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Abstract

Background: Logic Learning Machine (LLM) is an innovative method of supervised analysis capable of constructing
models based on simple and intelligible rules.
In this investigation the performance of LLM in classifying patients with cancer was evaluated using a set of eight
publicly available gene expression databases for cancer diagnosis.
LLM accuracy was assessed by summary ROC curve (sROC) analysis and estimated by the area under an sROC curve
(sAUC). Its performance was compared in cross validation with that of standard supervised methods, namely: decision
tree, artificial neural network, support vector machine (SVM) and k-nearest neighbor classifier.

Results: LLM showed an excellent accuracy (sAUC = 0.99, 95%CI: 0.98–1.0) and outperformed any other method
except SVM.

Conclusions: LLM is a new powerful tool for the analysis of gene expression data for cancer diagnosis. Simple rules
generated by LLM could contribute to a better understanding of cancer biology, potentially addressing therapeutic
approaches.

Keywords: Logic learning machine, Neural network, Support vector machine, Decision tree, K-nearest neighbor
classifier, Gene expression, Microarrays, Cancer, Diagnosis, Prognosis

Background
Logic Learning Machine (LLM) is an innovative method
of supervised data mining based on an efficient implemen-
tation of the Switching Neural Network model. In recent
years LLM has been applied to a variety of biomedical
settings [1–6]. The advantage of LLM with respect to
most traditional methods of supervised data analysis
is the capability of identifying simple intelligible rules
with potential diagnostic and prognostic applications.

In particular, LLM was applied to extract few highly dis-
criminant rules from a signature of 62 genes related to
hypoxic condition for the prognosis of neuroblastoma, a
highly fatal childhood cancer [2]. In such analysis LLM
outperformed standard methods of machine learning,
including: Decision Tree (DT), Artificial Neural Network
(ANN) and k-Nearest Neighbor classifier (kNN). Further-
more, the capability of LLM to exploit the complex corre-
lation structure of highly dimensional gene expression
data for feature selection tasks and to combine infor-
mation from clinical features and gene expression for
classification purposes was reported in the analysis of both
simulated and real data sets [1, 6]. These results indicate
that LLM could be a new powerful and flexible tool for
the analysis of gene expression data in Oncology setting.
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However, its accuracy as classifier when applied to a set of
gene expression databases for cancer diagnosis remains to
be assessed.
The present study is aimed at evaluating the perform-

ance of LLM through an extensive analysis of microarray
gene expression data of cancer patients in diagnostic
settings. A comparison with standard methods of super-
vised analysis is also provided.

Results
Data set identification
Fifty-two datasets were retrieved from the GEO web site.
After a careful examination of their content and the
related documentation, 44 were excluded because they did
not fully comply with the selection criteria, thus leaving
eight data sets available for the analyses. The complete list
of excluded datasets and the reason for their exclusion are
shown in Table 1. Briefly, nine data sets were excluded due
to non-independent sampling (five based on time series
analysis and four including matched tissues), 16 for insuffi-
cient sample size, one due to the lack of class separation,
and one because data were collected from a cancer trans-
plantation in mice. Finally, 17 data sets included samples
from only one class of malignancy, thus leaving eight data
sets with at least two classes suitable for diagnostic com-
parisons (7 adult cancers and 1 childhood malignancy).
Table 2 shows the list of the eight databases included in

the analyses, ordered by their appearance in the GEO data
bank. Three data sets (GDS4968, GDS4296 and GDS3952)
included multiple-class comparisons (three classes for the
first, five for the second and four for the last one), while the
remaining five databases (GDS4887, GDS4794, GDS4762,
GDS4471, and GDS3945) included two classes.
In more details, the GDS4968 data set included 99 sam-

ples and 33,297 gene features of pre-malignant (monoclo-
nal gammopathy) and malignant (multiple myeloma) bone
marrow plasma cells [7]. Three-class comparison was
made between a group of gammopathy of undetermined
significance (n = 20), multiple myeloma (n = 41) and smol-
dering (i.e., asymptomatic) multiple myeloma (n = 33);
data related to five healthy controls were excluded from
the analyses due to the insufficient sample size.
GDS4887 included 40 samples and 54,675 features of he-

patocellular carcinoma diagnosed in patients with chronic
hepatitis C [8]. Expression profile of 20 carcinoma tumor
was compared to that of 20 non tumor tissues.
GDS4794 included 23 samples of small cell lung can-

cer and 42 normal tissues [9]. Gene expression features
were 54,675. GDS4762 included 37 breast cancer
cells and 43 fibroblasts [10], and gene expression was
measured in 33,297 features.
GDS4471 included 76 samples of medulloblastoma

(a malignant childhood cancer of the brain) from
patients aged 3 to 16 years [11]. The analysis was

performed comparing the expression of 54,675 features in
51 samples of classic medulloblastoma (MB_CL) with that
of a pool of 25 other types (namely: 6 desmoplastic
nodular, 17 anaplastic and 2 medullomyoblastoma).
GDS4296 included 54,675 features and 174 samples

from 9 different cancer tissues [12]. Among them the
following malignancies were included in the analysis: 23
renal cancers, 21 colon cancers, 26 malignant melanomas,
26 non-small cell lung cancers and 21 ovarian cancers,
whereas other tumor types were excluded for insufficient
sample size (namely: 15 breast, 18 central nervous system
and 6 prostate cancers, and 18 leukemia cases).
GDS3952 included 162 samples from breast cancer

patients and a variety of other malignancies and normal
tissues [13]. Comparison between the expression of 54,
675 features in the following disease groups was per-
formed: benign breast cancer (n = 37), ectopic cancers
(n = 22), healthy controls (n = 31) and malignant breast
cancer (n = 51); other smaller groups were not consi-
dered in the present analysis.
Finally, GDS3945 included 33,297 features in 42 sam-

ples of renal clear cell carcinoma [14]. Comparison was
made between 21 samples of renal clear carcinoma cells
stimulated by T3 thyronine and 21 samples from healthy
controls. Data also included information about different
genotypes related to thyronine receptor variants, but
data were too sparse to allow for further analyses.

Comparison of learning machine methods
Table 3 shows the results of the analysis of gene expres-
sion profiles in the eight selected data sets by LLM and
by the four competing methods. In general, performance
was very high for each algorithm in each comparison
except for ANN in the GDS3945 data set. In two cases,
including GDS4794 and GDS4762, all machine learning
methods performed equally well with the maximum
attainable accuracy (100%), except for ANN in the later
data set. With regard to the other six comparisons,
performance of SVM (measured by the Cohen’s kappa
index) was the highest in each analysis, except for
GDS3952, where kNN showed the best accuracy, and
GDS3945, where LLM performed better. However, in
the GDS4887 data set ANN and kNN had the same
performance of SVM, and in the analysis of GDS4296 also
kNN performed equally high.
Figure 1 shows the corresponding summary ROC

curves, obtained under a proper model assumption,
while the corresponding areas under the curves (sAUC)
and the related diagnostic Odds Ratios are reported in
Table 4. SVM and LLM outperformed any other method
(sAUC = 0.996 and 0.995, respectively). kNN and DT also
showed an excellent accuracy (sAUC = 0.991 and 0.964),
respectively, while ANN had a quite lower accuracy
(sAUC = 0.904).
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Table 1 Microarray data sets excluded from the analyses and reason for their exclusion

GEO dataset accession Disease Reason for exclusion

GDS4562 Squamous cell carcinoma of the tongue Non independent sampling: repeated measures

GDS4547 Clear cell renal carcinoma Non independent sampling: repeated measures

GDS4395 Prostate cancer Non independent sampling: repeated measures

GDS4284 Chronic lymphocytic leukaemia Non independent sampling: repeated measures

GDS4088 Breast cancer Non independent sampling: repeated measures

GDS4336 Pancreatic adenocarcinoma Non independent sampling: different tissues from the same patient

GDS4282 Clear cell renal carcinoma Non independent sampling: different tissues from the same patient

GDS4176 Chronic lymphocytic leukaemia Non independent sampling: different tissues from the same patient

GDS3829 Chronic lymphocytic leukaemia Non independent sampling: different tissues from the same patient

GDS4515 Colorectal adenocarcinoma Insufficient sample size in at least one class

GDS4470 Glioblastoma Insufficient sample size in at least one class

GDS4379 Colorectal cancer Insufficient sample size in at least one class

GDS4305 Acute myeloid leukaemia Insufficient sample size in at least one class

GDS4299 Acute lymphoblastic leukaemia Insufficient sample size in at least one class

GDS4297 Acute lymphoblastic leukaemia Insufficient sample size in at least one class

GDS4289 T-lymphoblastic leukaemia Insufficient sample size in at least one class

GDS4210 Acute myeloid leukaemia Insufficient sample size in at least one class

GDS4182 Acute myeloid leukaemia Insufficient sample size in at least one class

GDS4168 Chronic lymphocytic leukaemia Insufficient sample size in at least one class

GDS4167 Chronic lymphocytic leukaemia Insufficient sample size in at least one class

GDS4503 Breast cancer Insufficient sample size in at least one class

GDS3885 Glioblastoma and glioma Insufficient sample size in at least one class

GDS3869 B-cell lymphoma Insufficient sample size in at least one class

GDS3716 Breast cancer Insufficient sample size in at least one class

GDS3897 Inflammatory bowel disease No malignant cancer and insufficient sample size

GDS4813 Malignant melanoma No available classes to compare

GDS4381 Colorectal cancer Non-human tissue (transplantation on mice)

GDS4761 Breast cancer No available classes for cancer diagnosis

GDS4718 Colorectal cancer No available classes for cancer diagnosis

GDS4516 Colorectal cancer No available classes for cancer diagnosis

GDS4589 Stage I endometrial cancer No available classes for cancer diagnosis

GDS4513 Colon cancer No available classes for cancer diagnosis

GDS4456 Bladder cancer No available classes for cancer diagnosis

GDS4393 Colorectal cancer No available classes for cancer diagnosis

GDS4278 Acute myeloid leukaemia No available classes for cancer diagnosis

GDS4222 Hodgkin’s lymphoma No available classes for cancer diagnosis

GDS4206 Acute lymphoid leukaemia No available classes for cancer diagnosis

GDS4198 Gastric adenocarcinoma No available classes for cancer diagnosis

GDS4181 Acute myeloid leukaemia No available classes for cancer diagnosis

GDS4109 Prostate cancer No available classes for cancer diagnosis

GDS4057 Breast cancer No available classes for cancer diagnosis

GDS4056 Breast cancer No available classes for cancer diagnosis

GDS3837 Non-small cell lung cancer No available classes for cancer diagnosis

GDS3795 Myelodisplastic syndrome No available classes for cancer diagnosis
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Classification rules generated by the logic learning machine
Table 5 illustrates the classification rules extracted by the
LLM from each data set. In four analyses, corresponding
to GDS4887, GDS4794, GDS4762 and GDS3945 data sets,
the LLM classifier included very few simple rules, based
on only one condition and two features (one for each class
at comparison). Conversely (and not surprisingly), more
complex rules were needed to classify samples from the
three datasets that included multiple classes (GDS4968,
GDS4296, and GDS3952). Three conditions based on a
small set of features were sufficient to reach a satisfactory
classification accuracy, except for the analysis of the
GDS3952 data set (the corresponding very complex rules
had a low covering and were not included in Table 5).
Furthermore, the second rule for the classification of
monoclonal gammopathies in the GDS4968 data set
included a feature generated by artificial DNA used as an
internal control (named “Control_3389”), thus indicating
that the classification was partly based on an artifact;
covering of the corresponding rule was rather high, i.e.,
60%. In the absence of available reliable measures of the
concentration of the corresponding mRNA (e.g., by quan-
titative PCR) it is impossible to establish if such an artifact
can be attributable either to a defective extraction of the
LLM algorithm or to noising data related to the intrinsic
variability of the microarray technique. Finally, in the
GDS4471 data set four classification rules, including a
maximum of two conditions each and 6 different
features, were identified to separate 41 samples of the
classic form of a childhood brain cancer (medulloblas-
toma) for a pool of 25 heterogeneous samples of rare
variants of the same malignancy.

Discussion
LLM is an innovative method of supervised analysis that
can identify simple and intelligible rules for classification
tasks. In previous investigations its accuracy was comparable

to that of most common supervised methods based on
black-box algorithms and also outperformed DT, which
shares with LLM the capability to generate intelligible
rules [1–3, 15, 16].
In the present investigation LLM showed an excellent

performance in the analysis of dataset for cancer diagno-
sis. Comparisons included different types of malignan-
cies or different classes of cancer and non-cancer cells.
Carcinogenesis is characterized by the disruption of
several biochemical paths; then, many to several genes are
expected to be strongly differently expressed between
different tumor types and, even more so, between neo-
plastic and non-neoplastic tissues [17]. Contrarily to other
rule-based methods, including DT, LLM classification is
based on a set of partially overlying rules. Such rules are
able to identify small subgroups of interest that tend to
escape classification methods based either on univariate
analysis or on a divide-and-conquer approach.
An advantage of LLM and DT compared to black-box

classifiers is that classification rules can provide useful
insights about cancer biology. In some instances, the
potential biological role of those genes identified by the
simple one-feature LLM rules can be confirmed by
evidence from recent studies on independent cohorts of
cancer patients. For example, in our study LLM revealed
a downregulation of the Aqp7 gene in a set of 20 hepa-
tocellular carcinoma samples (Table 5, GDS4887 data set).
Aqp7 encodes for a transmembrane channel protein
belonging to the aquagliceroporins family, whose function
is the regulation of transcellular movements of water and
glycerol in many mammalian tissues [18]. A significative
reduction of AQP7 was reported in hepatocellular cancer
cells by a recent investigation on 68 patients. The study
also found an upregulation of AQP9 and a downregu-
lation of AQP3 (two molecules belonging to the same
family of AQP7), indicating that the dysregulation of the
aquaporine activity could play a fundamental role in the
liver cancer development and progression [19].

Table 2 Microarray data sets included in the analyses and the related classes at comparison

GEO dataset accession N Disease Classes at comparison

GDS4968 99 Multiple myeloma Monoclonal gammopathy (n = 20) vs. multiple myeloma
(n = 41) vs. smoldering multiple myeloma (n = 33)

GDS4887 40 Hepatocellular carcinoma Hepatocellular carcinoma (n = 20) vs. non-tumor (n = 20)

GDS4794 65 Small cell lung cancer Normal cells (n = 42) vs. small cell lung cancer (n = 23)

GDS4762 80 Breast cancer Cancer cells (n = 37) vs. fibroblasts (n = 43)

GDS4471 76 Medulloblastoma Classic medulloblastoma (n = 51) vs. other types (n = 25)

GDS4296 174 Many different malignancies Renal cancer (n = 23) vs. colon cancer (n = 21) vs. melanoma
(n = 26) vs. non-small cell lung cancer (n = 29) vs. ovarian
cancer (n = 21)

GDS3952 162 Breast cancer Benign (n = 37) vs. ectopic (n = 22) vs. healthy controls
(n = 31) vs. malignant (n = 51)

GDS3945 42 Renal clear cell carcinoma T3 thyronine (n = 21) vs. untreated controls (n = 21)

N number of samples
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Table 3 Analysis of gene expression profiles in eight selected data sets of for cancer diagnosis. Comparison between five methods
of supervised data mining in cross-validation

Method Sens. % Spec. % Youden Index % Empirical Accuracy % Cohen’s Kappa % p

GDS4968

LLM 98.1 90.2 88.4 94.7 91.7 < 0.001

DT 96.2 95.1 93.1 95.7 93.3 < 0.001

ANN 94.3 95.1 89.4 93.6 90.0 < 0.001

SVM 98.1 97.5 95.7 97.9 96.7 < 0.001

kNN 98.1 97.6 95.7 96.8 95.1 < 0.001

GDS4887

LLM 100 95.0 95.0 97.5 95.0 < 0.001

DT 100 95.0 95.0 97.5 95.0 < 0.001

ANN 100 100 100 100 100 < 0.001

SVM 100 100 100 100 100 < 0.001

kNN 100 100 100 100 100 < 0.001

GDS4794

LLM 100 100 100 100 100 < 0.001

DT 100 100 100 100 100 < 0.001

ANN 100 100 100 100 100 < 0.001

SVM 100 100 100 100 100 < 0.001

kNN 100 100 100 100 100 < 0.001

GDS4762

LLM 100 100 100 100 100 < 0.001

DT 100 100 100 100 100 < 0.001

ANN 97.3 100 97.3 98.8 97.5 < 0.001

SVM 100 100 100 100 100 < 0.001

kNN 100 100 100 100 100 < 0.001

GDS4471

LLM 99.0 96.0 95.0 97.4 94.0 < 0.001

DT 88.2 76.0 64.2 84.2 64.2 < 0.001

ANN 82.4 88.0 70.4 84.2 66.3 < 0.001

SVM 98.0 96.0 94.0 97.4 97.4 < 0.001

kNN 94.2 96.0 90.1 94.7 88.3 < 0.001

GDS4296

LLM 97.8 96.2 94.0 96.6 95.7 < 0.001

DT 75.8 100 75.8 63.3 53.1 < 0.001

ANN 98.9 96.2 95.1 93.2 91.4 < 0.001

SVM 100 100 100 100 100 < 0.001

kNN 100 100 100 100 100 < 0.001

GDS3952

LLM 96.4 90.3 87.6 92.2 89.4 < 0.001

DT 94.5 100 94.5 70.2 57.7 < 0.001

ANN 97.3 90.3 87.6 76.6 67.2 < 0.001

SVM 100 100 100 95.7 94.2 < 0.001

kNN 100 100 100 97.2 96.1 < 0.001
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In the GDS4794 data set LLM found an overexpression
of Cbx3 in 23 small cell lung cancer samples. CBX3 is a
member of the heterochromatin protein 1 family that
plays a fundamental role in multiple cellular functions,
including DNA repair, transcriptional regulation, and
telomere function [20]. CBX3 has been suspected to be
responsible of the silencing of tumor suppressor genes
and it was demonstrated to be upregulated in many
tumors. Interestingly, in a recent investigation, Chang et
al. [21] found a high prevalence of samples positive for the
CBX3 in a set of 88 lung cancer patients. Most subjects
were affected by lung adenocarcinoma, while samples in
the GDS4794 database belonged to another subtype of
lung cancer (namely: the small cell one). Our finding, if
confirmed by further independent investigations, could
provide some insights to the knowledge of the carcinogen-
esis of the different subtypes of lung cancer.
Composite rules generated by combining different

features are more difficult to interpret, but they could
shed some light on the complex interaction at the basis of
carcinogenesis and tumor progression. In the GDS4471
data set, LLM found an overexpression of the Efhd2 gene
that, combined to a downregulation of Loc100132891, was
able to separate most samples of classic medulloblastoma

(88.3%) from the other subtypes of the same tumor. Me-
dulloblastoma is a childhood cancer, whose different sub-
types can be associated with different origins and patient
survival [11]. Difference in gene expression between dif-
ferent tumor subtypes could help both to provide some
insights on the carcinogenesis process and to identify
potential targets for new therapeutic approaches. In this
example, the overexpression of Efhd2 (also commonly
known as swiprosin-1) is not a surprising finding, in that it
encodes for a calcium ion binding protein involved in sev-
eral cellular functions, including neurodegeneration and
cancer [22]. Conversely, Loc100132821 is a long non-
coding RNA whose function is, at least to our know-
ledge, still unknown (http://www.igenebio.com/gene/hs-
loc100132891.html). In the two last decades many long
non-coding transcripts have been found to play a crucial
role in carcinogenesis [23], then the possibility that a re-
duced transcription of Loc100132821 in cells with a high
expression of swiprosin-1 could be involved in the car-
cinogenesis of classic medulloblastoma might be a new
finding that deserves further investigations.
The present study represents the first analysis com-

paring LLM with different supervised methods for cancer
diagnosis using a set of microarray data including different
cancer types. LLM showed an excellent accuracy, but our
results should be interpreted at the light of some limi-
tations of this study. First of all, this should be considered
as a pilot study comparing classification methods under
similar simplified conditions and the proposed method
should be applied to larger sets of microarray data, in-
cluding more difficult clinical context (e.g., evaluation of

Table 3 Analysis of gene expression profiles in eight selected data sets of for cancer diagnosis. Comparison between five methods
of supervised data mining in cross-validation (Continued)

Method Sens. % Spec. % Youden Index % Empirical Accuracy % Cohen’s Kappa % p

GDS3945

LLM 100 100 100 100 100 < 0.001

DT 90.5 100 90.5 95.2 90.5 < 0.001

ANN 14.3 81.0 −4.8 46.6 −4.8 0.661

SVM 95.2 100 100 97.6 95.2 < 0.001

kNN 85.7 95.2 81.0 90.5 81.0 < 0.001

Fig. 1 Summary ROC curves for the eight diagnostic comparisons

Table 4 Results of summary ROC analysis

Method sAUC 95%CI sOR 95%CI

Diagnostic studies

LLM 0.995 0.987–0.998 1546 375–6363

DT 0.964 0.933–0.982 104 44–251

ANN 0.904 0.830–0.949 26 10–65

SVM 0.996 0.988–0.999 1736 401–7512

kNN 0.991 0.976–0.997 635 177–2279

sAUC summary Area Under the ROC Curve, 95%CI 95% confidence interval,
sOR summary Odds Ratio
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Table 5 Classification rules identified by Logic Learning Machine applied to gene expression profiles in eight selected data sets for
cancer diagnosis

Output Condition 1 Condition 2 Condition 3 Covering

GDS4968

Monoc. Gamm. SNHG3_1≤ 9.28 SNORA14B≤ 4.30 – 95.0%

Monoc. Gamm. Control_3389 ≤ 8.20 – – 60.0%

MM THOP1 > 6.23 TARP_5≤ 6.71 – 85.4%

MM C22orf23≤ 5.20 FLJ20712≤ 3.14 – 26.8%

Smold. MM DNAJC7 > 8.13 IGK_2≤ 10.4561 DEK > 6.50 97.0%

Smold. MM HNRNPA1 > 6.44 – – 51.5%

GDS4887

HC AQP7≤ 8.46 – – 100%

Non tumor CLPX_1 > 11.4116 – – 100%

GDS4794

Normal cells DSCC1_1≤ 110.1 – – 100%

SCLC CBX3_1 > 2232.75 – – 100%

GDS4762

Breast cancer FMN2 < = 116.32 – – 100%

Fibroblast SHC4 > 52.20 – – 100%

GDS4471

Classic MB EFHD2_1 > 3.87 LOC100132891≤ 4.37 – 88.3%

Classic MB TCL1A > 4.66 – – 31.4%

Other MB LOC100132891 > 4.18 5.47 < ZMYM5_3 ≤ 6.17 76.0%

Other MB CHIAP2 > 3.38 ZNF212≤ 6.45 – 40.0%

GDS4296

Colon cancer KLK6 > 7.71 – – 100%

Melanoma EDNRB > 5.72279 – – 100%

Non-SCLC 5.61 < TMEM51≤ 6.55 FAM177A1 > 8.27 LINC00936 > 5.59 100%

Ovarian cancer TMEM101≤ 6.15 – – 85%

Ovarian cancer MEIS1_1 > 6.70 – – 57.1%

Renal cancer LRRN4 > 4.69 APBB1IP_2 > 7.46 – 100%

GDS3952

Benign diseasea 2.32 < IGHV7–81≤ 3.29 2.87 < BM983749 ≤ 4.06 LIM2 > 4.11 83.8%

Benign diseasea LCP2_1 > 9.07 ST8SIA2_1≤ 2.215 – 27.0%

Ectopic cancers ST3GAL1 > 6.55 PWWP2A > 6.18 – 100%

Healthy controls USMG5 > 11.85 – – 90.3%

Healthy controls NUFIP2_1 > 8.81 – – 41.9%

Breast cancera MKNK1≤ 3.91 227762_at ≤8.3 BF194770 > 2.385 80.4%

Breast cancer ZNF81≤ 2.99 MMAB_1≤ 4.095 – 29.4%

Breast cancer AU143882 > 4.57 – – 21.6%

GDS3945

Untreated controls COQ10A < = 125.66 – – 100%

Renal cancer COQ10A > 125.66 – – 100%

Monoc. Gamm. Monoclonal Gammopathy, MM Multiple Myeloma, Smold. MM Smoldering Multple Myeloma, SCLC Small Cell Lung Cancer, HC Hepatocellular
Carcinoma, MB Medulloblastoma
aClassification algorithm truncated to the first three rules with the highest covering
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patients’ prognosis, response to drug treatments, vacci-
nation trials, etc.). In particular, the tuning methods have
produced a very high classification performance that, in
the absence of an independent validation cohort, should
be interpreted as an upper limit of the actual expected
classification accuracy.
In spite of the extensive search in the GEO repository,

only eight data sets with a sufficiently high dimension
have been identified, then the excellent performance
found for LLM should be confirmed by further indepen-
dent studies. Baseline conditions that can influence the
LLM performance are still to be elucidated, and further
analyses based on large data sets including both real and
ad hoc simulated data are needed, in particular to assess
the effect of different sample size, unbalanced vs.
balanced design, noisy data, and poorly defined gold
standards.
Finally, in this study, similarly to some other previous in-

vestigations [1, 2, 16], LLM outperformed DT, which shares
with our method the capability to extract simple rules for
classification purposes. At least at our knowledge, DT is the
most largely employed method of machine learning based
on simple threshold rules. However, in the last decades
some other innovative methods have been proposed and
applied for classification purposes in many biomedical fields
[24, 25], then in further investigations the accuracy of LLM
should be also compared to that of such methods.

Conclusions
LLM is an innovative method of supervised analysis that
has shown a very high accuracy in classifying patients
with different oncological conditions.
The LLM classifier is typically based on a small set of

simple and intelligible rules that could contribute to a
better understanding of carcinogenesis process, hopefully
supporting the adoption of new therapeutic approaches.

Methods
Data selection
Data were drawn from a set of publicly available databases
of gene expression microarrays, stored in the GEO re-
pository bank (http://www.ncbi.nlm.nih.gov/gds/). Selec-
tion criteria were: a) inclusion in the GEO data bank from
January 2010 to December 2014; b) presence of at least
two classes potentially useful for cancer diagnosis,
including at least 20 samples each; c) availability of a
scientific paper in English language, published on
PubMed, and fully describing the experiment and the
related study design.
An early selection was made using the following key

words in the GEO website: cancer AND human [Orga-
nism] AND 40:10000[Number of Samples] AND 2010/
01:2014/12[Publication Date] AND GDS[ETYP] AND
“gds PubMed”[Filter].

The retrieved databases were carefully investigated to
assess their full compliance to the selection criteria.
Moreover, studies based on a matched design were
excluded, because all the applied methods of analysis
rely on the assumption of independent sampling.

Logic learning machine (LLM)
LLM generates classifiers described by a set of intelli-
gible rules of the type:

if < premise > then < consequence >

where <premise> is a logical product (AND) of conditions
and < consequence> provides a class assignment for the
output [5, 6, 15].
LLM produces rules through a three-step process,

namely: latticization (binarization), monotone Boolean
function reconstruction and rule generation (Fig. 2). In the
first phase (latticization) each variable is transformed into a
string of binary data, using the inverse only-one coding
[15]; then, resulting coded strings are concatenated in one
unique large sequence of bits. In the second phase (mono-
tone Boolean function reconstruction) a set of binary vec-
tors, called implicants, is selected and allows the
identification of clusters associated with a specific class.
During the third phase all the generated implicants are
transformed into as many rules, each one including a
collection of simple threshold conditions in its <premise>
part. Algorithms for the efficient generations of implicants,
starting from any dataset, have been illustrated in detail
elsewhere [15].
A set of quality measures has been defined for any rule

r generated by LLM [2, 15], such as the proportion of
correct classifications C(r), called the covering, or the
false positive fraction E(r). In a binary classification task,
depending on the class identified by the rule r, C(r) will
correspond to either the sensitivity or the specificity. Let
r’ represent the rule obtained from r by removing the
condition c from its premise part. A simple measure of
the relevance R(c) of that condition is then provided by:

R cð Þ ¼ ΔE cð ÞC rð Þ
where

ΔE cð Þ ¼ E r0ð Þ � E rð Þ
Finally, a measure of relevance Rv(xj) for each variable

xj can be obtained by applying the following equation:

Rv x j
� � ¼ 1−

Y
k

1−R cklð Þð Þ

where k varies on the indices of rules rk that includes a
condition ckl on the variable xj.
As a rule of thumb, the inequality Rv(xj) ≤ 10% is used to

identify a predictor xj providing a marginal contribution
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to the accuracy of LLM classifiers, while a rule with
C(r)(1 – E(r)) ≤ 10% often covers subjects with anomalous
values (possible outliers).

Accuracy assessment
Measures of quality for a single analysis
Performance of LLM was compared with that of four
selected competing methods of supervised learning (DT,
ANN, SVM, and kNN) in leave-one-out cross-validation
(LOOCV). Standard measures of quality were obtained
for each analysis and proper comparison techniques
were adopted to evaluate the overall performance of
each classification method in the whole set of analysis. A
parameter tuning procedure was adopted to enhance the
performance of each selected method and only the
models with the highest accuracy were retained. For
instance, for LLM a set of values for the E(r) parameter
were selected, ranging from 2.5 to 7.5% (step 0.5%).
Parameter tuning for the competing methods will be
described in the dedicated paragraphs.
Consider a two-class classification problem, where the

output can assume two different values identified as
positive and negative. Each analysis with any supervised
learning method is characterized by four values:

� The number TP of positive samples correctly
classified by the resulting model,

� The number FN of positive samples wrongly
classified by the resulting model,

� The number TN of negative samples correctly
classified by the resulting model,

� The number FP of negative samples wrongly
classified by the resulting model.

From these four values other quality measures for the
analysis can be derived, among which:

� the sensitivity SE and the specificity SP:

SE ¼ TP
TP þ FN

SP ¼ TN
TN þ FP

� the Youden index Y:

Y ¼ SE þ SP � 1

� the Cohen kappa coefficient K:

K ¼ 2 TP∙TN−FP∙FNð Þ
TP þ FPð Þ TN þ FPð Þ þ TN þ FNð Þ TP þ FNð Þ

� the odds ratio OR:

OR ¼ SE∙SP
1−SEð Þ 1−SPð Þ ð1Þ

In the present investigation we have log-transformed
the OR to exploit its asymptotic Normal distribution
[26]. An asymptotic estimate of the variance σ2 of the

Fig. 2 Schematic representation of the Logic Learning Machine algorithm. In the first phase (Latticization) each variable is transformed into a string of
binary data, using the inverse only-one code binarization and all strings are eventually concatenated in one unique large string per each subject. In the
second phase (Shadow Clustering) a set of binary vectors (the “implicants”) is generated, each of which identifies a cluster in the input space
associated with a specific output class. Finally, all the implicants are transformed into simple conditions and combined in a set of intelligible rules
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logarithm log(OR) of the odds ratio is readily obtained
through the equation [27]:

σ2 ¼ 1
TP

þ 1
FN

þ 1
TN

þ 1
FP

where the continuity correction is adopted if one of the
terms at the denominator is null [27].
In the presence of m multiple outcomes, the definition

of the Cohen kappa coefficient can be generalized as
follows [28]:

K ¼

Xm
i¼1

aii−
Xm
i¼1

eii

Xm
j¼1

Xm
i¼1

aij−
Xm
i¼1

eii

where aij represents the counting of elements in the i
row and j column of the confusion matrix and

eij ¼

Xm
i¼1

aij
Xm
j¼1

aij

Xm
j¼1

Xm
i¼1

aij

represents the corresponding expected counting in the
case of a random distribution of the elements inside the
cells of the confusion matrix.
The specificity SPm for m multiple outcomes was simply

obtained by selecting a category as the reference and com-
puting the proportion of correctly classified samples inside
that category.
The corresponding estimate of log(OR) and of its

related variance σ2 were then retrieved by applying the
Mantel Haenszel (MH) method [29]. Let i = 1 be the
index of the reference category in the confusion matrix;
the MH estimate of log(OR) is obtained as:

log ORð Þ≅ log

Xm
i¼2

a11aii
a11 þ a1i þ ai1 þ aiiXm

i¼2

a1iai1
a11 þ a1i þ ai1 þ aii

0
BBBB@

1
CCCCA

whereas the corresponding asymptotic estimate of
the variance σ2 is obtained through the following
equation [30]:

σ2≅

Xm
i¼2

a11 þ a1ið Þ ai1 þ aiið Þ a11 þ ai1ð Þ a1i þ aiið Þ
a11 þ a1i þ ai1 þ aii−1ð Þ a11 þ a1i þ ai1 þ aiið Þ2Xm

i¼2

a1iai1
a11 þ a1i þ ai1 þ aii

 ! Xm
i¼2

a11aii
a11 þ a1i þ ai1 þ aii

 !

Finally, the sensitivity SE for multiple outcomes is ob-
tained by exploiting the relationship between OR, SE
and SP reported in eq. (1):

SE ¼ OR 1−SPð Þ
SP þ OR 1−SPð Þ

A “natural” reference category for multiple outcomes
was adopted, whenever possible, selecting either the
group of subjects without any disease, if any, or the class
with the (allegedly) less severe illness. Otherwise, in the
case of comparison between groups of severely diseased
patients (i.e., classes including only malignant tumors)
the reference was arbitrarily defined as the class with the
highest number of individuals.

Common measures of quality across studies: the summary
ROC curve
For each dataset, comparison between the considered
supervised classification methods was based on the
K index.
For each classifier a common measure of accuracy

across the N studies was obtained by employing the
method of the summary ROC (sROC) curves [31]. In
particular, the area sAUC under the sROC curve was
adopted to evaluate the quality of any classification
technique. A proper model was considered, which is
described by the following equation:

sROC xð Þ ¼ x∙sOR
x∙sORþ 1−x

where sOR is the summary odds ratio given by:

sOR ¼ exp
XN
i¼1

log ORið Þ
σ2i

 !

being ORi the odds ratio of the ith study and σi
2 the

variance of log(ORi).
An estimate of the standard error for log(sOR) can also

be obtained as

StdErr log sORð Þ½ � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1XN
i¼1

1
.
σ2i

vuuuut

whereas, under the log-Normal assumption for the dis-
tribution of sOR, the related 95% confidence intervals
(95%CI) of this estimate are obtained as follows:
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95%CI ¼ exp sOR� 1:96∙

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1XN

i¼1

1
.
σ2i

vuuuut

0
BBBBB@

1
CCCCCA

The value of sAUC represents a summary measure of
pure accuracy [31] and is easily obtained from sOR
through the following equation:

sAUC ¼ sOR
sOR−1

−
sOR∙ log sORð Þ

sOR−1ð Þ2

In the present study we have performed an sROC ana-
lysis for each of the five classification methods thus
resulting in five sROC curves.
All supervised analyses were carried out by using

Rulex, a software suite developed and commercialized
by Rulex Inc. (http://www.rulex.ai). Summary ROC
analysis was performed by Stata for Windows statis-
tical software (release 12.1, Stata Corporation, College
Station, TX).

Brief description of competing methods of supervised
data mining
Decision tree (DT)
A DT is a graph where each node is associated with a
condition based on an attribute of the input vector x
and each leaf corresponds to an assignment for a speci-
fied output class. Moving from a leaf to a root, a simple
intelligible rule can be identified [32].
DT is obtained by a “divide-and-conquer” approach

that provides disjoint rules. At each iteration, a new
node is added to the DT by choosing the condition that
subdivides the training set S according to a specific
measure of goodness. Parameter tuning was performed
comparing the performance of three different pruning
approaches (namely: pessimistic, no pruning and cost-
complexity). Furthermore, the highest impurity by node
was let to vary between 0.0 and 0.1 (step 0.01).

Artificial neural network (ANN)
ANN is a connectionist model formed by the intercon-
nection of simple units (neurons), arranged in layers.
Each neuron computes a weighted sum of the inputs ap-
plying a proper activation function, which provides the
output value that will be propagated to the following
layer. The input vector x is sent to the first layer. The
remaining layer receives input from the previous one
and the last layer produces the output class to be
assigned to x. Weights for each neuron are estimated by
suitable optimization techniques and form the set of
parameters for the ANN. The Levenberg-Marquardt
version of the back propagation algorithm was applied

to train the ANN [32]. Parameter tuning was performed
comparing the performance of ANN with a different
number of both hidden layers (from 0 to 1) and neurons
(2 to 6). Moreover, the learning rate was let to vary
between 0.25 and 0.75 (step 0.05).

K-nearest neighbor classifier (kNN)
Let n be the number of pairs (xj,yj) in the training set S,
where xj is the input vector and yj the output class for
the jth sample. When a new subject described by the
input vector x is to be classified, the nearest k samples
in S, according to a suitable distance measure, are deter-
mined and the class y associated with the majority of the
k nearest samples is assigned to x [32].
In the present investigation the standard Euclidean

distance was employed, after having normalized the
components of the input vector x to reduce the effect of
biases possibly caused by unbalanced domain intervals
for different input variables. Tuning procedure was
applied to the number of nearest samples letting the k
parameter vary between 1 to 10.

Support vector machine (SVM)
SVM is a non-probabilistic binary linear classifier based
on the identification of an optimal hyperplane of sepa-
ration between two classes [32]. Given a training set, the
classifier selects a subset l of input vectors xj in the
training set S, called support vectors, and their corre-
sponding outputs yj ∈ {− 1,1}. The class y for any input
vector x is then given by:

y ¼ sgn
Xl
j¼1

y jα jK x j; x
� �þ b

 !

where the coefficients αj and the offset b are evaluated
through a proper training algorithm.
K(·,·) is a kernel function used to perform a non-linear

classification by constructing an optimal hyperplane in a
high dimensional projected space. A linear kernel func-
tion was tested on each dataset. The training algorithm
was performed by using the LIBSVM library, which is
featured by the Rulex Analytics software. The perform-
ance of SVM with linear and RBF kernels was tested.
Tuning procedure also included the degree of the kernel
function that was let range from 1 to 10.
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