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Abstract

Background: Real biological and social data is increasingly being represented as graphs. Pattern-mining-based
graph learning and analysis techniques report meaningful biological subnetworks that elucidate important
interactions among entities. At the backbone of these algorithms is the enumeration of pattern space.

Results: We propose an efficient algorithm for enumerating all connected induced subgraphs of an undirected
graph. Building on this enumeration approach, we propose an algorithm for mining all maximal cohesive subgraphs
that integrates vertices’ attributes with subgraph enumeration. To efficiently mine all maximal cohesive subgraphs, we
propose two pruning techniques that remove futile search nodes in the enumeration tree.

Conclusions: Experiments on synthetic and real graphs show the effectiveness of the proposed algorithm and the
pruning techniques. On enumerating all connected induced subgraphs, our algorithm is several times faster than
existing approaches. On dense graphs, the proposed approach is at least an order of magnitude faster than the best
existing algorithm. Experiments on protein-protein interaction network with cancer gene dysregulation profile show
that the reported cohesive subnetworks are biologically interesting.
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Background
Mining interesting subgraphs from a large graph has
been extensively studied. The modular structure has been
observed in many real-world networks and shown to
reveal insights into the intricate interactions that take
place in real-world networks. Subgraph mining aims at
discovering subgraphs that have interesting structural
properties. Graph density, the ratio of present edges to the
possible edges, has been the main property of interesting
subgraphs. Abello et al. 2002 [1] proposed a greedy ran-
domized algorithm for mining dense subgraphs. Matsuda
et al. 1999 [2] introduced an approximation algorithm for
mining a subset of the quasi-cliques present in a graph. A
reverse-search-based algorithm for enumerating all dense
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subgraphs from an unweighted graph has been proposed
in [3, 4].

Integrating node and edge attribute data with graph
analysis has received attention since mining data from
multiple sources has been shown to improve graph learn-
ing. In protein-protein interaction analysis, highly inter-
acting proteins are more likely to form function modules.
Functional module discovery can be aided by the inte-
gration of gene expression from multiple experiments
as the genes in functional modules tend to have sim-
ilar expression patterns [5, 6]. Moreover, subnetworks
with differentially expressed genes have been shown to be
good subnetwork biomarkers [6, 7]. Moser et al. [8] pro-
posed the CoPaM algorithm for integrating the vertices’
attributes with dense subgraph mining. A reverse-search
algorithm was used for mining dense cohesive subgraphs
from a weighted protein-protein interaction network with
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nodes’ attributes have been proposed in [9]. Mining max-
imal homogeneous clique sets has been introduced in
[10]. In Silva et al. [11], structural correlation mining was
proposed for mining quasi-cliques that have correlated
attributes.

In sparse attributed graphs, meaningful subgraphs can
have very low density, yet exhibit high attribute simi-
larity, e.g., biological pathways. Thus, it is important to
mine connected subgraphs with high attribute similarity
without the density constraint.

To achieve this goal, an algorithm for enumerating
all connected induced subgraphs is needed as the back-
bone of the mining process. Additional attribute similarity
constraints can be enforced while exploring the con-
nected subgraphs search space. Moreover, the problem
of enumerating all subgraphs is important in the field of
computer-aided structure elucidation in cheminformatics
for enumerating possible chemical graphs and stereoiso-
mers [12]. The problem of enumerating all connected
subgraphs might seem intractable since the number of
these subgraphs can be exponential. However, in sparse
graphs, the number of connected vertex sets is much
smaller than the size of the power set of the set of vertices.

Related work
The naive brute force algorithm to solve this problem is
to generate the power set of the vertices, and then remove
the elements in the power set that does not represent a
connected subgraph. Clearly this algorithm is inefficient
since it generates the power set of vertices, most of which
are not connected. Another brute fore algorithm to solve
the problem is to generate only connected subgraphs. The
algorithm starts with one vertex as a subgraph, and then
adds a neighbouring vertex to it every time. The process
ends if the extended sub-graph is already visited or there
is no more vertices to add. The drawback of this approach
is storing all visited subgraphs which can be exponential
and searching for the presence of a subgraph each time we
extend the subgraph. Maxwell et al. [13] introduced the
BDDE algorithm for enumerating all connected induced
subgraphs. The BDDE algorithm follows a breadth-first
discovery, and depth-first extension to enumerate the sub-
graphs. The algorithms starts with one vertex every time,
and enumerate the binomial tree of neighbours of that
vertex. This will enumerate all subgraphs that consist of
the chosen vertex and its neighbors. The next step will be
to enumerate subgraphs beyond the direct neighbors of
the chosen vertex, by following each path in the binomial
tree and treating it as a local search node, and building a
sub-binomial tree for the direct neighbors of all vertices
in the path except the vertices that are already visited.
All neighbors of a local search tree are marked as visited
before recursively call the depth-first search function, that
eliminates duplicates that might be generated if the same

neighbors are reached again by continued depth search.
For a complete graph, the BDDE algorithm could con-
sume a total space of O

(
2N−1), where N is the number

of vertices in the input graph. Constraints defined over
the nodes’ attributes can be integrating into the BDDE
algorithm. Recently, the TGE algorithm for enumerating
all induced connected subgraphs has been proposed [14].
This algorithm uses recursion to solve the problem. For
a given vertex v, the connected vertex induced subgraphs
are partitioned into two groups: subgraphs that include v,
and subgraphs that do not include v. The connected ver-
tex induced subgraphs included in the latter group can
be enumerated by recursively solving the problem after
deleting v. The former one can be solved again by par-
titioning the connected vertex induced subgraphs into
two groups based on another chosen vertex. The author
showed that the time complexity is O(1) for each solution
by amortization.

Reverse Search is a powerful paradigm for enumera-
tion. It was first introduced by Avis and Fukuda [15], and
employed to solve several enumeration problems, includ-
ing all induced connected subgraphs, spanning trees of
a graph, maximal independent sets of a graph, and min-
ing frequent bipartite episode from event sequences. The
basic idea of Reverse Search is to arrange all subsets to be
enumerated in a tree, where each node in the tree appears
only once. The backbone of a reverse search algorithm is
the definition of a parent operation that reduces a node to
a unique parent node. By repeatedly applying the parent
operation on any two different nodes in the search tree,
they will be reduced to a shared canonical node, the root
of the traversal tree. Once the child operation is defined by
inverting the parent operation, we construct the enumer-
ation tree by simply applying depth-first traversal, starting
from the root.

A reverse search algorithm, RS-MST, for enumerating
all induced connected subgraphs has been introduced in
[15]. The parent operation employed for enumerating all
induced connected subgraphs was based on the minimum
spanning tree of the subgraph. For an induced connected
subgraph, G, removing a vertex v that has a degree one
in the minimum spanning tree of G cannot disconnect
the subgraph. The authors in [15] proposed the child
operation that reverses the vertex removal.

In this paper, we propose a novel reverse search algo-
rithm for enumerating all induced connected subgraphs
of a graph. Building on this enumeration approach, we
propose an algorithm for mining all maximal cohesive
subgraphs that integrates vertices’ attributes with sub-
graph enumeration. To efficiently mine all maximal cohe-
sive subgraphs, we propose two pruning techniques that
eliminate futile search subtrees in the enumeration tree,
resulting in significant improvement in the running time
of the algorithm. To demonstrate the effectiveness of the
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proposed algorithms and the pruning techniques, we con-
ducted experiments on synthetic and real-world graphs.

Methods
Let G = (V , E) be an undirected graph, where V =
{v1, ..., vn} is the set of vertices, and E ⊆ V × V is the set
of edges. For any vertex set U ⊆ V , let G(U) = (U , E(U))

denote the subgraph of G induced by U, whose edges
include all the edges of G with endpoints in U. We call U
a connected vertex set if G(U) is connected.

Problem Definition: Given an undirected graph
G(V , E), enumerate all connected vertex sets, CIS(G).

CIS(G) = {U | U ⊆ V and G(U) is connected}

In this paper, we propose a linear-delay linear-space algo-
rithm for enumerating all connected vertex sets of an
undirected graph.

Reverse search
In reverse search, a pattern extension rule defines how to
generate child search nodes from a parent search node in
the search space. The basic idea of reverse search is to
arrange all solutions to be enumerated in a tree, rooted
at an empty set node (canonical object), where each node
in the tree appears only once under a specific parent
node. In reverse search, a parent operation determines
the unique parent node of a search node. This operation
can be repeatedly applied on any two different nodes in
the search tree until they reach a shared canonical node,
the root of the traversal tree. Once the parent operation
is defined, a child operation can be derived. Building on
the parent-child operation, we build a tree-shaped traver-
sal route on the set connected vertex sets. We perform the
depth-first search on the tree without having the tree in
memory to enumerate all induced connected subgraphs.

In this section, we define the parent operation and a data
structure that allows for efficient parent/child operations.

Parent child relationship
The following lemma is essential:

Lemma 1 If G(U) is a connected graph, s, u ∈ U are two
distinct vertices, and u is the vertex with the largest shortest
path from s, then G(U − u) is connected.

Proof Assume that u is the furthest vertex away from s
and deleting u results in a disconnected graph. This means
that there exists at least one vertex u′ such that all paths
between s and u′ go through u. So, the shortest distance
between s and u′ is greater than the shortest distance
between s and u. This contradicts our assumption that u
is the vertex with the longest shortest path from s in G.
Thus, G(U − u) is connected.

Clearly, we can choose any vertex in U, then find the
furthest vertex away from it and delete it, and still get a
connected subgraph with size |U| − 1. It does not mat-
ter which vertex to choose, and also does not matter if the
chosen vertex has many vertices with the same furthest
distance because deleting any of them will produce a con-
nected subgraph. In this work, for defining a child/parent
operation, we need to designate a vertex of the subgraph
as the anchor vertex. We denote the vertex with the small-
est vertex identifier (smallest vertex lexicographically) in
U as anchor(U). Let v ∈ U be the vertex with the longest
shortest path to s = anchor(U). If there are more than one
vertex with the longest shortest path, we take the one with
the largest vertex identifier. We refer to the vertex with the
longest shortest path to s in a graph (G(U)) as the utmost
vertex.

We define the parent graph for a subgraph as fol-
lows: Let G(U) be a connected induced subgraph, s =
anchor(U), and v ∈ U is the utmost vertex, then G(U − v)
is the parent subgraph of G(U) (Lemma 1). The parent
operation simply deletes the utmost vertex of a subgraph.
It also can be repeatedly applied on a subgraph until
reaching the canonical object (empty set). Figure 1 shows
how to repeatedly apply the parent operation on a graph
until reaching the empty set.

Now we derive the the child operation from the par-
ent operation, as follow: Let U be a connected vertex set,
s = anchor(U), u ∈ U is the utmost vertex of U, and
v ∈ V \ U is connected to U. Then the subgraph induced
by U∗ = U ∪ {v} is a child of G(U) if and only if v > s
(lexicographically) and one of the following conditions
holds:

1 The distance from s to v is greater than the distance
from s to u, or

2 Both v and u have the same distance to s, but v is
lexicographically greater than u.

if G(U∗) is a valid child of G(U), we call v a valid candi-
date of G(U), otherwise, we call it an invalid candidate of
G(U).

Figure 2a shows a sample graph, and Fig. 2b shows the
enumeration tree of this graph. Every search node in the
enumeration tree represents a connected induced sub-
graph. Figure 2b shows that search node {A, D} is extended
with vertex C to produce {A, D, C}; the other possibil-
ity {A, D, B} is crossed to indicate that it is not a valid
child. In the leftmost branch, vertex D cannot be added
to search node {A, B, C} because distance(A, D) = 1 <

distance(A, C) = 2. Under the subtree rooted at B, ver-
tex C cannot be added to {B, D} because distance(B, D) =
distance(B, C) = 1, but C is lexicographically less than D.
In the middle, search node {B, A} is crossed out because
vertex A is less than the anchor vertex B.
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(a) (b) (c)

(g) (f) (e) (d)
Fig. 1 Applying the parent operation. Repeatedly applying the parent operation on a graph. a The anchor vertex is A, and the utomst vertex is F.
b After deleting vertex F, vertices C and E become the furthest vertices with the same distance away from A, so E is the utmost vertex. We reduce the
subgraph by deleting vertex E. c-g We apply the same procedure until deleting the last vertex A

Distance-Array representation
One way to speed up Reverse Search is to design a data
structure that speeds up testing for valid children. In this
section, we describe a data structure to represent each
subgraph to be enumerated, such that checking each valid
child takes a constant time. Moreover, building the data
structure of a valid child, given the data structure of the
parent node, takes only O(�) where � is the maximum
degree of the input graph.

Given a subgraph G = (V , E), we use a data structure
of four arrays of size |V |. The U array holds the vertices
of the subgraph in the same order they were visited. The
C array holds the neighbors (candidates) of the subgraph.
The D array holds the distance between the anchor vertex
and all other vertices. And the P array keeps track of the

parent of each vertex in U or in C; The parent of a vertex
v is the vertex connected to it on the path to the anchor
when v was first added to C. The anchor vertex does not
have a parent vertex.

Figure 3 shows a sample graph G of 14 vertices and 22
edges. The dashed vertices and edges represent the sub-
graph induced by the subset U = {2, 3, 4, 5, 7, 9}. The data
structure for U is depicted in Table 1.

The anchor vertex of the induced subgraph G(U) is 2,
and the utmost vertex is 9, with distance 3 away from the
anchor vertex. The whole graph has 14 vertices labeled
from 1 to 14. Only 6 vertices belong to the subset U and
there are only five neighbors in C. Using this representa-
tion, we can easily determine the anchor vertex, since it
is the first one in U, and the utmost vertex, since it is the

(a)

(b)
Fig. 2 Sample graph enumeration. a Sample graph b Enumeration tree of the sample graph; the crossed search nodes indicate invalid subgraphs
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Fig. 3 Extending a subgraph. A sample graph of 14 vertices and 22 edges. The dashed edges and vertices show the subgraph induced by the vertex
set U = {2, 3, 4, 5, 7, 9}

last vertex in U. We can also get the distance between any
neighbor of the subgraph and the anchor vertex in O(1) by
accessing the corresponding index in D.

Using this representation, we can, for instance, extend
the subgraph G(U) with the valid neighbor vertex
v = 10 to form the subgraph induced by the subset U∗ =
{2, 3, 4, 5, 7, 9, 10}. We need to add neighbors of v = 10 to
C array and update their distances in D to be 4, and their
parent in P to be 10. This will take only O(�). The data
structure representation of U∗ is shown in Table 2.

When backtracking, the P array is used to determine
which candidates to be deleted from C. For instance, when
backtracking from U∗ to U, we first delete last added can-
didates whose parent is 10 from C (11 and 12) and reset
the values of these indices in the D and P arrays, then we
delete the 10 vertex from U.

For further improvement, only valid candidates are kept
in C to avoid redundant checking for valid candidates.
We maintain three extra arrays to hold invalid candidates,
the last added vertex to U when the candidate vertex
became invalid, and the original index of the candidate
vertex at C. We use information in these arrays to move
these candidates back to their original indices in C when
backtracking. Through extensive experiments, we noticed
that the performance gain in the running time achieved

Table 1 Data Structure for U

U 2 3 5 4 7 9

C 1 3 5 4 6 7 9 10 8 14

v 1 2 3 4 5 6 7 8 9 10 11 12 13 14

D[v] 1 0 1 2 1 2 3 4 3 3 - - - 4

P[v] 2 -1 2 3 2 3 4 7 4 4 - - - 9

from removing invalid candidates outweighs the extra cost
associated with maintaining these arrays.

Algorithm
Algorithm 1 shows pseudo-code for our algorithm. The
recursive function takes a connected vertex set U and the
set of candidate vertices. For each vertex v in the candi-
date set, it checks if it a valid extension and recursively
calls the EnumerateCIS function. The algorithm invokes
the EnumerateCIS function for each vertex in the graph.

Complexity analysis
An algorithm is said to be a linear-delay algorithm if it
takes linear time, in terms of input size, to compute the
next solution given a solution, or to detect that there are
no more solutions. In our case, we consider the time the
algorithm takes to generate the first child subgraph, given
the parent subgraph. Clearly, our algorithm checks if a
vertex is a valid neighbor of a subgraph in a constant time
O(1) (Algorithm 1 line 8). It checks this condition for all
vertices in the candidate set of a given connected vertex
set. So, if there are no more solutions, the total delay is
O(N) where N = |V |. In case there is a valid neighbor,
the algorithm takes O(�) time to update the arrays of the
data structure.

Table 2 Data Structure for U∗
U 2 3 5 4 7 9 10

C 1 3 5 4 6 7 9 10 8 14 11 12

v 1 2 3 4 5 6 7 8 9 10 11 12 13 14

D[v] 1 0 1 2 1 2 3 4 3 3 4 4 - 4

P[v] 2 -1 2 3 2 3 4 7 4 4 10 10 - 9
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Algorithm 1 Mining All Connected Induced Subgraphs
Input: G = (V , E, f ): an undirected graph

1: for u ∈ V do
2: ENUMERATECIS({u}, Neighbors({u}))
3: end for
4:
5: function ENUMERATECIS(U, C)
6: output U
7: for v ∈ C do
8: if ISVALIDEXTENSION(U, v) then
9: C′ = Neighbors(U ∪ {v})

10: ENUMERATECIS(U ∪ {v}, C′)
11: end if
12: end for
13: end function
14:
15: function ISVALIDEXTENSION(U, v)
16: s = anchor(U)

17: x = lastAdded(U)

18: if v < s then
19: return False
20: end if
21: if distance(s, v) > distance(s, x) then
22: return True
23: end if
24: return distance(s, v) = distance(s, x) and v > x
25: end function

Note that the algorithm is a Depth First Search (DFS)
algorithm which ensures that the space used is bounded
by the depth of the search tree. This depth is bounded by
the number of vertices in the graph since at each level we
add one vertex. So the depth is linear in the number of
nodes N, and we use 7 arrays of size N to keep track of
which vertices are in the search node, their neighbors, and
their distances to the anchor vertex. So, the algorithm uses
a total extra space of O(N).

Maximal cohesive subgraphs
In many applications, we are only interested in connected
subgraphs that meet a user-defined constraint. Let f :
2V → R denote a scoring function that quantifies ver-
tex sets. Moreover, given a threshold δ, the anti-monotone
constraint guarantees that if the score of a vertex set is at
least δ, then score of each subset of the vertex set is also at
least δ, i.e., f (U) ≥ δ =⇒ ∀U∗ ⊂ U : f (U∗) ≥ δ

In this section, we assume that the vertices in the graph
are annotated with features. This leads to the undirected
attributed graph G = (V , E, f ) where V is the set of
vertices, E is the set of edges, and f : V → {0, 1}d

is a function that maps vertices to d-dimensional binary

vectors. We are interested in mining subsets of con-
nected vertices that have similar features. A dimension
j is a cohesive dimension for a vertex set(subgraph) if
the value of the dimension is ‘1’ in all the binary vec-
tors of the vertices of the set; j is cohesive for U if ∀v ∈
U | f (v)[ j] = 1. Let A(U) denote the set of cohesive
dimensions for U.

Given a user-defined threshold Smin, a subgraph G(U)

is called cohesive, if the number of dimensions in A(U) is
at least Smin. The cohesive condition is an anti-monotone
constraint where all the subgraphs of a cohesive graph
are also cohesive. The set of all cohesive subgraphs for
an attributed graph will have a large number of overlap-
ping subgraphs since the subgraphs of a cohesive subgraph
are also cohesive. To reduce redundancy in the output
subgraphs, we require the subgraphs to be maximally
cohesive. A subgraph is maximal cohesive subgraph if it
does not have a supergraph that is cohesive, i.e., G(U) is
maximal cohesive if �U∗ ⊃ U , such that A(U∗) ≥ Smin.

Problem Definition: Given an attributed graph G =
(V , E, f ), and threshold Smin, the problem of mining the set
of maximal cohesive subgraphs is to enumerate the set:

M = {M1, M2, M3, · · · , M|M|}
such that every Mi ∈ M is a maximal cohesive subgraph.

This problem can be addressed by employing the
reverse search enumeration approach in algorithm 1 to
enumerate all cohesive subgraphs and report only leaf
search nodes that do not have any valid or invalid cohesive
child nodes. For a highly-connected graph and a relaxed
cohesive constraint, enumerating the entire search tree
of all cohesive subgraphs is computationally expensive.
In the following subsections, we describe pruning strate-
gies to reduce the size of the enumeration tree by pruning
entire search branches without missing any search nodes.
The pruning strategies result in significant performance
improvement.

Nodes with a preceding covering sibling
Let x and y be two neighbors of G(U) such that x is closer
to anchor(U) than y (x ≺U y), and G(U ∪ {x}) and G(U ∪
{y}) are cohesive subgraphs with A(U ∪{y}) ⊆ A(U ∪{x}),
then none of them is a maximal cohesive subgraph, and
any maximal subgraph that contains G(U ∪ {x}) will also
contain G(U ∪{y}), and vise versa. Moreover, G(U ∪{x, y})
is also a cohesive subgraphs that can be reached from both
G(U ∪ {x}) and G(U ∪ {y}), but is a valid child of only one
of them. Note that since A(U ∪ {y}) ⊆ A(U ∪ {x}), we get
A(U ∪ {x, y}) = A(U ∪ {y}).

In this case, we can prune the search branch rooted at
one of the two subgraphs.

Lemma 2 Let G(U ∪{x}) and G(U ∪{y}) be two cohesive
subgraphs, x is closer to anchor(U) than y (x ≺U y), and
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A(U ∪ {y}) ⊆ A(U ∪ {x}), then the search branch rooted at
G(U ∪ {y}) can be safely pruned.

Proof For a set of vertices Z ⊆ V \ {x ∪ y}, assume
that G(U ∪ {y} ∪ Z) is a maximal cohesive subgraph.
G(U ∪ {y} ∪ Z ∪ x) is a cohesive subgraph since x is con-
nected to U and can be added to G(U ∪ {y} ∪ Z) without
violating the attribute similarity constraint. This contra-
dicts our assumption that G(U ∪ {y} ∪ Z) is a maximal
cohesive subgraph. This proves that G(U ∪{y}∪Z) is not a
maximal cohesive subgraph. Moreover, G(U ∪{y}∪ Z ∪ x)

is not a descendant of G(U ∪{y}) since x is not valid exten-
sion once y is added to vertex set U because x is closer to
anchor(U) than y. But all descendants of G(U∪{y}) can be
expressed as G(U ∪ {y} ∪ Z). So none of the descendants
of G(U ∪{y}) will be a maximal cohesive subgraph. There-
fore, it is safe to prune the search branch rooted at G(U ∪
{y}) without losing any maximal cohesive subgraphs.

Figure 4a shows a sample attributed subgraph, and
Fig. 4b shows a portion of the enumeration tree of this
graph with Smin = 2. Search node {A, F} is pruned
because it has a preceding sibling {A, B} where A({A, B, F})
= A({A, F}). Similarly, search nodes {A, B, C} and {A, B, G}
are also pruned because they have a preceding sib-
ling {A, B, H} where A({A, B, H , C}) = A({A, B, C}) and
A({A, B, H , G}) = A({A, B, G}).

Level One Pruning: Pruning for level one (single ver-
tex) is a special case, where U = ∅ and A(U) = {1}d.
If a vertex x in level one has a preceding connected ver-
tex y with A(y) ⊆ A(x), then y can be safely pruned.

In Fig. 4, the search branch rooted at C can be safely
pruned because it is connected to B and and A(C) ⊆ A(B).
Similarly, the branch rooted at H is pruned since H is
connected to A and A(H) ⊆ A(A).

Nodes with the same features as its parent
This pruning strategy handles a special case where the
attributes of a child node are identical to those of the par-
ent node. After sorting neighbors of U, if there is a child
U∗ such that A(U) = A(U∗), then all succeeding neighbors
can be pruned safely using the previous lemma, because
their descendants will be enumerated under the U∗ search
branch. Although it looks like that this pruning opera-
tion is theoretically redundant of the first operation, it
saves practically the time needed to check if the siblings
are covered by any proceeding one. So once we observe
that there is a node with the same feathers as the parent
node, there is no need to check whether the succeeding
neighbors are covered by this node. We will show in the
experiments section that this pruning technique improves
the performance.

In Fig. 4b, search node {A, B, F , H} has same features as
its parent, hence, all its succeeding siblings can be pruned.

Algorithm
Algorithm 2 shows the pseudo code for our algorithm.
The recursive function builds an enumeration tree. The
result of this algorithm is the set of all maximal cohe-
sive subgraphs M. The main procedure is called for
each cohesive vertex in the graph (lines 2–7). Sorting the
neighbors according to the total order (closeness to U)

(a) (b)
Fig. 4 Enumerating cohesive subgraphs on a sample graph. a An example node attributed graph. b A portion of the traverse tree for attributed
graph in Fig. 4 with Smin = 2. Crossed search nodes indicate pruned children
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is done in line 10. Checking for pruning the search node
rooted at U ∪ {vi} is done in 15–19. Pruning the suc-
ceeding neighboring search nodes is done in lines 23–25.
If there are no cohesive supergraphs of the current sub-
graph then it is added to the set of maximal subgraphs
(lines 28–30).

Algorithm 2 Mining All Maximal Cohesive Subgraphs
Input: G = (V , E, f ): an undirected graph

Smin: minimum number of similar attributes
Output: M: all maximal cohesive subgraphs

1: M = {}
2: for all vertices vi ∈ V (G) do
3: U ← {vi}
4: if |A(U)| ≥ Smin then
5: MINEMAXIMALCOHESIVEPATTERNS(U)
6: end if
7: end for
8: function MINEMAXIMALCOHESIVEPATTERNS(U)
9: locally_maximal ← true

10: Sort(Neighbors(U))

11: for vi ∈ Neighbors(U) do
12: Let U ′ = U ∪ vi
13: if |A(U ′)| ≥ Smin then
14: locally_maximal ← false
15: for vj ∈ Neighbors(U) and j < i do
16: if A(U ′) = A(U ′ ∪ vj) then
17: Go to line 11
18: end if
19: end for
20: if ISCHILD(U ′, U) then
21: MINEMAXIMALCOHESIVEPAT-

TERNS(U ′)
22: end if
23: if A(U ′) = A(U) then
24: Break
25: end if
26: end if
27: end for
28: if locally_maximal then
29: M = M ∪ U
30: end if
31: end function
32: return M

Results
We compare the performance of the proposed approach
for enumerating all connected induced subgraphs to
that of three existing algorithms on random graphs
with varying graph size and density. Moreover, we test
the running time on real enzymes. Moreover, to test

the performance of the proposed approach for min-
ing maximal cohesive subgraphs, we evaluate the per-
formance on a real protein-protein interaction network
with gene dysregulation profile in 13 cancer types as
attributes. All experiments were performed on a machine
with Intel Xeon 2.40 GHz processor with 16 Gbytes
main memory, running the Linux operating system. The
two reverse search enumeration approaches were imple-
mented in C++. The TGE algorithm is implemented in
C and the BDDE algorithm in Perl as provided by their
respective authors.

Performance on random graphs
We generated random graphs with varying numbers of
nodes and density. Figure 5a shows the running times on
graphs with varying size while keeping the density at 0.6.
Figure 5b shows the running times on random graphs with
varying density while the number of vertices was set to 27.
We can see that RS-SP runs about one order of magni-
tude faster. We can see that our proposed algorithm is at
least an order of magnitude faster than the best compet-
ing algorithm (TGE) and two orders of magnitude faster
that the BDDE and RS-MST algorithms. For graphs with
larger number of nodes (> 28), the BDDE algorithm uses
too much memory and crashes after 1 h. For larger graphs
(> 31), the RS-MST did not finish the enumeration task
in 27 h.

Performance on real data
We tested our algorithm on real chemical graphs down-
loaded from the network repository [16]. We compared
against the TGE algorithm since it is the fastest among
the competing algorithms. We ran both algorithms on
ten graphs for which the running time is less than nine
hours. For larger graphs, it takes days before we could get
any results. Table 3 shows the running time of the TGE
and RS-SP algorithms; RS-SP is several times faster than
the TGE algorithm. Due to the nature of chemical com-
pounds, most atoms (nodes) have a degree of at most
8 (maximal valence of atoms), and thus large chemical
graphs are not dense. For these sparse graphs, the speedup
is not high.

Cohesive subnetworks
We use the BIOGRID protein-protein interaction network
(PPI) (version 3.4.160; May 2018) that has 287,970 inter-
actions among 21,429 genes [17]. For attribute data, we
used the gene dysregulation profile in 13 cancers. The
dataset was generated from the gene and miRNA expres-
sion data of 13 tumor types and matched normal samples
[18]. On average each cancer dataset had 2380 dysregu-
lated genes and each gene was dysregulated in 3.4 cancers.
We ran the algorithm with all the pruning techniques on
the attributed BIOGRID network for varying minimum
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(a) (b)
Fig. 5 Running time on random graphs. a Varying graph size; graph density set to 0.6. b Varying graph density; graph size set to 27

support. The algorithm was extremely fast finishing in less
than one second for Smin ≥ 6, and for Smin = 2, and 1 it
took 21 and 74 seconds, respectively.

Effectiveness of pruning techniques
To show the impact of the pruning techniques on the run-
ning time, we turned off the pruning techniques in the
algorithm one at a time. Figure 6 shows the impact of
the pruning techniques. For 1 ≤ Smin ≥ 3, the algo-
rithm without any pruning did not finish in 50 h, result-
ing in more than 400 speed up for each of the pruning
techniques.

Maximal cohesive subgraphs analysis
Table 4 shows the topological properties and biologi-
cal enrichment analysis for the genesets in the reported

Table 3 Running time on real enzyme graphs

Graph ID |V| ρ |CIS(G)| TGE RS-SP

(in millions)

502 36 0.116 53.4 10 1

522 37 0.123 2,376.7 438 54

31 38 0.115 4,470.0 850 119

108 38 0.117 3,125.8 566 69

23 39 0.109 713.7 111 15

274 40 0.094 1,723.2 291 45

303 41 0.101 22,534.5 4935 696

513 41 0.112 31,041.1 5017 715

530 42 0.096 44,684.8 7510 1117

500 43 0.109 184,636.9 31,130 4618

maximal cohesive patterns. As we decrease Smin (relaxing
the constraint), the average size of reported subgraphs, N ,
increases. Moreover, the number of subgraphs increases
but then decreases when Smin = 4 the subgraphs increase
in size.

We performed biological enrichment analysis of the
reported patterns. We used the Molecular Signatures
Database (MSigDB) [19, 20] and the DisGeNET human
gene-disease associations database [21] for assessing the
enrichment of the genes in these reported patterns with
these signatures. If a biological annotation is overrepre-
sented in the reported subgraph’s genes, the subgraph
pattern is considered as enriched. The overrepresentation
test is modeled as a hybergeometric test (with pvalue =
0.05) and we checked for enrichment in the following
collections:

1 Hallmark signatures: gene sets that represent
biological processes and display coherent expression.

2 KEGG signatures: gene sets derived from the KEGG
pathway database.

3 Oncogenic signatures: gene sets of dysregulated
cellular pathways in caner.

4 DisGeNET curated human gene-disease associations
database.

Table 4 shows the percentage of patterns that are biolog-
ically enriched with different biological signatures. Some
patterns are enriched with several signatures and some
signatures are enriched in the genes of more than one
pattern.

Table 5 shows the biological signatures that were
enriched the most in the reported patterns for Smin = 9
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Fig. 6 Effectiveness of Pruning Techniques

along with the number of patterns each signature was
enriched in.

Discussion and conclusions
We have proposed a new reverse search algorithm for
enumerating all connected induced subgraphs in a single
graph. Furthermore, we employed the proposed tech-
niques for mining maximal connected subgraphs that
satisfy a constraint defined over the attributes of the
vertices. Leveraging on the order in which the sub-
graphs are enumerated, we proposed two pruning strate-
gies that drastically reduce the running time of the
algorithm by pruning search branches that will not
result in maximal subgraphs. Experiments on both syn-
thetic and real datasets demonstrate the effectiveness
of the proposed approaches. Enrichment analysis of the
reported protein-protein subnetworks whose genes are

Table 4 Enrichment analysis of maximal cohesive subgraphs

Smin N N Density Hallmark% KEGG% Onco% DisGeNet%

1 28 798.6 0.185 68 71 79 93

2 260 124.5 0.19 65 77 59 91

3 642 58.5 0.147 67 72 65 89

4 816 43.5 0.123 76 78 74 92

5 705 37.0 0.106 83 82 80 96

6 429 31.2 0.104 88 86 84 99

7 183 25.9 0.113 89 88 84 99

8 72 20.7 0.125 92 86 89 99

9 32 15.3 0.154 91 78 81 100

dysregulated in a number of cancers reveals that these
subnetworks are biologically significant. Future work
includes developing a parallel implementation of the algo-
rithm and designing pruning strategies for real-valued
vertex attributes.

Table 5 Top enriched signatures in the cohesive subgraphs;
Smin = 9

Hallmark gene sets N KEGG Pathways N

G2M_CHECKPOINT 22 CELL_CYCLE 20

E2F_TARGETS 22 OOCYTE_MEIOSIS 20

MITOTIC_SPINDLE 20 PROGESTERONE_ 17
OOCYTE_MATURATION

MYC_TARGETS_V1 7 UBIQUITIN_MEDIATED_ 8
PROTEOLYSIS

TNFA_SIGNALING_VIA_NFKB 4 P53_SIGNALING_ 5
PATHWAY

MTORC1_SIGNALING 2 HYPERTROPHIC_ 2
CARDIOMYOPATHY_HCM

Oncogenic Signatures N Gene-Disease
Association

N

CSR_LATE_UP.V1_UP 20 Mammary Neoplasms 20

GCNP_SHH_UP_LATE.V1_UP 20 leukemia 18

RB_P107_DN.V1_UP 20 Salivary Gland
Neoplasms

13

CORDENONSI_YAP_CONSERVED 20 Polycystic Ovary
Syndrome

5

RPS14_DN.V1_DN 18 Cerebellar Hypoplasia 4

GCNP_SHH_UP_EARLY.V1_UP 17 Adenoid Cystic
Carcinoma

3
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