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Abstract

Background: Antimicrobial resistance (AMR) is a major threat to global public health because it makes standard
treatments ineffective and contributes to the spread of infections. It is important to understand AMR’s biological
mechanisms for the development of new drugs and more rapid and accurate clinical diagnostics. The increasing
availability of whole-genome SNP (single nucleotide polymorphism) information, obtained from whole-genome
sequence data, along with AMR profiles provides an opportunity to use feature selection in machine learning to find
AMR-associated mutations. This work describes the use of a supervised feature selection approach using deep neural
networks to detect AMR-associated genetic factors from whole-genome SNP data.

Results: The proposed method, DNP-AAP (deep neural pursuit – average activation potential), was tested on a
Neisseria gonorrhoeae dataset with paired whole-genome sequence data and resistance profiles to five commonly
used antibiotics including penicillin, tetracycline, azithromycin, ciprofloxacin, and cefixime. The results show that
DNP-AAP can effectively identify known AMR-associated genes in N. gonorrhoeae, and also provide a list of candidate
genomic features (SNPs) that might lead to the discovery of novel AMR determinants. Logistic regression classifiers
were built with the identified SNPs and the prediction AUCs (area under the curve) for penicillin, tetracycline,
azithromycin, ciprofloxacin, and cefixime were 0.974, 0.969, 0.949, 0.994, and 0.976, respectively.

Conclusions: DNP-AAP can effectively identify known AMR-associated genes in N. gonorrhoeae. It also provides a list
of candidate genes and intergenic regions that might lead to novel AMR factor discovery. More generally, DNP-AAP
can be applied to AMR analysis of any bacterial species with genomic variants and phenotype data. It can serve as a
useful screening tool for microbiologists to generate genetic candidates for further lab experiments.
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Background
Antimicrobial resistance (AMR) is a natural feature of
microbial ecosystems. In a therapeutic context, AMR is
the ability of a microorganism to stop a medication from
working against it. AMR is a major threat to global pub-
lic health because it makes standard treatments ineffective
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and contributes to the spread of microbial infections. It is
estimated that 700,000 deaths were attributable to AMR
in 2016 and that this number will increase to 10 million by
2050 if no actions are taken to tackle this problem [1]. One
vital step in fighting AMR is identification of resistance
determinants, such as single nucleotide polymorphisms
(SNPs), from whole-genome sequence (WGS) data so that
AMR’s biological mechanisms can be studied and under-
stood. This understanding will provide crucial insights
into the design and development of rapid and accurate
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clinical diagnostics for AMR as well as new antimicrobial
drugs.

It is becoming increasingly feasible to predict AMR
phenotypes directly from whole-genome SNP data as the
cost of genotyping is continually decreasing with the
advance of rapid and high-throughput sequencers. It is
advantageous to predict AMR phenotypes from whole-
genome genotype data because it does not require bacte-
rial growth, pure cultures or previously identified marker
genes as in vitro phenotype tests [2, 3]. In order to
make such predictions, the variations between individual
genomes are examined and related to phenotypes. To this
end, a genome-wide association study (GWAS) is com-
monly performed to detect associations between SNPs
and AMR phenotypes [4]. This is one way to address
the curse of dimensionality—the feature dimension being
much higher than the sample size—in building models to
predict phenotypes from genotypes. A standard GWAS
calculates a p-value for each SNP by performing a statis-
tical significance test and sets a threshold to output only
the most significant SNPs. The primary limitation of this
approach is that the results are sensitive to the degree of
match between the assumed statistical model and the real
data distribution. One demonstration of this point is that
different GWAS packages often output different detected
SNPs and some with causal SNPs missing. Moreover,
p-values from GWAS only indicate whether or not SNPs
are related to a phenotype, but not how strongly they are
related. This is one reason why SNPs selected by GWAS
are not always good predictors, and why we cannot com-
pletely rely on them as features to build predictive models.
In this regard, machine learning algorithms can serve as
an alternative and complementary method to GWAS.

Machine-learning algorithms can identify relevant fea-
tures in a complex dataset or make accurate predictions
from such data. In the context of predicting AMR phe-
notypes based on whole-genome sequence (WGS) data,
there are many examples of applying machine-learning
methods to the problem [2, 3, 5–7]. For instance, a
logistic regression classifier was implemented to classify
the susceptibility phenotype consistent with vancomycin-
intermediate Staphylococcus aureus (VISA) based on 14
gene parameters selected from 45 initial parameters [5].
Pesesky et al. compared rules-based algorithms to a
machine-learning algorithm (logistic regression) for pre-
dicting AMR resistance profiles in Enterobacteriaceae [3].
The features used to build the prediction model were
resistance genes determined by the AMR database Res-
fams [8]. Other studies used k-mers to represent bacte-
rial genomes to build machine-learning models for AMR
genotype identification and phenotype prediction [2, 6, 7].

In this paper, we propose an alternative to GWAS: use a
completely data-driven feature selection method to iden-
tify significant SNPs. Compared to GWAS, this method

needs no model assumptions and identifies SNPs based
on their predictive powers. Then, these SNPs are used in
two ways: (1) as markers to locate the genetic factors that
affect AMR phenotypes, like SNPs from GWAS; (2) as fea-
tures to build predictive models. Although the machine
learning methods mentioned above start from WGS data,
they only use WGS data to find known AMR-associated
genes, and use these genes as predictors in their mod-
els. They ignore other novel genetic factors potentially
associated with AMR. In comparison, in this study, the
whole-genome SNP data (generated from WGS data) are
directly used as input to our deep neural networks for
feature selection. In this way, significant SNPs (and thus
genetic factors) are identified by our method, rather than
being selected from an AMR database, such as CARD [9]
or ARDB [10]. It is worth mentioning that by directly using
whole-genome SNP data as input, our method can also
identify SNPs that fall in intergenic regions such as reg-
ulatory elements or promoters and that can be putatively
associated with AMR. After significant SNPs are identi-
fied, predictive models are built based on these features.
The whole workflow is shown in Fig. 1.

The proposed method, DNP-AAP (deep neural pursuit –
average activation potential), involves two steps. DNP is
a generic method using deep neural networks to perform
feature selection and prediction, specifically designed for
low-sample, high-dimension data, such as WGS data and
plant genotype data [11]. One problem for DNP is that
when it is fed different training data as in k-fold cross-
validation, it outputs different sets of features. This makes
it hard to select the final set of features, especially when
the maximum number of features to be selected is large.
This happens because DNP is dealing with high dimen-
sional data and it uses dropout regularization in the fea-
ture selection process. Averaging multiple dropout results
can reduce gradient variance in neural network training.
This helps to improve the stability of feature selection
results, but the instability is inherent in the model. To pro-
vide a more consistent way to select the final set of features
generated by DNP, we add a calculation of average acti-
vation potential (AAP) for each selected feature, and use
this AAP as the criterion to rank the feature importance.
Activation potential has also been used to select features
in action recognition from videos [12].

We applied DNP-AAP on a published N. gonorrhoeae
WGS data with minimum inhibitory concentration (MIC)
phenotypes for five commonly used antibiotics. Our
experiment results show that DNP-AAP can effectively
identify known AMR determinants in N. gonorrhoeae, and
discover new potential AMR determinants. Subsequently,
the identified SNPs were used to build logistic regression
classifiers and the prediction AUCs (area under the curve)
range from 0.949 to 0.994 for five subsets tested in our
experiments.
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Fig. 1 Workflow of the proposed machine learning approach to identify SNPs from WGS data. The prediction of AMR resistance profiles based on
these identified SNPs is also part of the workflow. Although prediction is not the main purpose of this study, it is a natural next step after feature
selection. In the figure, rectangles represent methodological steps, while parallelograms without right angles represent data or information. From
the SNPs, resistance genes and other genetic elements can then be identified

The goal of this research is to design and test a data
driven, deep learning method (DNP-AAP) that can pre-
dict SNPs associated with antimicrobial resistance, rather
than to conduct a systematic comparison of feature selec-
tion methods. However, it is still worthwhile to place
the results from DNP-AAP within the context of other
feature selection methods. To this end we compared
the results from DNP-AAP to those when using two
other popular feature selection methods, LASSO [13] and
AdaBoost [14].

Results
We now present the results we obtained by applying
DNP-AAP to the N. gonorrhoeae dataset. In the follow-
ing analysis, we use the genes that have been reported to
associate with N. gonorrhoeae AMR as a reference stan-
dard to evaluate the efficacy of our model in identifying
known genes from WGS data. To test the significance of
the identified SNPs in terms of power to predict a resis-
tance profile, a very simple and efficient logistic regression
classifier was trained for each antibiotic with the identified
SNPs as features to classify N. gonorrhoeae strains.

One parameter that needs to be determined is how
many features (SNPs) should be selected when perform-
ing feature selection. There is no universal solution to
this problem. One strategy is to do a sensitivity analysis
and see how adding or removing a feature affects the pre-
diction accuracy. Another way is to choose this number
based on the capacity of wet lab experiment facilities. If
a lab can handle 50 (for example) genes in one experi-
ment, then one can set the number of features to be 50.

The results presented in this paper were obtained with a
mix of these two criteria; that is, the criterion to select
SNPs was that either a minimum number was reached or
the prediction accuracy stopped increasing (< 0.05). The
minimum number of SNPs to be selected was set to 10.
This number was chosen given preliminary experimental
results showing that the genes in the reference standard
(Table S2 in Additional file 1) were not always at the top of
the result list, but they were usually within the top 10. It is
normal to not always see the genes in the reference stan-
dard at the top of the result list; because DNP is a greedy
algorithm, the SNPs selected earlier are not always the
globally optimal results.

The deep neural network (DNN) architecture was deter-
mined based on the structure suggested by Liu et al. [11]
and preliminary investigations. According to Liu et al., the
DNN that performs best in identifying known genes is a
4 layer neural network with 2 hidden layers. They also
showed that changing the number of neurons in the hid-
den layers does not make much difference in identifying
the known genes. Thus we used a simple DNN with the
structure “41502/50′′ − 30 − 20 − 2, corresponding to
the number of neurons in the input–hidden1–hidden2–
output layers. The 2 neurons in the output layer corre-
spond to our binary classes, susceptible and resistant to
an antibiotic. 41502 in “41502/50” is the number of neu-
rons used in the back propagation step, but not in the feed
forward step. Every time a new feature is added to the
selected set S , the subnetwork, |S|−30−20−2, is trained.
In all our analyses, fifty features, including the bias item,
were selected in each cross-validation for every antibiotic.
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Thus the final neural network that was trained had the
structure 50 − 30 − 20 − 2.

Ciprofloxacin resistance analysis
We first tested DNP-AAP on the ciprofloxacin resistance
dataset which includes 302 susceptible and 364 resistant
strains. Given the criterion to determine the number of
SNPs to report, ten SNPs with the highest AAP were iden-
tified and are listed in Table 1. Gene annotations are from
the reference genome NCCP11945 from EnsemblBacteria
[15]. The annotation using NCBI is listed in Additional
file 1: Table S3.

Two genes associated with ciprofloxacin resistance,
gyrA and parC, were identified by DNP-AAP, and the
order of their importance also matches the published
results [16]. The point mutation S91F (amino acid sub-
stitution) in gyrA was detected, while for parC, P88S was
identified instead of the usually reported S87R, though
both are present in resistant strains. The mutations in
both gyrA and parC proteins can decrease the affin-
ity between ciprofloxacin molecule and its binding sites,
thereby conferring resistance to the antibiotic.

The SNP with ID 33843 falls in the gene NGK_1282,
which encodes a putative integral membrane pro-
tein (GeneBank) in N. gonorrhoeae. KEGG Orthology
(K07243) shows that this protein is a high-affinity
iron transporter. Duncan [17] showed that ciprofloxacin
kills bacteria by a mechanism involving production of
hydroxyl radicals (·OH) from the Fenton reaction [18]
and metabolic stress. The way for bacteria to avoid being
killed is either by inhibiting the Fenton reaction through
reducing ferrous iron (Fe2+) or by reducing hydroxyl
radicals (·OH) produced by the Fenton reaction after the
addition of antibiotics. Although it is not clear how the
pathway involving the gene NGK_1282 works, it seems
possibly relevant to this antibiotic resistance mechanism.

Two SNPs with ID 5087 and 34282 that fall in intergenic
regions were also identified.

Cefixime resistance analysis
The SNPs identified for cefixime resistance are shown
in Table 2. The most significant mutations associated
with cefixime resistance happen in the mosaic penA gene.
Several penA SNPs were always selected with the high-
est AAP values. This shows that DNP-AAP can effectively
identify these significant features contributing to cefixime
resistance. DNP-AAP also identified several point muta-
tions in two 16S RNA proteins which have been shown to
be associated with azithromycin resistance [16, 19].

Penicillin resistance analysis
As for penicillin resistance, the gene ponA, which has
been reported as being associated with penicillin resis-
tance, was among the 10 locations of SNPs output by
DNP-AAP (Table 3). Specifically, the SNP with ID 2755
leads to an amino acid substitution L421P in ponA prod-
uct penicillin-binding protein 1A (PBP1). This mutation
decreases penicillin acylation of PBP1 and increases peni-
cillin resistance [16]. The SNP with the highest AAP value
is in a conserved hypothetical protein, the function of
which is not yet determined. The SNP with the second
highest AAP falls in the gene NGK_2170 which encodes
the outer membrane protein PIIc. GO (gene ontology)
terms describe PIIc as “enables porin activity; involved
in trans-membrane transport; part of membrane; part of
integral component of membrane”. This is an interest-
ing finding because one AMR mechanism is antibiotic
efflux that can be conferred by membrane and membrane-
associated proteins. These proteins can pump antimicro-
bial compounds out of microbial cells [20]. Another SNP,
one with ID 10120, falls in a putative phage-associated
gene NGK_0679. A bacteriaphage is a virus that infects

Table 1 SNPs identified for the resistance to ciprofloxacin (CIP) by DNP-AAP

ID Range ID AAP Genes Annotations Known

[ 18797, 18817] 18799 0.658 gyrA DNA gyrase subunit A �
[ 4309, 4366] 4363 0.536 parC DNA topoisomerase IV subunit A �

5087 0.506 intergenic between NGK_0295 and NGK_0296∗

5075 0.497 NGK_0295 glutathione synthetase

34282 0.483 intergenic between NGK_2199 and NGK_2200∗

33843 0.482 NGK_2182 putative integral membrane protein

20553 0.478 NGK_1395 OTB_PSEPK Probable sugar efflux transporter

2285 0.477 NGK_0116 conserved hypothetical protein

34301 0.475 NGK_2201 hypoxanthine-guanine phosphoribosyltransferase

16353 0.447 NGK_1090 conjugal transfer pilus assembly protein TraD

Annotations are from EnsemblBacteria. The column “ID Range” lists the ranges of SNPs that fall in known AMR-associated genes (only) in our data. ID: ID of Identified SNP.
*NGK_0295: glutathione synthetase; NGK_0296: diacylglycerol kinase (DagK); NGK_2199: PtsH; NGK_2200: putative sugar transport PTS system IIA protein
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Table 2 SNPs identified for the resistance to cefixime (CFX) by
DNP-AAP

ID Range ID AAP Genes Annotations Known

31799 0.423 NGK_rrna16s3 NGK_rrna16s3

[ 28398, 28481] 28431 0.419 penA penicillin-binding
protein 2

�

[ 28398, 28481] 28418 0.406 penA penicillin-binding
protein 2

�

29914 0.402 NGK_rrna16s2 NGK_rrna16s2

[ 28398, 28481] 28417 0.382 penA penicillin-binding
protein 2

�

[ 28398, 28481] 28428 0.382 penA penicillin-binding
protein 2

�

29915 0.376 NGK_rrna16s2 NGK_rrna16s2

29916 0.370 NGK_rrna16s2 NGK_rrna16s2

[ 28398, 28481] 28427 0.368 penA penicillin-binding
protein 2

�

[ 28398, 28481] 28429 0.367 penA penicillin-binding
protein 2

�

Annotations are from EnsemblBacteria. The column “ID Range” lists the ranges of
SNPs that fall in known AMR-associated genes (only) in our data. ID: ID of Identified
SNP

and replicates within bacteria [21]. Bacteriaphages are one
of the mobile genetic elements considered in the AMR
studies of N. gonorrhoeae (see [22] and references therein).
Bacteriaphages were also examined in other AMR studies
[23, 24].

Although effects of these mutations on penicillin resis-
tance need further investigation, they seem relevant
and can make promising candidates for microbiological
experiments.

Tetracycline resistance analysis
A SNP in the gene rpsJ associated with tetracycline resis-
tance was identified by DNP-AAP (Table 4). The identi-
fied SNP (with ID 37927) leads to the amino acid substitu-
tion V57M in the encoded ribosomal protein S10, which
reduces the affinity between tetracycline and the 30S
ribosomal target [16]. The other observation regarding
tetracycline resistance is that two genes encoding putative
phage proteins are potentially implicated, each with two
SNPs identified among the ten output from DNP-AAP. As
mentioned before, bacteriaphages could potentially con-
tribute to bacteria resistance (see references above). More
verification is needed to see if these implicated genes
contribute to tetracycline resistance.

Azithromycin resistance analysis
DNP-AAP did not identify any known genes associated
with azithromycin resistance among the output SNPs
given the selection criterion (Table 5). However, it identi-
fied a putative drug resistance gene NGK_1793 with the

Table 3 SNPs identified for the resistance to penicillin (PEN) by
DNP-AAP

ID Range ID AAP Genes Annotations Known

38424 0.344 NGK_2469 conserved
hypothetical
protein

33601 0.342 NGK_2170 outer membrane
preprotein PIIc

18799 0.330 gyrA DNA gyrase
subunit A

29502 0.322 NGK_1906 monofunctional
biosynthetic
peptidoglycan
transglycosylase

29504 0.251 NGK_1906 monofunctional
biosynthetic
peptidoglycan
transglycosylase

[ 2749, 2763] 2755 0.236 ponA penicillin-binding
protein 1A

�

35095 0.219 NGK_2270 adhesin MafA

10120 0.213 NGK_0679 putative phage
associated
protein

40335 0.204 intergenic
between
NGK_2581 and
NGK_2582∗

6817 0.203 NGK_0423 23S rRNA
pseudo-uridine
1911/1915/1917
synthase

Annotations are from EnsemblBacteria. The column “ID Range” lists the ranges of
SNPs that fall in known AMR-associated genes (only) in our data. ID: ID of Identified
SNP
*NGK_2581: Putative hemoglobin receptor component precursor HpuA; NGK_2582:
Conserved hypothetical protein

second highest AAP value. In addition, a SNP falling in
the gene NGK_2342, which encodes pilC protein, is iden-
tified. pilC is the adhesion protein located at the tip of
a bacterium pilus. Research shows that pilC can act on
the bacterial cell surface and cooperate in DNA recogni-
tion and/or outer membrane trans-location [25]. Dötsch
et al. [26] reported that mutations in pilC can increase
drug resistance in Pseudomonas aeruginosa. Thus there
is potential that this mutation can also relate to N.
gonorrhoeae AMR.

Prediction accuracy
ROC (receiver operating characteristic) curves and the
average AUCs (Area Under the Curve) calculated from
5-fold cross-validation were used as a measure of the
predictive power of the identified SNPs. A simple
and efficient logistic regression classifier implemented
using scikit-learn was trained with the identified SNPs.
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Table 4 SNPs identified for the resistance to tetracycline (TET) by DNP-AAP

ID Range ID AAP Genes Annotations Known

27095 0.470 intergenic between NGK_1771 and NGK_1772∗

21468 0.205 NGK_1458 putative phage associated protein

[ 37926, 37927] 37927 0.196 rpsJ 30S ribosomal protein S10 �
29960 0.159 NGK_1968 IS1016 transposase

37300 0.150 NGK_2398 methionyl-tRNA formyltransferase

40041 0.131 NGK_2557 hemoglobin/transferrin/lactoferrin receptor
protein

21467 0.121 NGK_1458 putative phage associated protein

9785 0.120 NGK_0668 putative phage associated protein

9787 0.120 NGK_0668 putative phage associated protein

18761 0.119 NGK_1227 putative HTH-type transcriptional regulator
NMB1378

Annotations are from EnsemblBacteria. The column “ID Range” lists the ranges of SNPs that fall in known AMR-associated genes (only) in our data. ID: ID of Identified SNP
*NGK_1771: transferrin-binding protein A; NGK_1772: TbpB

Although DNP performs classification simultaneously
with feature selection, a separate classifier is built because
the final identified features are selected with AAP from
the aggregate candidate features from multiple experi-
ments with cross-validation.

The ROC curves and AUCs generated by logistic regres-
sion with 5-fold cross-validation for the five antibiotic
datasets are shown in Fig. 2. Of note is that the sig-
nificant SNPs were identified with strains most resis-
tant/susceptible to each antibiotic (statistics in Table 6),
while the ROC curves and AUCs were obtained by consid-
ering the whole dataset with intermediate strains removed
(statistics in Table 7).

Table 8 presents the true positive rate (TPR) for the
classification of resistant strains given different false posi-
tive rates (FPR). TPR measures the proportion of resistant

strains that are correctly classified as such and FPR mea-
sures the proportion of susceptible strains that are classi-
fied wrongly as resistant. When FPR is controlled around
10%, about 98%, 95%, 91% and 89% of resistant strains
can be correctly classified for TET, PEN, CFX and AZM
respectively. The reasons behind the differences in trends
exhibited in Table 8 are not clear and deserve further
investigation.

To further show the predictive power of the identified
SNPs, we compared the ROC curves and AUCs obtained
by using the identified SNPs and the same number of
SNPs randomly selected as features to build the logis-
tic regression classifier. The ciprofloxacin dataset is used
as an example here, and the results were similar for the
other four antibiotics. It can be seen from Fig. 3 that
SNPs identified by DNP-AAP were substantially better at

Table 5 SNPs identified for the resistance to azithromycin (AZM) by DNP-AAP

ID Range ID AAP Genes Annotations Known

27421 0.424 NGK_1776 conserved hypothetical protein

27690 0.420 NGK_1793 putative drug resistance protein

30659 0.300 NGK_2022 Infection response protein Irg2

36328 0.294 NGK_2342 pilC protein

36810 0.290 intergenic between NGK_2354 and NGK_2355∗

30434 0.278 intergenic between NGK_1994 and NGK_1995∗

21513 0.269 NGK_1463 putative phage associated protein

39676 0.266 NGK_2537 homoserine kinase

36809 0.258 intergenic between NGK_2354 and NGK_2355∗

29095 0.254 NGK_1872 phosphatidylglycerophosphatase A

Annotations are from EnsemblBacteria. The column “ID Range” lists the ranges of SNPs that fall in known AMR-associated genes (only) in our data. ID: ID of Identified SNP
*NGK_2354: Conserved hypothetical protein; NGK_2355: Hypothetical protein; NGK_1994: TspB2; NGK_1995: putative phage associated protein
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Fig. 2 ROC curves and AUCs for the predicted resistance profiles for the five antibiotics under consideration

predicting the AMR resistance of ciprofloxacin than the
same number of randomly selected SNPs.

Distribution of AAP
Average activation potentials (AAP) can be calculated
between any layers in a deep neural network. We calcu-
lated AAPs between the input layer and the first hidden
layer because direct correlation between the input fea-
tures and their contribution to the whole neural network
can only be established in this layer [12]. Figure 4 shows
the input features sorted in the decreasing order of AAPs.
Most of the selected input features from the 5-repeat
experiments with 10-fold cross-validation had AAP close
to zero, while only the first few inputs had significantly
larger AAPs. These inputs contribute most to the activa-
tion of neurons in the neural network. The tails of the
AAP distributions demonstrate the degree of selection
consistency of the input features. On closer inspection, we
can see that the total number of selected input features
for ciprofloxacin is the smallest and the one for tetracy-
cline is the largest. The shorter the tail, the more stable are

Table 6 Counts of N. gonorrhoeae strains for each antibiotic

AMR/Antibiotics CIP AZM TET CFX PEN

Susceptible 302
≤ 0.1 ≤ 0.25 ≤ 0.005 ≤ 0.06

45 26 75 46

Resistant 364
≥ 16 ≥ 50 ≥ 0.25 ≥ 6

38 26 108 37

Total number 666 83 52 183 83

N. gonorrhoeae strains for each antibiotic are balanced by selecting strains with the
lowest and the highest MIC values. Criteria for selection are given above each count

the features output from DNP-AAP. However, since we are
usually most interested in the top few (for example, 50 or
100) output SNPs, our DNP-AAP method provides good
stability in identifying the most significant features.

Performance of comparison techniques
As for DNP-AAP, the best SNPs from LASSO and
AdaBoost and for each drug were examined to iden-
tify whether they were located within genes known to
be associated with antimicrobial resistance. As shown
by Additional file 1: Table S4, with one exception DNP-
AAP reports the same number or more SNPs than the
comparison methods.

Following the procedure for SNPs from DNP-AAP,
logistic regression classifiers were constructed for each
drug using the best SNPs identified by LASSO and
AdaBoost, and the accuracies of the predictors were deter-
mined. The AUC values are given in Additional file 1:
Table S5, while the ROC curves themselves are given in
Additional file 1: Figures S3 and S4. As shown in the table,

Table 7 Summary of original antibiotic resistance data for N.
gonorrhoeae strains

AMR/Antibiotic CIP AZM TET CFX PEN

Susceptible 302 443 26 557 258

Intermediate 5 0 124 0 363

Resistant 364 233 526 108 46

Total number 671 676 676 665 667

There are 676 strains in total. MIC values were available for most strains for all five
antibiotics. The numbers under each antibiotic are the counts in each category,
obtained based on its CLSI breakpoints. CIP: ciprofloxacin; CFX: cefixime; PEN:
penicillin; TET: tetracycline (TET); AZM: azithromycin (AZM)
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Table 8 TPR (=TP/(TP+FN)) for each antibiotic resistance
prediction given different FPR (=FP/(FP+TN))

Drug/FPR 0.05 0.10 0.15 0.20

CIP 1.00 1.00 1.00 1.00

TET 0.74 0.98 1.00 1.00

PEN 0.86 0.95 0.98 0.996

CFX 0.89 0.91 0.96 0.96

AZM 0.76 0.89 0.92 0.93

CIP: Ciprofloxacin; AZM: azithromycin; TET: tetracycline; CFX: cefixime; PEN: penicillin

DNP-AAP performs better than LASSO and AdaBoost in
a majority of cases.

Discussion
It can be seen that the general predictive power of the
identified SNPs is fairly strong for the five antibiotic
resistance profiles. The SNPs for ciprofloxacin show the
strongest predictive power, yielding the AUC of 0.994,
while SNPs identified for azithromycin resistance show
the weakest predictive power, yielding the AUC of 0.949.
One possible explanation for the difference in predictive
power among the drugs is the amount of data available for
each in the various resistance categories. For example, as
shown in Table 7, the data for ciprofloxacin – the drug
with the best predictive power – was well-balanced and
numerous in both the susceptible and resistant categories.
However, the data for the other drugs was less balanced.
Filtering to obtain a better balance between the suscepti-
ble and resistant categories (see Table 6) resulted in less

data for training. The reduction in data quantity might be
the cause of the reduced predictive power.

The purpose of tools such as DNP-AAP is to pro-
vide microbiologists with a list of candidate genes and
other genetic factors. They can further distill these can-
didates by applying their domain knowledge with the aim
of improving their experimental productivity. Although
the new potential determinants are strongly predictive of
AMR resistance in N. gonorrhoeae, their functions need to
be verified by further examination.

Conclusions
In biology, phenotypes are determined by genotype and
the interaction between genotype and environment. Thus,
by looking into genomic variations between individuals,
we can identify contributors to their phenotypic differ-
ences. This is why SNPs are commonly used as markers
to study the genetic cause of diseases and antimicrobial
resistance, and also used in plant and animal breeding
programs to select superior varieties. SNPs can be tracked
and quantified over time, so they are also used to study
evolutionary change in populations.

In this work, we propose DNP-AAP to identify known
and discover new potential AMR-associated point muta-
tions from whole-genome SNP data. This step can serve
as a starting point of building machine learning models
for AMR resistance profile prediction based on whole-
genome genotype data. We also propose a general work-
flow to build machine learning models for AMR predic-
tion from WGS data (shown in Fig. 1). The advantages
of this workflow include: (1) it is generic and completely

Fig. 3 Classification performance of SNPs identified by DNP-AAP versus randomly selected SNPs. Shown are ROC curves for classifications made
with SNPs identified by DNP-AAP and with randomly selected SNPs for ciprofloxacin data. The latter curve was obtained by randomly selecting 10
SNPs 100 times and averaging the resultant FPR (false positive rate) and TPR (true positive rate) values
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Fig. 4 Distribution of average activation potentials (AAP) for the five antibiotic datasets

data-driven; (2) AMR predictors identified are not limited
to known genes from AMR databases and new, puta-
tive AMR-associated genes and intergenic regions can be
identified; (3) once significant predictors are identified,
only position-specific SNP calling needs to be performed
for the AMR resistance prediction of new samples; (4) it
is easy to monitor the development of point mutations
when new WGS and resistance phenotype data becomes
available.

In order to test the efficacy of DNP-AAP, we applied
it to a N. gonorrhoeae WGS data with resistance profiles
to five commonly used antibiotics for gonorrhoea treat-
ments. The results show that DNP-AAP can effectively
identify known AMR-associated SNPs for the antibiotics
ciprofloxacin, cefixime, penicillin and tetracycline. It also
provides a list of candidate genes and intergenic regions
that might lead to novel AMR factor discovery, though
further verification is required. DNP-AAP can be applied
to AMR analysis of any bacterial species with genomic
variants and phenotype data. This can provide microbi-
ologists with a useful screening tool to generate genetic
candidates for further lab experiments.

Despite the promising results, DNP-AAP has limita-
tions. First, it cannot provide explicit evidence of the
interactions between SNPs, although the neural network
accounts for non-linear relationships between neurons.
Second, the features identified can vary depending on the
training data and also the number to be output from DNP.
This stochastic characteristic of the algorithm should not
deter others from applying this method, however, since
the features identified with high rank by AAP are relatively
stable.

Methods
DNP-AAP is a quantifying method to select features from
low-sample, high-dimension data. In this section, we will
introduce DNP and AAP in more detail.

Preliminary feature selection with DNP
DNP provides a general way to select features from high-
dimension, low-sample size data within a deep neural
network (DNN) architecture, which makes it possible to

Algorithm 1 DNP-AAP Algorithm, modified from the
work of Liu et al. [11].

1: Input: X ∈ R
n×d , y ∈ R

n, the maximum number of
features to be selected k.

2: Initialize: S = {bias}, C = F and WC = 0. F is the
whole feature set.

3: while |S| ≤ k + 1 do
4: Fix candidate weights WC = 0;
5: Optimize weights of hidden layers and WS ;
6: Dropout multiple times and average out GFc (GFc is

the back propagated gradient of the feature Fc);
7: j=arg maxc∈C‖GFc‖2(‖GFc‖2is the L2 norm of GFc );
8: Update learning rates using Adagrad;
9: Initialize WFj with Xavier Initializer;

10: S = S ∪ Fj and C = C \ Fj ;
11: end while
12: goto Step 1 until Q-fold cross-validation finishes;
13: goto Step 1 until R repeated experiments finish;
14: calculate AAP by Equations (1-6) and rank the fea-

tures by AAP values.
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apply DNNs to problems such as plant phenotype pre-
diction from genotype and antimicrobial resistance pre-
diction based on WGS data. Both problems suffer from
insufficiency of samples while being burdened with high-
dimension data. Essentially, DNP applies conventional
forward feature selection to deep neural networks using
back propagated gradients. It starts with initializing a
selected set S with a bias node added to the input layer so
that not all neurons in the DNN are inactive; that is, S =
{bias}. This means that only weights connected to the bias
node are initialized with values, while the weights for all
other features are set to 0. Then features in the candidate
set C are selected one by one according to the L2 norm
of their back-propagated gradients. The higher the norm,
the more the change of the candidate feature’s weights
contributes to minimizing the cost function in neural net-
work training, and thus the feature is removed from C and
added to S . This process is illustrated in Additional file 1:
Figure S1.

The way DNP selects features is similar to the graft-
ing algorithm proposed by Perkins et al. [27] where, in
each iteration, the feature with the largest norm of back
propagated gradient is added from a candidate set to a
selected set. Both DNP and the grafting algorithm are
greedy because they can only ensure the feature selected
is the best at this point but cannot guarantee that the final
set of features is the global optimum set. A simple descrip-
tion on why back-propagated gradients can be used to
select features is given in Section S1 of Additional file 1.

DNP adopts dropout on hidden layers to reduce the
high variance of back propagated gradients when deal-
ing with small-sample data. Although dropout can also
be applied on the input layer, in practice, this is usually
not performed because it will directly discard informa-
tion from input data. Especially in feature selection set-
tings, we want to keep all the features in the input layer
so that we do not lose any important features during
random dropouts. In each iteration to select one fea-
ture, dropouts are performed multiple times, and each
candidate feature’s back propagated gradient is aver-
aged over all dropouts. This can help to reduce gradi-
ent variance and add some stability to feature selection.
The DNP process is illustrated in the first 11 lines in
Algorithm 1.

Feature importance ranking with AAP
In order to evaluate the contribution of each identified
feature to a prediction model, a quantitative metric is
required to rank the importances. To this end, we use
a concept called average activation potential (AAP) [12]
as the metric to evaluate the importance of a feature
selected by DNP. For each input feature, AAP calculates
its activation potential on each neuron in the first hid-
den layer, and averages this potential among all training

samples. Then, the total activation potential of this input
variable is the sum of its activation potential on all
the neurons in the first hidden layer. Since DNP is a
stochastic algorithm, to further improve the consistency
of identified features, we run multiple repeated experi-
ments on each dataset. Therefore, AAP is also averaged
on multiple experiment results. Intuitively, the more a
feature is selected by cross-validation in multiple exper-
iments, the more likely it is significant. The definition
of AAP is given next and its main steps are shown in
Fig. 5.

To define the activation contribution of a node i in the
input layer to all nodes in the first hidden layer, c+

i , we
first define its activation potential to one node j in the first
hidden layer given one training instance k, a(k)

ij ,

a(k)
ij = wk

ji ∗ xk
i + bk

j (1)

where xk
i is the ith input feature value of the kth training

instance, and wk
ji is the weight between node i and j, and bk

j
is the bias item to node j given instance k. This is the first
step “Calculate a(k)

ij ” in Fig. 5. Now we define the average
absolute activation potential of node i to node j given all
the training instances:

aaij = 1
M

M∑

k=1
|a(k)

ij | (2)

Fig. 5 The main steps in defining average activation potential (AAP)
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where M is the number of training instances. The abso-
lute value is used to penalize nodes with large negative
depression of the nodes in the next layer. Now we use aaij
to define ck

ij, the contribution of node i to the activation of
node j given training instance k, which is shown as follows:

c(k)
ij = a(k)

ij
∑N

p=1 aapj
(3)

where N is the number of nodes in the input layer. Before
we define the final activation contribution of node i in
the input layer to all nodes in the first hidden layer, we
briefly introduce the activation function used in neural
network training. An activation function performs non-
linear transformation to input features. This makes a neu-
ral network capable of learning and solving more complex
tasks. A neural network without an activation function is
just a linear regression model. One commonly used acti-
vation function in DNN training is a Rectifier Linear Unit
(ReLU), which is also used in this work. A node is acti-
vated when its output value is greater than 0; otherwise, it
is not activated. The following is the ReLU function:

ReLU(x) = max(0, x)

Given the ReLU activation function, we define the pos-
itive activation contribution of node i to the whole neural
network given the kth training instance as follows:

c+(k)
i =

Nh1∑

j=1
ReLU

(
c(k)

ij

)
(4)

This is reasonable because when ReLU is used as the
activation function, any nodes in a hidden layer with neg-
ative output values are set to be inactive, and these nodes
will not contribute to the final training of the neural net-
work. Thus, we only count the positive contribution of
input features. Then the activation potential of node i to
the whole neural network given all training data is given as

c+
i = 1

M

M∑

k=1
c+(k)

i (5)

Due to the stochastic nature of DNP, to further increase
the stability of DNP results, we rank the features based on
multiple repeated experiments. Because of the small num-
ber of training instances, cross-validation is used in DNP
training. Therefore, we average the activation potential of
node i to the whole neural network among R repeated
experiments and Q-fold cross validation,

AAPi = 1
R ∗ Q

∑
c+(r,q)

i (6)

and use this as the final criterion to rank feature impor-
tance. The superscript (r, q) refers to the qth cross valida-
tion in the rth experiment. The whole learning process of
DNP-AAP is shown in Algorithm 1.

Implementation
The DNP-AAP algorithm is implemented in Python
Version 3 utilizing the deep learning package MXNet.

Comparison
We compare the feature selection performance of DNP-
AAP with two well-established methods for feature selec-
tion, LASSO [13] and AdaBoost [14]. Adaboost has been
utilized for feature selection for antimicrobial resistance
prediction using k-mers [2]. Here we apply this approach
to SNP prediction in antimicrobial resistance genetic
factor identification. Implementations of LASSO and
AdaBoost are provided through the linear_model.lasso
and AdaBoostClassifier packages from scikit-learn version
0.20.2, respectively. lasso is run with default parameters
except for alpha, which is set to 0.01 to achieve a num-
ber of reported SNPs comparable to that from DNP-AAP.
For AdaBoostClassifier the following parameters are spec-
ified: decision tree classifiers of maximum depth of 1 are
used as weak learners; the maximum number of weak
learners is set to be 100; 1 is used as the learning rate; and
the learning algorithm is set to “SAMME.R”.

Whole-genome sequence data
Whole-genome sequence data of N. gonorrhoeae with
antimicrobial susceptibilities to five commonly used
antibiotics from three published studies [19, 28, 29] were
downloaded from NCBI Sequence Read Archive (SRA)
[30]. The NCBI identifiers of all strains are listed in Addi-
tional file 2. The steps to preprocess the WGS data are
outlined as follows:

• Paired-end short reads were downloaded from NCBI
SRA [30] with fastq-dump.

• Sequence alignments were performed with BWA
MEM [31] using NCCP11945 [32] as reference
genome.

• sam files generated from BWA MEM were
transformed to bam format with SAMtools [33, 34].

• Variant calling was performed using Freebayes [35]
with parameters set as in other studies which also
used Freebayes for SNP calling in N.
gonorrhoeae [19].

• Variant calling results were filtered with Freebayes
setting ‘vcffilter -f "TYPE = snp"’ to
retain only SNP data.

Eventually, we generated a dataset with 676 samples,
each of which had 41502 SNPs. A SNP is a variation at a
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single position on the DNA sequences of different indi-
viduals. A variation is considered as a polymorphism only
when it is detected above a certain threshold such as
1% or 5% in a population. Such a constraint [19] is used
here to exclude variations arising from errors or very rare
mutations.

SNPs usually take values 0 (the same as reference allele),
1 (the alternative allele), and “.” (missing data). However,
Freebayes also generates numbers larger than 1 for some
positions. This means that it finds multiple alleles at those
positions. We replaced the numbers > 1 with 1 to only
show that there is variation at those positions. As for miss-
ing values, we did not try to impute them, but rather
assigned them the value 0.5 (simply the mean of 0 and
1) instead of following the example in GAPIT [36], which
replaces missing values with 0 or 1 by simple imputa-
tions. The reason for not imputing missing values is that
our sample is not big enough to make a verifiable impu-
tation. Further, simple imputation methods, such as mode
imputation, which fills the missing data with the most
common value each SNP takes, can introduce bias into
data favoring the strains with major SNPs.

Antimicrobial resistance phenotype
Minimum inhibitory concentration (MIC) was used
as a numerical measurement of AMR phenotype.
It is the lowest concentration of a drug that will
inhibit the visible growth of a microorganism [37].
In this study, two classes of N. gonorrhoeae strains
were used, i.e., susceptible versus resistant, which
were grouped based on their MIC values and the
breakpoints (thresholds) given by Clinical Laboratory
Standard Institute (CLSI) [38]. The MIC thresholds for the
five antibiotics examined in the data are shown in Addi-
tional file 1: Table S1. The MIC distribution for each of the
five drugs is given in Figure S2 of Additional file 1.

Dataset for each antibiotic
As mentioned above, N. gonorrhoeae strains were grouped
into Susceptible (S) or Resistant (R) classes based on their
MIC values and CLSI breakpoints [38]. Based on the
CLSI breakpoints for each antibiotic, we obtained five
datasets, shown in Table 7. To simplify the description,
Decreased Susceptibility for cefixime is also referred to as
Resistant in this paper. The complete labeled data, includ-
ing “Intermediate" (I) class, is summarized in Table 7.

From the clinical application perspective, we only
considered the strains in S and R classes. It can be
seen from the table that most sub-datasets were imbal-
anced except for ciprofloxacin. To increase the quality
of the limited data for feature selection, we balanced the
datasets by taking strains with the most extreme MIC
values; i.e., susceptible strains were selected with the
lowest MIC values, and resistant strains were selected

with the highest MIC values. The thresholds used were
the ones that yield approximately the same numbers
of resistant and susceptible strains. The data statis-
tics are summarized in Table 6. Ciprofloxacin data was
approximately balanced and is listed in the table for
completeness.

Antimicrobial loci in N. gonorrhoeae
The genetic factors that have been reported to be associ-
ated with AMR in N. gonorrhoeae to the five antibiotics
are summarized in Additional file 1: Table S2. There were
no SNPs from plasmids in the data because only chromo-
somal DNAs were extracted for sequencing [19, 28, 29].
The plasmid genes are listed in the table for reference
purposes.

Additional files

Additional file 1: Supporting information. This PDF file includes: (1)
Section S1: a description of how back propagated gradients in neural
network training are used for feature selection; (2) Figure S1 gives an
illustration on how DNP works; (3) Figure S2 shows the MIC distribution of
the five drugs; (4) Figure S3 provides the predicted resistance profiles and
AUC values for the classifier built using SNPs identified by AdaBoost; (5)
Figure S4 shows the predicted resistance profiles and AUC values for the
classifier built using SNPs identified by LASSO; (6) Table S1 provides the
CLSI breakpoints; (7) Table S2 lists the known AMR loci of the five drugs
examined in this study; (8) Table S3 lists the SNPs output from DNP-AAP
with NCBI annotations for the reference genome NCCP11945; (9) Table S4
lists the numbers of SNPs in known chromosomal AMR determinants in
Table 2 reported by DNP-AAP, AdaBoost, and LASSO; (10) Table S5 lists the
AUC values for the logistic regression classifiers built using the SNPs
reported by each of DNP-AAP, AdaBoost, and LASSO. (PDF 394 kb)

Additional file 2: NCBI identifiers. This is a text (.txt) file with NCBI
identifiers of the raw reads of 676 N. gonorrhoeae strains used and analyzed
in this study. URLs at NCBI corresponding to those identifiers are also given.
(TXT 45 kb)
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