaling flow.

We acknowledge that the assumptions in this work may
not hold for many pathways. For example, some pathways
are initiated via nuclear receptors, and would be missed
based on our assumption that signaling begins at recep-
tors at the cell membrane. We also do not consider other
compartments beyond ExtMem, Cytosol, and Nucleus in
our model, while the mitochondria and secretory vesicles
play an important role in some signaling pathways. These
decisions can be taken by the user, which makes the pro-
posed model of signaling flow customizable to a pathway
under study. A priori information about the structure of
signaling flow may further improve LocPL predictions.

Dynamic program for path-based signaling scores
Given a path P = (v1, v2, . . . , vm) that connects m
proteins, our goal is to find a selection of compart-
ments that maximize the path signaling score (by sum
of log-transformed localization scores) while respecting
the assumed signaling flow structure outlined above. For
each protein v ∈ V , we use �ext

v , �cyt
v , and �nuc

v to denote
the ComPPI scores of ExtMem, Cytosol, and Nucleus
respectively. We log-transform these scores to be localiza-
tion costs, that is, �c

v = − log �c
v for each protein v and

each cellular compartment c (either ExtMem, Cytosol, or
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Nucleus). Let s(vj, c) be the optimal score of the path up
to node vj ∈ P, where vj is in compartment c. The opti-
mal signaling score of the path must end in the nucleus,
which we denote by s(vm, nuc). Since our assumed signal-
ing model requires that signaling advances through pairs
of interacting proteins sharing a cellular compartment or
through proteins that traverse multiple compartments,
there are only three routes for the signaling information
to advance from protein vm−1 to end up in the nucleus for
protein vm: 1) protein vm−1 and protein vm interact in the
cytosol and then protein vm moves to the nucleus, 2) pro-
tein vm−1 moves from the cytosol to the nucleus and then
interacts with protein vm in the nucleus, or 3) protein vm−1
and protein vm interact in the nucleus. Based on these
constraints, the optimal path signaling score s(vm, nuc)
can be computed as:

s(vm, nuc) = min
[
s(vm−1, cyt) + �

cyt
vm ,

s(vm−1, cyt) + �nuc
vm−1 , s(vm−1, nuc)

]
+ �nuc

vm .

In general, at node vj, j = 2, 3, . . . , (m − 1), the set of
equations for the scores are:

s(vj, ext) = s(vj−1, ext) + �ext
vj

s(vj, cyt) = min
[
s(vj−1, ext) + �ext

vj ,

s(vj−1, ext) + �
cyt
vj−1 , s(vj−1, cyt)

]
+ �

cyt
vj

s(vj, nuc) = min
[
s(vj−1, cyt) + �

cyt
vj ,

s(vj−1, cyt) + �nuc
vj−1 , s(vj−1, nuc)

]
+ �nuc

vj .

Note that we can only reach a protein in ExtMem from
another protein in ExtMem, we can reach a protein in
Cytosol from another protein in either ExtMem or Cytosol,
and we can reach a protein in Nucleus from another one
in either Cytosol or Nucleus.

To ensure that the path starts with the cellular compart-
ment ExtMem, the base case for these recurrence relations
are:

s(v1, ext) = �ext
v1

s(v1, cyt) = ∞
s(v1, nuc) = ∞.

The final score taken will be s(vm, nuc) since we require
the path to terminate in the nucleus. These recurrence
relations can be calculated using a dynamic program in
linear time w.r.t. the path length for each tied path. An
illustrative example of this dynamic program is provided
in Additional file 1.

The color-coding-based method
Color-coding is a randomized technique that computes
simple paths that start and end at two different vertices
and no vertex is visited more than once [26]. Given a
graph G, a set R of a path starting points (e.g. cellular
membrane receptors) and a set T of ending points (e.g.
transcriptional regulators (TRs)), and a fixed number l
representing the path length (number of vertices), the
color-coding method randomly assigns to each vertex
in the graph a uniformly distributed color (label) from
{1, 2, . . . , l}, and then finds a colorful path that starts at a
receptor (v1 ∈ R), ends at a TR (vl ∈ T), and each one of
the l vertices composing the path has a distinct color. The
constraint of a colorful path (distinct colors of the path
vertices) ensures that the reconstructed path is simple.
The random designation of colors to the vertices leads to
an optimal/sub-optimal solution, if one exists. So, a large
number of iterations is required to increase the probabil-
ity of finding a colorful path. The number of iterations
increases exponentially with increasing the probability of
success and/or the path length [26]. Enhanced versions of
the original color-coding method were proposed to speed
up the technique as in [29–31].

The method described in [25] extends the original color-
coding technique [26] by integrating proteins cellular
information at reconstructing signaling pathways. To the
best of our knowledge, that extended color-coding version
[25] (called CC from here on) is the closest in its aim to
what we propose in this study. Beside the constraint of a
colorful path, CC allows signaling to advance across the
different cellular compartments in a predefined order, i.e.
from the cell membrane to the cytosol and then into the
nucleus.

LocPL produces k paths: the k-shortest paths. In order
to compare LocPL against CC, we need CC to produce the
same number of paths, where k = 20, 000 in this study.
This in turn requires running CC a number of iterations
much larger than k to account for the trials of non-colorful
paths. This can take up to days, if not weeks, for a sin-
gle pathway when the interactions network is very large.
The sped up versions of CC mentioned above were tested
against relatively smaller networks with hundreds or a few
thousands of edges, and many of them may need much
modification to integrate the proteins cellular informa-
tion. So, we augment CC with Yen’s algorithm [32] to
compute the k-shortest paths based on the CC method.
We call this the Yen_CC method. Once Yen’s algorithm
finds a path, it searches for alternative paths that differ
from the discovered path in one or more edges. In other
words it searches for new partial paths. Hence, in Yen_CC,
instead of running a new iteration to find a complete col-
orful path, the iteration will look for a partial colorful path,
leading to reduction in the search space and time. Yen_CC
does not handle tied reconstructions, and it reports paths
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with the same reconstruction cost in an arbitrary order
in the k-paths list. Details about how we implemented
the CC method and how we augmented it with Yen’s
algorithm are provided in the Additional file 1: Section S4.

Interactomes and pathways
PLNet2 Interactome. We built PLNet2 from both phys-
ical molecular interaction data (BioGrid, DIP, InnateDB,
IntAct, MINT, PhosphositePlus) and annotated signaling
pathway databases (KEGG, NetPath, and SPIKE) [33–37].
PLNet2 contains 17,168 nodes, 40,016 directed regulatory
interactions, and 286,250 bidirected physical interactions,
totaling 612,516 directed edges. We assigned interaction
direction based on evidence of a directed enzymatic reac-
tion (e.g., phosphorylation, dephosphorylation, ubiquiti-
nation) from any of the source databases. Each interaction
is supported by one or more types of experimental evi-
dence (e.g. yeast two hybrid or co-immunoprecipitation),
and/or the name of the pathway database. Edges are
weighted using an evidence-based Bayesian approach that
assigns higher confidence to an experiment type database
if it identifies interacting proteins that participate in the
same biological process [9]. Given a set P of positive edges
and a set N of negative edges, the method estimates, for
each evidence type t, the probability that t supports pos-
itive interactions. These probabilities are then combined
for each interaction supported by (potentially multiple)
evidence types to produce a final weight. We chose the GO
term “regulation of signal transduction” (GO:0009966) to
build a set of positive interactions that are likely related to
signaling. Positives are edges whose nodes are both anno-
tated with this term, and negatives are randomly selected
edges whose nodes are not co-annotated to the term. We
chose |N | = 10 × |P| negative edges. To lessen the influ-
ence of very highly-weighted edges, we apply a ceiling of
0.75 to all weights [9].

HIPPIE Interactome. HIPPIE (Human Integrated Pro-
tein Protein Interaction rEference) is a repository of
16,707 proteins and 315,484 PPIs [2] (version 2.1, July
18th, 2017 [38]). Each interaction has a confidence score
calculated as a weighted sum of the number of stud-
ies detecting the interaction, the number and quality of
experimental techniques used in these studies to measure
the interaction, and the number of non-human organ-
isms in which the interaction was reproduced [2]. We
ensure that all NetPath interactions are in HIPPIE by
using a tool that is provided on the HIPPIE website
[38] to integrate new interactions to HIPPIE. We used
that tool to score the missed NetPath interactions with
the default parameter values used to score the HIPPIE
interactions. This lead to adding 792 proteins and 6,379
PPIs to make HIPPIE of 17,499 and 321,863 PPIs in
total.

Ground Truth Pathways. We consider a set of four
diverse pathways from the NetPath database [35] as
our ground truth: α6β4 Integrin, IL2, EGFR1, and Wnt.
Receptors and TRs are automatically detected for each of
the eight pathways from lists of 2,124 human receptors
and 2,286 human TRs compiled from the literature; see
[13] for more details. Additional file 1: Table S1 summa-
rizes the number of interactions, receptors, and TRs per
pathway.

Global and path-based assessment
We assess the performance of LocPL compared to Path-
Linker (PL) and Yen_CC using two methods that evaluate
global and local features of the ranked paths.

Precision-recall (PR) curves. Given a ranked list of
paths, we order each interaction by the index of the path
in which it first appears. We compute precision and recall
for this ranked list using the NetPath interactions as posi-
tives and a sampled set of negative interactions that are 50
times the size of the positive set.

Path-based assessment. The PR curves provide a global
quantitative assessment across all the k paths in a recon-
struction, showing how quickly (in terms of k) the tech-
nique can discover new positive edges. However, this
approach considers a positive only once, i.e., the first time
it appears in a path. Thus, this global measure fails to char-
acterize each path individually in terms of the number
of positives contained in that path. Hence, we introduce
a simple way to “locally” assess paths by computing the
within-path percentage of true positive edges, denoted
as PosFrac. Since we compute this metric value inde-
pendently for each path, it does not matter if a positive
interaction is detected earlier in another path. We com-
pute the PosFrac value over non-overlapping windows of
paths. For example, for a window of 100 paths, we com-
pute the average PosFrac over the first 100 paths, then
the average PosFrac over the second 100 paths, and so on,
providing k/100 values to plot.

Statistical significance. The global assessment is based
on two concurrent values: precision and recall. These two
quantities are related, so we use their harmonic mean (F1
score) to get a single value summarizing both values:

F1(i) = 2 × prei × reci
prei + reci

,

where prei and reci are the i-th values of precision and
recall, respectively. The F1 score values are fed to the
Mann-Whitney U (MWU) statistical test for unpaired
samples to estimate whether the difference in results
between LocPL and PL, and between LocPL and Yen_CC
is statistically significant. The inputs to the MWU test
for the path-based assessment are the PosFrac values. We
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acknowledge that PosFrac, precision and recall are not
purely independent between the two methods, so there is
some dependence introduced in the MWU tests.

Results
Combining interactomes with localization information
Approximately 95% of the proteins in PLNet2 have local-
ization information, producing an interactome with about
86% of the edges (Table 1). Only 65% of the HIPPIE
proteins have localization information, making a much
smaller interactome with only about 34% of the origi-
nal edges. All pathway receptors and TRs in PLNet2 have
localization information, and nearly all of them (82 out
of 91) in HIPPIE have this information (Additional file 1:
Table S1). After filtering PLNet2 using ComPPI, 62% of the
proteins have a non-zero ExtMem localization score, 78%
have a non-zero Cytosol localization score, and 64% have
a non-zero Nucleus localization score (Additional file 1:
Table S2). Most of the proteins have non-zero localization
scores for multiple compartments, though 62% of the pro-
teins with a single non-zero localization score appear in
the Nucleus.

Applying PathLinker to the ComPPI-filtered interac-
tome partially mitigates the problem of tied paths, but
many ties remain. For example, after running PathLinker
on the α6β4 Integrin pathway with the full PLNet2 inter-
actome, there were 82 groups of paths where each group
shared the same reconstruction score (Additional file 1:
Table S3). This number was reduced to 58 groups when
running PathLinker on the filtered PLNet2 interactome.
However, ties still dominate the reconstruction scores;
thus the need for an approach to breaking these ties and
re-prioritizing paths in a biologically relevant way is still
imperative.

Assessment of pathway reconstructions
We applied PathLinker (PL) and LocPL to signal-
ing pathways from the NetPath database to the
PLNet2 and HIPPIE interactomes as described in the
“Interactomes and pathways” subsection. We computed
k = 20, 000 paths for each approach, similar to the
original publication [13]. Paths that have the same recon-
struction score differ substantially in their signaling scores
computed by the dynamic program. Figure 3 shows four
examples of the signaling score si distribution for paths
with the same reconstruction score ri. Signaling scores are

Table 1 Number of proteins and interactions in PLNet2 and
HIPPIE

Interactome
Complete Interactome Interactome ∩ ComPPI

Nodes Edges Nodes Edges

PLNet2 17,168 612,516 16,225 527,706

HIPPIE 17,499 321,863 11,430 108,391

used to re-order paths sharing the same reconstruction
score. We also computed 20,000 paths using the Yen_CC
approach for the PLNet2 interactome only due to the very
long time needed to run Yen_CC. We show results for the
PLNet2 interactome first and then show those for HIPPIE.

Precision and Recall. We assessed PL, LocPL, and
Yen_CC using the PLNet2 interactome on four signaling
pathways: α6β4 Integrin, EGFR1, IL2, and Wnt. LocPL
generally outperforms PL and Yen_CC across all four
pathways in terms of precision and recall, where the pre-
cision of LocPL is greater than PL and Yen_CC at nearly
all values of recall (Fig. 4 (Left)). Moreover, LocPL usu-
ally detects higher proportions of positives than PL and
Yen_CC as reflected in the larger recall values for LocPL
(Fig. 4 (Left)), though the same number of paths were
recovered for each method.

For every value of precision and recall, we plotted the
harmonic mean (F1 score) of the two values in Fig. 4
(Right). The F1 curve for LocPL is significantly higher than
that of PL and Yen_CC for the four pathways (MWU test
p-value ≤0.0001).

Assessment of Aggregate Pathways. To assess overall
effect of LocPL on signaling pathway reconstructions, we
considered precision and recall aggregated over the four
NetPath signaling pathways (Additional file 1: Section S3)
for PLNet2 (Fig. 5 (left)). LocPL shows better performance
over PL and Yen_CC at nearly all the k values used to com-
pute precision and recall. This improvement is striking
at almost all values of recall, with gains in precision that
range from 6% to 32% at recall of 0.37 and 0.17, respec-
tively, against PL. When compared to Yen_CC, LocPL
achieves gain in precision of about 27% for recall of 0.1 and
on. Superiority of LocPL is significant (MWU test, Fig. 5
(Right)), where the aggregate F1 score values are higher
everywhere for LocPL.

Path-based Assessment. In addition to the global
assessment, we are interested in the quality of subsets of
paths. Plotting PosFrac of non-overlapping windows of
100 paths reveals subsets of paths that are enriched for
positive interactions in the four pathway reconstructions
(Fig. 6). For example, about more than 80% and 85% of the
paths produced by LocPL for the IL2 pathway reconstruc-
tion tend to contain more positive signaling edges than
those obtained by PL and Yen_CC, respectively, over all
the 20,000 paths. PosFrac is almost consistent for LocPL
and, despite some spikes (of different widths) for PL and
Yen_CC, PosFrac for LocPL dominates the graph (mean ±
standard deviation values of PosFrac are 0.23±0.06, 0.11±
0.12, and0.14 ± 0.07 for LocPL, PL, and Yen_CC; respec-
tively). In the IL2 pathway reconstruction, this distinction
is significant (one-tailed MWU test, Fig. 6). LocPL is also
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Fig. 3 Histogram of signaling scores si for paths with tied reconstruction score ri . The titles indicate the pathway name, the ri value, and the number
of paths tied with this ri

significantly better than PL and Yen_CC for the α6β4
Integrin and EGFR1 pathways. The situation is different
for the Wnt pathway, where LocPL is statistically sig-
nificant when compared against Yen_CC (Fig. 6 (lower
right)), but statistically insignificant when tested against
PL (p-values of 0.9726, Fig. 6 (lower left)). Note that
PosFrac considers all negative interactions for each path,
unlike the PR curves in Fig. 4 that subsample the nega-
tive set of interactions. Thus, the PosFrac values will be
smaller than what one would expect based on the PR
curves.

Results on the HIPPIE Interactome. We extended our
experiments on the four NetPath signaling pathways
(α6β4 Integrin, EGFR1, IL2, and Wnt) to the HIP-
PIE interactome. Figure 7a (Left) shows, for all the
four pathways, that the precision of LocPL is greater
than that for PL, and that the proportions of positives
detected by LocPL is always higher than those of PL.
This consistently leading performance of LocPL over
PL is evidently statistically significant (Fig. 7a (Right)).
Again, the aggregate precision of LocPL has gains of up
to 40% over that of PL, and the recall proportion is
more than the double for LocPL (Fig. 7c). The recon-
structed paths of LocPL are steadily and significantly more
enriched with positive interactions than the paths of PL
(Fig. 7b).

Comparison of pathway reconstructions
LocPL provides a compartment-aware ranking of paths
connecting receptors to TRs. In addition to the global
and local assessments provided above, we examined the
100 top-ranking paths of PL, LocPL, and Yen_CC path-
way reconstructions using PLNet2 for the α6β4 Integrin,
IL-2, EGFR1, and Wnt pathways. We first counted the
number of paths with at least one positive interaction and
the number of paths whose all interactions are positives
within the first 10 and 100 paths. In most of the cases,
LocPL identifies more positive-enriched paths than PL and
Yen_CC (Table 2). Note that the number of positives in
the earliest paths for the Wnt pathway is larger for PL
over LocPL, which agrees with the PosFrac values shown
in Fig. 6 (lower left).

We then wished to better understand how the con-
straints imposed by the dynamic program affected the
pathway reconstructions. We compared the subgraph
comprised of the first 100 paths before applying the
dynamic program that reorders ties based on signaling
score, to the subgraph comprised of the first 100 paths
after applying the dynamic program. While the number
of nodes and edges were about the same between the two
subgraphs, we found that EGFR1, IL2, and Wnt only had
about half the number of nodes in common and about a
third the number of edges in common (Additional file 1:
Figure S2). The number of common nodes and edges for
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Fig. 4 PLNet2: (Left) Precision and recall curves of pathway reconstructions from PathLinker (PL), LocPL, and Yen_CC on four NetPath signaling
pathways. (Right) F1 scores for the individual NetPath pathways. These values are fed to the MWU test to check for difference significance. The
p-value, P, is for the MWU test (alternative: LocPL > PL or LocPL > Yen_CC). The color of the p-value text indicates which method is tested against
LocPL, e.g. the red text tests that the F1 score of LocPL is greater than that of PL
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Fig. 5 PLNet2: (Left) Precision-Recall curve and (Right) F1 score curve of PL, LocPL, and Yen_CC computed on paths aggregated across all four
signaling pathways. The p-value, P, is for the MWU test (alternative: LocPL > PL or LocPL > Yen_CC). The color of the p-value text indicates which
method is tested against LocPL, e.g. the red text tests that the F1 score of LocPL is greater than that of PL

the two subgraphs of α6β4 Integrin are about, at least,
double the number of the unique nodes and edges to
either subgraph.

We also visualized networks for each pathway recon-
struction before and after applying the dynamic program
(Fig. 8). The nodes are colored according to red, green,
and blue channels depending on the ComPPI localization
scores for membrane, cytosol, and nucleus respectively;
a protein that appears in all compartments will be white.
The signaling flow constraints from the dynamic program
on LocPL paths imply two features about these networks:
first, the node colors should change from red (membrane)
to green (cytosol) to blue (nucleus), and second, no paths
of length one are allowed. Both of these features are visi-
ble in the comparison of the IL2 pathway reconstructions
(Fig. 8a). For example, the edge from IL2 Receptor A
(IL2RA) to transcription factor STAT5B is removed after
the dynamic program, removing the IL2RA receptor from
the first 100 paths.

The color differences between the two IL2 networks
are also notable. Before the dynamic program, the IL2
reconstruction contains main proteins that are predicted
to be at the membrane, including the IL7 receptor (IL7R),
Insulin Like Growth Factor 1 Receptor (IGF1R), Leptin
Receptor (LEPR), KIT Proto-Oncogene Receptor Tyro-
sine Kinase (KIT), and Erythropoietin Receptor (EPOR).
Further, the Interleukin 6 Signal Transducer (IL6ST) is
also reported to be at the membrane, yet is down-
stream of Suppressor Of Cytokine Signaling 3 (SOCS3)
in the network (Fig. 8a (Left)). IL2 signaling activates
the Jak/STAT pathway, and many paths containing Janus
kinase family members (JAK1, JAK2, JAK3) also include
SOCS3 upstream of these proteins. After the paths are
reordered according to the dynamic program, the JAK

proteins are directly dosntream of the receptors (Fig. 8a
(Right)). While some receptors remain after reordering,
they either directly interact with the IL2 receptors (e.g.
IL7R), or they lie downstream of a protein that is con-
sistent in terms of the signaling constraints. For example,
the the SYK-FGR is allowable because SYK has a large
ComPPI score for all compartments. The other pathways
exhibit dramatic differences in topology compared to the
IL2 reconstructions, including the large number of recep-
tors in the Wnt reconstructions, the large number of TFs
in the EGFR1 reconstructions, and the large number of
intermediate nodes in the Alpha6 β4 Integrin reconstruc-
tion (Fig. 8b in this text and Additional file 1: Figures S3,
S4 and S5).

Discussion
We present LocPL, an automatic signaling reconstruction
algorithm that incorporates information about protein
localization within the cell. Previous reconstructions con-
tained many tied paths. LocPL overcomes this obstacle
with a computational framework that favors paths that
follow specific assumptions of signaling flow. This frame-
work includes filtering interactions based on their pre-
dicted interaction score and applying a dynamic program
to each path that finds the most likely series of cellu-
lar compartments that are consistent with the model of
signaling flow.

Using a new interactome, PLNet2, we have shown that
LocPL pathway reconstructions for four pathways are
more enriched with positive interactions than paths com-
puted by PL and by a peer method, Yen_CC, based on
the color coding technique. Precision of LocPL dominates
the precision of PL and Yen_CC at nearly every value
of recall (Fig. 4 (Left)), and the resulting F1 scores are
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Fig. 6 PLNet2: Path-based performance of four NetPath signaling pathways for (Left) LocPL vs. PL and (Right) LocPL vs. Yen_CC. PosFrac is the
percentage of positives averaged across non-overlapping windows of 100 paths. The p-value, P, is for the MWU test (alternative: LocPL > PL or LocPL
> Yen_CC)
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Fig. 7 HIPPIE: (a: Left) Precision and recall curves of pathway reconstructions from PathLinker (PL) and LocPL on four NetPath signaling pathways. (a:
Right) F1 scores for the individual NetPath pathways. b Path-based performance of the individual pathways. PosFrac is the percentage of positives
averaged across non-overlapping windows of 100 paths. (c: Left) Aggregate PR curve, and (c: Right) F1 score curve over the four signaling
pathways. The p-value, P, is for the MWU test (alternative: LocPL > PL)

significantly better for LocPL (Fig. 4 (Right)). LocPL dra-
matically improves precision at all values of recall across
four signaling pathways, and this difference is significant
by the MWU test (Fig. 5).

In addition to the precision and recall assessment used
previously by PathLinker [13], we proposed a measure,
PosFrac, to assess individual paths in terms of propor-
tion of positive signaling interactions. PR curves demon-
strate how quickly positive interactions are recovered
in a reconstruction, but do not consider the fact that
many paths may contain the same positive. PosFrac is a

path-based measure that considers the proportion of pos-
itives within a set of paths, demonstrating that some sets
of paths are enriched for positive interactions that may
have appeared in a higher-ranked path. LocPL paths are
consistently enriched with positive interactions more than
the paths reconstructed by Yen_CC for all the four sig-
naling pathways, and more than the paths of PL for two
of the pathways (Fig. 6). This measure offers complemen-
tary insights to the pathway reconstructions beside the PR
curves. For example, paths within windows 50 to 65 for the
IL2 pathway (Fig. 6) have very small PosFrac values among
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Table 2 PLNet2: The number of paths with at least one positive
interaction (partial) and with all interactions are positives
(complete) among the first 10 and 100 reconstructed paths

Pathway/Method
First 10 Paths First 100 Paths

Partial Complete Partial Complete

α6β4 Integrin

PL 0 0 0 0

LocPL 1 0 9 0

Yen_CC 1 0 4 0

EGFR1

PL 0 0 11 3

LocPL 1 0 29 6

Yen_CC 2 0 20 0

IL2

PL 0 0 39 8

LocPL 5 0 44 6

Yen_CC 3 1 30 5

Wnt

PL 3 0 32 6

LocPL 6 4 13 4

Yen_CC 3 2 5 2

all the 20,000 paths. These paths contain interactions that
are not labeled as positives but are “close” to the pathway
in some sense, suggesting candidate interactions that may
point to non-canonical branches of signaling.

Though both LocPL and the color coding method (CC,
[25]) use protein localization information, but the way
this information is employed differs substantially. CC uses
a binarized version of the localization information; what
cellular compartments a protein can be found within. This
leads to tied reconstructions due to the deprivation from
having other measures, beside the reconstruction cost, to
re-prioritize ties. In contrast, LocPL uses a probabilistic
form of the localization information; the likelihood of a
protein to be found in one cellular compartment. This fur-
nishes LocPL with a second measure, the signaling score,
to untangle ties and re-order reconstructions.

LocPL ensures that the constituting interactions, from
a receptor to a TR, are spatially-coherent within the dif-
ferent cellular compartments. This feature increases the
number of paths that contain positives early in the path-
way reconstruction, which supports our hypothesis that
LocPL locally promotes paths with higher proportions of
positives up in the k-shortest paths list (Table 2).

LocPL is not restricted to our proposed interactome,
PLNet2. We applied LocPL to the HIPPIE interactome
[2]. We compared LocPL to only PL due to the very
long time demand of the Yen_CC method. LocPL’s per-
formance was statistically significantly better than PL as
depicted in the PR and the F1 score curves (Fig. 7a) and

in the PosFrac curves (Fig. 7b) for the individual NetPath
signaling pathways. Moreover, this trend is consistent
across the four signaling pathways as well (Fig. 7c).

In this work, we chose to impose an ordering on a subset
of the available compartments from ComPPI (ExtMem,
Cytosol, and Nucleus). There are many ways to impose a
compartmental ordering of signaling flow to capture other
features of signaling, including mitochondria-dependent
signaling, nuclear receptor signaling and extracellular sig-
naling. LocPL is generalizable to different signaling mod-
els, as long as the user specifies compartment relation-
ships in a memoryless manner (the signaling score at the
next node depends only on the localization score of the
next node and the signaling score at the current node;
ignoring signaling score history at previous nodes). To
illustrate this point, we developed a model of signaling
that also includes the mitochondria compartment. We did
not notice any changes in the results when we included the
mitochondria into our signaling model, most likely due to
the relatively few number of proteins in PLNet2 that had
non-zero Mitochondria localization scores (Additional file
1: Table S2). Details about how this modified signal-
ing model and the dynamic program can be found in
Additional file 1: Section S2.

Visual inspection of the subgraphs containing the first
100 paths in the pathway reconstructions before and
after applying the dynamic program reveal that reorder-
ing tied paths changes the first 100 paths dramatically,
even though the number of nodes and edges remain
similar (Additional file 1: Figure S2). In particular, the
dynamic program removes membrane-bound receptors
that appear downstream of cytosolic proteins, which can
be seen by visual inspection (Fig. 8). These and other
features can be explored in such network reconstructions.

Conclusion
In this study, we presented LocPL, which is a powerful
tool for automatic reconstruction of signaling pathways
from protein-protein interactions that leverages the pro-
teins cellular localization information. LocPL showed pro-
found and significant better reconstructions over those by
peer methods in terms of the total number of the true
protein interactions across the whole pathway reconstruc-
tions and the number of positive interactions per individ-
ual paths with a reconstruction. The framework that we
have developed may be extended to other graph-theoretic
approaches that return subnetworks of directed struc-
ture with an associated reconstruction score, such as trees
[10, 11, 15]. Our approach encourages the enumeration
of many tied results, since incorporating protein compart-
ment information will help break these ties with biolog-
ically relevant information. In addition, we anticipate to
develop the technique to compare paths in different con-
texts, such as tissue-specific or disease-specific signaling.
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Fig. 8 PLNet2: LocPL pathway reconstructions (first 100 paths). a IL2 pathway reconstructions before applying the dynamic program (left) compared
to after applying the dynamic program (right). b Topologies of other pathway reconstructions; larger figures provided in Additional file 1: Figures S3,
S4 and S5. Receptors are labeled as triangles, transcriptional regulators are rectangles, intermediary proteins are ellipses. Color denotes
compartment localization; proteins may belong to multiple compartments (and will be lighter shades). Networks were generated using GraphSpace
[39], and are available at http://graphspace.org/graphs/?query=tags:LocPL
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