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Abstract

Background: Microbes have been shown to play a crucial role in various ecosystems. Many human diseases have
been proved to be associated with bacteria, so it is essential to extract the interaction between bacteria for medical
research and application. At the same time, many bacterial interactions with certain experimental evidences have
been reported in biomedical literature. Integrating this knowledge into a database or knowledge graph could
accelerate the progress of biomedical research. A crucial and necessary step in interaction extraction (IE) is named
entity recognition (NER). However, due to the specificity of bacterial naming, there are still challenges in bacterial
named entity recognition.

Results: In this paper, we propose a novel method for bacterial named entity recognition, which integrates domain
features into a deep learning framework combining bidirectional long short-term memory network and convolutional
neural network. When domain features are not added, F1-measure of the model achieves 89.14%. After part-of-speech
(POS) features and dictionary features are added, F1-measure of the model achieves 89.7%. Hence, our model achieves
an advanced performance in bacterial NER with the domain features.

Conclusions: We propose an efficient method for bacterial named entity recognition which combines domain
features and deep learning models. Compared with the previous methods, the effect of our model has been
improved. At the same time, the process of complex manual extraction and feature design are significantly
reduced.
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Background
Microorganisms are ubiquitous in nature. Human beings are
exposed to microorganisms from birth to death and are asso-
ciated with microorganisms during all stages of life. The
human body together with its microbiome constitutes a
super-species, forming our own exclusive microbial commu-
nity [1]. Studies have shown that microbial diversity is associ-
ated with various human diseases, including allergy, diabetes,
obesity, arthritis, inflammatory bowel disease, and even

neuropsychiatric diseases [2–4]. Therefore, the diversity of
microbial communities and the interaction between microor-
ganisms and the host immune system play crucial role in
guaranteeing human healthy. Microorganisms in microbial
communities interact with other members actively which en-
sures the stability and diversity of microbial communities [5].
Thus it is important to explore the microbial interaction for
understanding the structure of microbial community and ap-
plying these results to the biomedical field. In the past, the
method of extracting microbial relationships traditionally is
to culture bacteria separately in biological laboratory. How-
ever, most microbes cannot be cultured experimentally as
well as it is time-consuming and expensive. Recently, compu-
tational approaches can alleviate above problems to some
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extent thanks to the development of high-throughput se-
quencing technologies. At present, there are several kinds of
computational methods for this task including exploring mi-
crobial interactions from metagenomic data, inferring micro-
bial interaction from genomic information and mining
microbial interaction from biomedical literature [5]. The two
former computational approaches are widely explored; how-
ever, extracting the microbial interaction from the biomed-
ical literature is less popular. There are rich relevant
researches published in the literature confirming certain mi-
crobial interactions through direct experiments. It will be a
valuable resource to explore the microbial interaction by
mining biomedical literatures and integrate these knowledge
into a database or knowledge graph. Nevertheless, the rapid
growth in the volume of biomedical literature and the variety
of microorganisms make manual interaction extraction
barely possible.
In previous work, Freilich [6] proposed a microbial

interaction extraction method based on the co-occurrence
model. They first extracted the species names from the in-
testinal microbial abundance data. Then, they retrieved ar-
ticles with the two species in PubMed and calculated the
co-occurrence probability of the species. Finally, a micro-
bial co-occurrence network was constructed to predict
microbial interaction. Similarly, Lim [7] obtained the data
in the same way and put forward an automated microbial
interaction extraction method based on support vector
machine (SVM). What they had in common was the
process to get the species from microbial abundance data
of the human gut, which might result in the omission of
certain potential interactions due to the different stan-
dards of spelling species names.
In recent years, with the development of natural

language processing (NLP), text mining strategy
makes it possible to extract microbial interaction
from unstructured texts. Furthermore, named entity
recognition (NER) is the core task of interaction ex-
traction (IE). The purpose of NER is to extract words
with special meaning from the text, such as Person,
Location. Various methods about NER have been pro-
posed as the advancement of computer technology,
which are mainly based on following three categories:
(1) rule-based method [8]; (2) machine learning-based
method [9], 3) neural network-based method [10]. It
is not portable and universal that rule-based way
needs to design rules in specific domain with experts.
The second approach based on statistical machine
learning has strong portability and excellent perform-
ance, but it requires complex feature engineering and
large-scale labeling. Furthermore, neural network
based method has the highlighting performance with-
out cumbersome process of feature design as well as
large-scale tagging data. Although the method of NER
in the general domain has fully developed, it is a

challenging task in the domain of bacterial name
identification on account of complexity of microbial
names.
Wang [11, 12] proposed a method of bacterial named

entity recognition based on conditional random fields
(CRF) and dictionary, which contains more than 40 fea-
tures (word features, prefixes, suffixes, POS, etc.). The
model effect was optimized after selecting the best com-
binations of 35 features, in the meanwhile, the comput-
ing efficiency of this model was greatly improved by
deploying the model on Spark platform. Unfortunately,
CRF and dictionary-based method need manually design
features and additionally dictionary resources, and the
result of the model depend on the quality of the anno-
tated data and the rationality of the feature design.
In the last few years, deep learning has been widely

utilized and has achieved great performance in many
fields, such as image [13]; speech recognition [14]; ma-
chine translation [15]; reading comprehension [16] and
so on. Similarly, the method based on deep learning has
attracted extensive attention in the field of NER. Lample
[17] first adopted Bi-LSTM -CRF for NER, Ma [18] in-
troduced Bi-LSTM-CNN- CRF for NER, in which CNN
was used to extract character-level features. Since then,
more and more deep learning algorithms are used for
NER. Also, the biomedical text mining contest was orga-
nized to accelerate the research on biomedical [19, 20],
and many of top participating systems utilized deep
learning in biomedical text [10, 21]. Li [22] shown that
deep learning-based method could acquire well perform-
ance in bacterial NER. However, his work did not take
advantage of the existing biological resources and in-
corporate them as features into the model.
In this paper, we propose a method combining domain

features and deep learning for bacterial NER, which
achieves excellent performance in dataset. When adopt-
ing POS features only, the F1-measure of the model
reaches 89.4%. With POS features and dictionary fea-
tures are both added, the F1-measure is up to 89.7%.
The experimental results demonstrate that external re-
sources can contribute to the improvement of the result
of the model.

Materials and methods
As shown in Fig.1, we build a model mainly divided into
the following three layers: embedding layer, encoding
layer and decoding layer. Firstly, we concatenate pre-
trained word embedding, character-level embedding ex-
tracted by convolution neural network, POS embedding
and dictionary embedding and input it into the encoding
layer. Then the encoding layer is used for parameter
learning. In the end, we can predict the best output path
of sentence through the decoding layer.
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Embedding layer
Word embedding
According to a recent study, word embedding has
achieved outstanding results in the field of NLP. Com-
pared with the traditional encoding method, the word
embedding technique can fully exploit semantic infor-
mation between words, for example “king” – “man” + “
woman” = “queen”, as well as using a low-dimensional
continuous vector to represent the vector of words. This
not only solves the sparse problem of the vector, but
also obtains semantic information of the word. Cur-
rently, there are some well-performed word embedding
tools which are widely used, such as fastText [23], glove
[24], Word2vec [25]. At the same time, Moen [26] pre-
trained a word embedding PubMed2vec with word2vec
in the field of biomedical text mining. In our work, in
order to obtain higher quality of word vectors, we down-
loaded more than 400 thousand abstracts about bacteria
from PubMed and then used them together with our
corpus to train word vectors. We adopted the skip-gram
model of word2vec provided in gensim [27] to train our
corpus.

Char embedding
As shown by previous studies, character-level features
have been proved to be work well in many NLP tasks.
Kim [28] used CNN to obtain character representation
and then utilized LSTM to train a language model. San-
tos and Chiu [29] showed that CNN could extract word
morphological features (prefix and suffix etc.) effectively
and encoded them into neural network. Lample [17] also
demonstrated that LSTM could extract morphological
features of words. But, experiment results show that
CNN is better than LSTM in the task of NER. As a con-
sequence, in this paper, we use the CNN to obtain the

character-level features of words. Figure 2 illustrates de-

tailed process of our method. Given a word W= ½ci�T0 , T
is the length of sequence, ci represents the character of
the word, e(ci) is the character vector for each character.
In order to acquire morphological features of words, we
use N times of convolution kernels X to perform convo-
lution operations. The size of convolution kernels is k.
The calculation formula of Oi output for each convolu-
tion can be written as:

Oi ¼ relu W 1Xi þ b1ð Þ ð1Þ

Where W1 denote the weight matrix and b1 denote
the bias vector, Xi = [e(ci − k),…, e(ci),…, e(ci + k)], relu de-
note the activation function. Finally, for each convolu-
tion kernel output O1, …, Oi, …, ON, the max-pooling
operation is performed to obtain the character vector
representation of the word. The j-th vector representing
Wj can be computed as:

W j ¼ max
1≤ i≤N

Oi j ð2Þ

Domain features
Inspired by the related work of Chiu [29] and Huang
[30], some artificial designed features and domain know-
ledge can also promote the effectiveness of the neural
network model. Consequently, in this paper, we discuss
the influence of POS and dictionary features on the
neural network model.
In fact, although the model of neural network can ex-

tract feature automatically to some extent, some linguis-
tic features cannot be well learned on account of the
complicacy of natural language processing. We use the
nltk [31] tool to get the POS features of each word, and

Fig. 1 The model proposed in this paper. The concatenated word-level embedding, char-level embedding, pos embedding and dict embedding
are input into encoding layer for learning, then the output of encoding layer are input into decoding layer for predict
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bidirectional maximum matching algorithm (BDMM)
[32] to obtain dictionary features. UMLS [33] is a unified
medical database, which contains volume of standard-
ized names and abbreviations for diseases, proteins,
genes and microorganisms. Hence we extract all the bac-
terial names from UMLS and integrate them into a bac-
terial dictionary. Table 1 gives an example of our
preprocessing data.

Encoding layer
The long short-term memory network is a [34] variant of
recurrent neural network (RNN). It solves the problems of
the gradient disappearance and the gradient explosion in
the training process of RNN [35, 36]. In the practical ap-
plication process, LSTM can handle the time series prob-
lem and the long-distance dependence problem well. It
mainly consists of three gates: input gate, output gate and
forget gate. The main formula is as follows:

f t ¼ σ W f ∙ ht−1; xt½ � þ bf
� � ð3Þ

it ¼ σ Wi∙ ht−1; xt½ � þ bið Þ ð4Þ
ot ¼ σ Wo∙ ht−1; xt½ � þ boð Þ ð5Þ
Ct ¼ f t�Ct−1 þ it� tanh W∙ ht−1; xt½ � þ bð Þ ð6Þ
ht ¼ ot� tanh Ctð Þ ð7Þ

Where σ denote sigmoid function, xt denote the input
of LSTM, ht denote the output of LSTM, Wf, W, Wo, Wi

denote the weight matrix in the process of training , bf,
bi, bo, b is the bias vector.

Fig. 2 The method to get char-level embedding in our paper. The characters in a word are transfer to vectors, then though a convolution layer
and a max-pooling, finally the output are concatenated to represent the word

Table 1 The example of the data format in our paper

sentence pos dict tag

Actinobacillus NNP B-bacteria B-bacteria

actinomycetemcomitans NNS I-bacteria I-bacteria

, , O O

Porphyromonas NNP B-bacteria B-bacteria

gingivalis NN I-bacteria I-bacteria

, , O O

and CC O O

Peptostreptococcus NNP B-bacteria B-bacteria

micros NNS I-bacteria I-bacteria
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For many sequence labeling tasks, we should consider
the context information of the word at the same time, but
a single LSTM structure can only obtain the historical in-
formation of the word. For this reason, Dyer [37] pro-
posed a bidirectional long short-term memory (Bi-LSTM)
network for acquiring the history information and future
information of words. At first, given a sequence X= ½xt �n0 ,
n represents the length of sequence, xt is the input vector
at time t, use a forward LSTM to obtain historical infor-

mation ht
!

=LSTM ( h
!

t−1 , xt). Then a backward LSTM to

obtain future information ht
 ¼ LSTMðh tþ1; xtÞ . Finally,

the outputs from both directions are concatenated to rep-

resent the word information ht ¼ ½ht!; ht
 � learned at time t.

Decoding layer
For the task of sequence labeling, we should consider
the dependency problem between words, because the
neighboring words of the current word contribute to the
labeling of the word, so we introduce the conditional
random fields (CRF) [38] on the top of encoding layer.
CRF has been proved to have a good effect on sequence
labeling. Given the input of a sentence:

X ¼ x1;…; xi;…; xnð Þ ð8Þ
Where xi denote the vector representation of the output

of encoding layer. We define P as the score matrix out-
put by Bi- LSTM, the size of the matrix P is n × m, n
represents the length of the sentence, m is the number
of types of output tags and Pij represents the probability
of the j-th tag of the i-th word. The output of the defin-
ition sentence is:

y ¼ y1;…; yi;…; ynð Þ ð9Þ
Where yi represents the output prediction for each

word. The score we define for the sentence is:

S X; yð Þ ¼
Xn
i¼0

Tyi;yiþ1 þ
Xn
i¼1

Pi;yi ð10Þ

Where T represents the tag transition matrix, for ex-
ample, Tij represents the transition probability from tag i
to tag j. y0 and yn + 1 denote the start and end that we
add to the matrix, so the size of T is m + 2. T is learned
during training. Then, softmax function is used to
normalize the output path y:

P yjXð Þ ¼ es X;yð ÞX
ey∈Y eS X;;~yð Þ ð11Þ

Where Y is the set of all possible output sequences of
sentence X, and we maximize log-probability of the cor-
rect output sequence during the training, which can rep-
resented as follows:

log P yjXð Þð Þ ¼ S X; yð Þ− log
X
~y∈Y

eS X;;~yð Þ
 !

ð12Þ

In the decoding stage, we predict the best output path
through maximizing the score function:

y� ¼ argmaxS X;~yð Þ
~y∈Y

ð13Þ

This process can be implemented by dynamic pro-
gramming and inferred by Viterbi algorithm [39].

Dataset
In this paper, we utilize the dataset proposed by Wang
[11] . They used “bacteria”, “oral” and “human” as key-
words to retrieve relevant abstracts from PubMed for
nearly 10 years. At last they selected 1030 abstracts as
train set and 314 abstracts as test set. The statistics
about dataset are shown in Table 2. In order to evaluate
the performance of the model, we divided it into training
set, validation set and test set, in which 20% of the ori-
ginal training set was taken as validation set. We down-
loaded all abstracts related to “bacteria” from PubMed in
the past decade and then trained word vectors along
with the dataset.

Tagging scheme
In this experiment, our task is to give each word in the
sentence a tag. As we investigated, a bacterial entity in a
sentence may be composed of multiple words, so we
need a set of identifiers to represent it. Currently, there
are three main types of tagging scheme: IOB2, BIOE and
BIOES. To compare the performance with other models,
we use the IOB2 format as our tagging scheme. In the
IOB2 tagging method, B-label represents the starting
word of an entity, I-label represents the inside word of
an entity, and O represents the word is not in entity.

Table 2 The statistics of the dataset in our experiment

Data set abstract sentence token The kind of entities Entities Entities
token

Train set 1030 10094 252109 1767 7637 15272

Test set 314 3159 77638 770 2260 4611
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Training and hyper-parameter settings
In this experiment, the following four parts constitute
the input of our model: word embedding, character em-
bedding, pos embedding, dict embedding. The word em-
bedding is trained by word2vec with the dimension is
300, and the character embedding is trained by CNN.
The initial input of the characters vector are 25-
dimensional. The dimensions of the pos embedding and
the dict embedding are 25, 5, respectively. The input em-
beddings all randomly initialized with uniform samples

from ½ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−3= dim

p
;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3= dim

p � where dim is the dimension
of embeddings [40]. The convolutional layers and fully
connect layers were initialized with glorot uniform
initialization [41], bias vectors are initialized with 0. Then
the four embeddings are concatenated to input the model
for parameter learning. During the training, we use the
back propagation algorithm to update the parameters.
Our optimization function is Adam [42] algorithms with a
learning rate of 0.001 and a decay rate of 0.9.
We introduce dropout [43] and early stopping [44]

technology to the model during the process of training.
The purpose of the dropout technique is to prevent
over-fitting of the model by randomly dropping some
hidden nodes during the training process. We introduce
dropout technology both before and after the decoding
layer, which set dropout rate = 0.5. The principle of early
stopping technology is to stop training when the result
of the validation set is no longer improved within a tol-
erance range class, and record the parameters of model
which has best result. It can prevent over-fitting of the
model and select the best iteration number effectively.
In this experiment, we set patience = 5. The detailed pa-
rameters are shown in Table 3.

Evaluation metrics
In order to evaluate the performance of the model pro-
posed in this paper, we choose P (precision), R (recall)
and F1 (F1-measure) as experiment metrics.

P ¼ TP
TP þ FP

ð14Þ

R ¼ TP
TP þ FN

ð15Þ

F1 ¼ 2� P � R
P þ R

ð16Þ

Where TP is the number of entities correctly identified
and FP is the number of non-entities identified as en-
tities. F1-measure is the harmonic average of P and R.

Results and discussion
The experimental results are shown in Table 4. Model 1
and Model 2 were proposed by Wang [11, 12], and their
models were based on traditional machine learning
methods. Therefore, they manually extracted 43 groups
of features, and then achieved good results on the data-
set through feature combination and selection. Besides,
the model based on Spark was greatly improved in
speed. The model we proposed previously was based on
neural network and did not need to extract features
manually [22]. It was an end-to-end model and had en-
hanced the effect of the bacteria NER to some extent,
but it did not make full use of the linguistic features and
existing resources. In this paper, we consider the influ-
ence of domain features on the model. The experimental
results show that the F1-measure of the model achieves
89.4% when adding the POS feature. With dictionary
features and POS features are added, the model’s F1-
measure is up to 89.7%. From the above, we can include
that these two features can effectively improve the effect
of the model.
In order to evaluate the impact of word embedding on

the model, we compare the performance of four pre-
trained word embedding: glove [24], fastText [23],
word2vec [25] and PubMed2vec [26] as well as random
initialization in our model. Among them, glove and fas-
tText are trained on Wikipedia which the dimension are
300, Pubmed2vec is 200 dimension which is trained on
PubMed and PMC articles, and word2vec is based on
the bacterial abstract training we downloaded from
PubMed for 10 years. The experimental results are
shown in Fig. 3. As can be seen from the figure, the use
of the word embedding in the general domain has a

Table 3 The hyper-parameter in our experiment

Hyper-parameter

word embedding 300

char embedding 25

pos embedding 25

dict embedding 5

filter size 3

filter deep 30

lstm hidden 100

Dropout 0.5

Table 4 The result of our model

Model P R F

CRF and dictionary [11] 88.476% 81.149% 84.654%

spark [12] 89.443% 82.899% 86.047%

HDL_CRF [22] 90.009% 88.300% 89.146%

+pos 90.502% 88.344% 89.410%

+pos + dict 90.404% 89.007% 89.700%
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certain effect on the model compared with the random
initialization and the performance is better than the
model based on machine learning. Also, we can know
that the result of using the medical field word vector is
better than the general domain word vector, although it
is not reach the highest. However, the F1-measure is the
best when using the word vector of the bacterial field.
As a result, the experiment proves that word vectors in
different fields should be used for different professional
problems, so that the model effect can be optimal and
the error rate will be reduced.
To evaluate the practicability of our model, we

utilize the model for named entity recognition on real
data. We downloaded more than 400 thousand
bacteria-related abstracts from PubMed for bacterial
NER, and then compared the identified entity with
the bacterial dictionary. UMLS [33] has collected
nearly 4.5 million bacterial entities, which is relatively
a large database of bacterial entities. Therefore, we
extracted all bacterial entities from UMLS to con-
struct a bacterial dictionary. Figure 4 is a comparison
of experiments. Compared with 4.5 million bacterial

entities in UMLS, more than 500 thousand bacterial
entities are not in the dictionary when exact match-
ing; however, when appending some rules, there still
have more than 300 thousand entities not in the dic-
tionary. Analyzing the entities predicted by our model
shows that even though some predicted entities may
be misidentified, our model can still largely predict
mainly bacterial strains and bacteria in different ways
of writing, and most of them are not updated or in-
cluded in current dictionary.

Conclusion and outlook
This paper proposes a method for bacterial named entity
recognition based on deep learning and domain features,
integrating convolutional neural network, long short-
term memory network, and conditional random fields.
The experimental results demonstrate that the use of
POS features and dictionary features can well promote
the recognition of bacterial named entities. At the same
time, we also compare the effects of different word em-
bedding on the experimental results. The results

Fig. 3 The influence of different embedding in model

Fig. 4 The performance of our model in real dataset
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illustrate that domain-specific embedding is more effect-
ive for bacterial named entity recognition.
Recently, language models have been widely used in the

field of natural language, these models have achieved good
results in many NLP tasks. In the future, we will combine
the language model with bacterial named entity recogni-
tion, improve the effect of bacterial named entity recogni-
tion, and combine our task with interaction extraction.
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