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Abstract

Background: Clinical studies often track dose-response curves of subjects over time. One can easily model the
dose-response curve at each time point with Hill equation, but such a model fails to capture the temporal evolution of
the curves. On the other hand, one can use Gompertz equation to model the temporal behaviors at each dose
without capturing the evolution of time curves across dosage.

Results: In this article, we propose a parametric model for dose-time responses that follows Gompertz law in time
and Hill equation across dose approximately. We derive a recursion relation for dose-response curves over time
capturing the temporal evolution and then specify a regression model connecting the parameters controlling the
dose-time responses with individual level proteomic data. The resultant joint model allows us to predict the
dose-response curves over time for new individuals.

Conclusion: We have compared the efficacy of our proposed Recursive Hybrid model with individual dose-response
predictive models at desired time points. We note that our proposed model exhibits a superior performance
compared to the individual ones for both synthetic data and actual pharmacological data. For the desired dose-time
varying genetic characterization and drug response values, we have used the HMS-LINCS database and demonstrated
the effectiveness of our model for all available anticancer compounds.

Keywords: Drug sensitivity prediction, Pharmacogenomic studies, HMS-LINCS, Joint dose-time modeling, Recursive
modeling, Dose-response curve, Tumor growth model, Gompertz law

Background
One of the most important goal of precision medicine
is to predict sensitivity of an anticancer drug to a given
patient. Although, patients are most often characterized
by their gene expressions, a more precise characterization
is obtained by studying their proteomic expressions [1].
Harvard Medical School Library of Integrated Network-
Based Cellular Signatures (HMS-LINCS) [2] offers pro-
teomic data for cancer cell lines measured at various
time intervals post drug application along with observed
apoptosis fractions over different drug concentration and
time. Given the evolution of protein expression over drug
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concentration and time, we would like to predict the
apoptosis fractions of individuals over the same drug con-
centration at 72 hours post application of drug as 72 hours
is considered to be the steady-state for cell viability studies
[3, 4].

Our data, therefore, consists of a collection of tem-
porally varying dose-response curves for each individual
and the predictors are also a collection of temporally
varying expressions, for multiple proteins, observed at dif-
ferent drug concentrations. This may appear as a standard
function-on-function concurrent regression [5], but sev-
eral obstacles arise, such as– (a) number of functional
predictors exceeds the number of cell lines, (b) protein
expression curves are observed at different time points
as compared to the dose-response curves with only lit-
tle overlap. Consequently, standard parametric statistical
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models cannot be readily applied here. Turning to model-
free procedures, Matlock et al. [6] used Random Forest
(RF) methodology to analyze the same HMS-LINCS data.
While their methodology alleviates the small sample-high
dimension problem, it cannot make temporal prediction
of dose-response curves in absence of predictor informa-
tion at the predicting time point. More precisely, given
the observed dose-response curve of an individual at 48
hours, it cannot predict the curve at 72 hours. Therefore,
the RF model either needs to wait till 72 hours and observe
the protein expression curves to predict response, or it
requires extrapolating protein expression data to 72 hours
and then make predictions.

Standard machine learning (ML) approaches also fail to
explicitly take into account a few well established proper-
ties of dose-response curves and their temporal evolution.
For instance, Haber’s law suggest a monotonic relation-
ship between responses observed at two successive time
points at a given dose [7] and this rule, in turn, induces
the dose-response curve observed at a later time point
to dominate or be dominated by the curves observed at
earlier time points [8]. Such constraints cannot be eas-
ily built into ML algorithms. Furthermore, these models
provide little insight into the steady-state properties of
the dose-response curves. Regardless of these shortcom-
ings, several studies have demonstrated superior predic-
tive performance of RF based models in drug sensitivity
predictions [9–11].

To alleviate some theoretical restrictions of the fore-
going ML approaches, while borrowing the predictive
strength of RF methodology, we offer a hybrid model
that satisfies some physical laws that dose-response curves
are expected to satisfy while retaining a flexible model-
free relationship between predictors and responses. In
particular, we propose a parametric model for dose-time
responses that follows the Gompertz law in time and
approximately follows the Hill equation across dose. We
derive a recursion relation for dose-response curves over
time capturing the temporal evolution and theoretically
examine their steady-state behavior. We then specify an
RF model connecting the parameters controlling the dose-
time responses with individual level proteomic data. The
resultant joint model allows us to predict dose-response
curves over time for new individuals. The complete fit-
ting code along with a synthetic example can be obtained
from GitHub via: https://github.com/dhruba018/Dose_
time_Response_Recursive_Model.

Results
We have evaluated the performance of our proposed
recursive hybrid model using both synthetic data and
HMS-LINCS database mentioned above. Note that, we
were forced to limit our analysis to a single dataset
since, to our knowledge, HMS-LINCS is the only publicly

available source offering functional responses as well
as predictors. Furthermore, dimensions of HMS-LINCS
datasets are restricted to a handful of drugs and sam-
ples with a higher number of predictors in contrast to
some common pharmacogenomics databases (e.g., CCLE
[12] or GDSC [13]) that provides dose-response curves for
hundreds of samples, but with static feature sets. Here, we
use HMS-LINCS as our synthetic data generation baseline
first and then directly for analysis.

Description of HMS-LINCS datasets
We used two distinct datasets from HMS-LINCS as our
predictor and response sets. The predictor set consists
of dose-time expression for 21 proteins and the response
set contains the mean apoptosis fractions observed in 10
BRAFV600E/D melanoma cell lines over multiple doses and
time points [2, 6]. Both protein expressions and apopto-
sis fractions are available post drug application at 7 dose
levels ranging from 3.2 nM to 3.2 μM. However, while
the protein expressions are available at 5 different time
points (1, 5, 10, 24 & 48 hours post drug application), the
apoptosis data is available only for 24, 48 & 72 hours
post drug application. Apoptosis fraction was computed
from the number of apoptotic cells at each dose-time
point and the total initial number of cells normalized
with DMSO control and then averaged over 4 replicates
to produce the mean value. Both sets are available for
5 RAF/MEK inhibitor drugs. More detailed descriptions
can be obtained from [2, 6].

For this study, we only use protein expressions observed
at 24 & 48 hours, since those expressions match the tem-
poral record of the responses (24, 48 & 72 hours). For the
72 hours scenario, we use a time series model for data
extrapolation (elaborate description is provided below in
“Application on HMS-LINCS data” section). Moreover,
only 14 out of 21 proteins have complete records in the
covariate set, therefore, we only use these 14 proteins as
our final predictors.

Simulation study
To demonstrate the efficacy of our proposed model, we
have performed a simulation study involving two syn-
thetic datasets with 7 subjects, 7 dose levels, and 8 time
points each (m = 7, D = 7, T = 8). The predictor set
contains the expression of 14 different covariates at each
dose-time point (P = 14). For detailed explanation of the
terms used here, look into the “Methods” section.

Synthetic data generation
We first form the slope coefficient matrix in Eq. (20)
by using the difference between HMS-LINCS protein
expressions x(p)

t,d,i at 24 & 48 hours post application of
the drug AZ-628 as the base βd,i and add random noise
to create distinction between subjects. This yields a
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)
49 × 14 matrix per subject (for 7 time point differ-

ences and 7 doses). We also use the 24 hour expression
data post AZ-628 application in cell line C32 as baseline
covariates and add random noise to create our predictors
per subject z(p)

t,d,i, p = 1, 2, · · · , 14.

β
(p)

d,i := dx(p)

·,d,i
dt

=x(p)

48,d,i−x(p)

24,d,i + νi, νi ∼ U
( − 0.01, 0.02

)

(1)

z(p)

0,d,i = x(p)

24,d,C32 + ν′
i , ν′

i ∼ U
( − 0.5, 0.5

)

z(p)

t,d,i = z(p)

t−,d,i + β
(p)

d,i

∣∣∣
�t = t − t−

, t = 1, 2, · · · , 7 (2)

For the output, we create a response matrix V 8 × 7
(D = 7, T = 8) per subject where dose-response val-
ues for the initial time epoch are extracted from the 4
parameter sigmoidal dose-response model g(d) in Eq. (8)
assuming a, b and θ as fixed but ci (i.e., EC50) to be vary-
ing with each subject i. To generate the responses for
the remaining 7 time points, we estimate the growth and
scaling coefficients (αd,i, γd,i in (20)) as linear models of
the slope coefficient vector βd,i with random weight vec-
tor sets and take the final estimates as the maxima of
the estimates at current and immediately previous doses
(following property (ii) of the recursive model in (14)).

We assume the 7 dose levels to be linearly spread in the
interval [ 0, 1].

αd,i = w(0)
α,i + w(1)

α,i β
(1)

d,i + · · · + w(14)
α,i β

(14)
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)
, γ̂d,i = max

(
γd,i,γd−,i

)
, d = 2, · · · , 7

(3)

where w(p)
·,i ∼ U(0, 1) are randomly chosen weight val-

ues for protein p in subject i. We then use this α̂d,i, γ̂d,i
in the one-step prediction relation in Eq. (21) to generate
responses at t > 0. Figure 1 illustrates the monotonicity
of drug response surfaces over dose and time for a rep-
resentative subject with different levels of additive noise
in response. An additional section displays the dose-time
response surfaces for all 7 subjects [see Additional file 1:
Figures S1-S3].

α̃d,i = α̂d,i

∣∣∣
�t = t − t−

γ̃d,i = γ̂d,i

∣∣∣
�t = t − t−

vt,d,i = vt−,d,i e γ̃d,i
(

1 − e−α̃d,i
)

, t = 1, 2, · · · , 7
(4)

Dose-time response prediction
For the simulation study, we assume that the responses
are available for the 7 initial time epochs while we predict
for the last epoch with both our proposed hybrid recur-
sive model and a standard RF model for each individual.

Fig. 1 Dose-time response surfaces for synthetic data under various additive noise conditions
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To train these RFs, we use the protein expressions and
responses at t < 7 as predictors and output respectively
and predict for the expression values at t = 7. We also ana-
lyze the effect of noise in response values. Two different
scenarios are shown in Fig. 1 along with the noiseless case,
where the additive noise values are sampled respectively
from U(−δ, δ) & N

(
0, δ2

4

)
, δ = 0.05 and incorporated in

(4). Figure 2 displays the predicted dose-response curves
overlaid with the actual responses for all 3 scenarios. For
objective performance measure, we also perform compar-
isons between mean square prediction errors (MSPE) for
both hybrid and individual models in all 3 scenarios, as
illustrated in Table 1.

Application on HMS-LINCS data
As mentioned earlier, HMS-LINCS protein expression
and mean apoptosis fraction sets contain data for 10 dif-
ferent cell lines at 7 different doses of 5 different drugs.
We only keep protein expression data at 24 & 48 hours
post drug application in our predictor set and while the
response set contains the complete mean apoptosis frac-
tion data. However, only 7 out of 10 cell lines have com-
plete record on apoptosis fractions and these 7 cell lines
form our training set. The remaining 3 cell lines with
partial records is used to validate our model. Since we
are using protein expressions at only 2 times points, we
simply put their differences as predictors β

(p)

d,i for the RF
regression models (in (17)) to predict αd, γd.

β
(p)

d,i = x(p)

48,d,i − x(p)

24,d,i, p = 1, 2, · · · , 14

α̂d,i = RFα

(
β

(1)

d,i , β(2)

d,i , · · · , β
(14)

d,i

)

γ̂d,i = RFγ

(
β

(1)

d,i , β(2)

d,i , · · · , β
(14)

d,i

)
(5)

Out of the 3 validation cell lines, 2 cell lines (MMAC-SF
and SKMEL28) have apoptosis records for 48 & 72 hours,
but the 24 hours records are missing. The other cell line
(K2) has apoptosis records for 24 & 48 hours with miss-
ing 72 hours records. So, for the former two, we use the 48
hours data as baseline and generate 72 hours prediction
while for K2 we use the 24 hours data as baseline and gen-
erate 48 hours prediction. A cartoon representation of the
prediction procedure is shown in Fig. 3.

We perform the one-step ahead prediction in (21) for
all 5 drugs and calculate the associated mean MSPE over
3 test cell lines, as shown in Table 2. Similar to the sim-
ulation study, we compare these results with mean MSPE
for standard individual dose-time RF models to put the
performance into perspective. For RF training, we use the
observed apoptosis fraction at each dose at 72 hours as our
responses and the set of protein expressions at the corre-
sponding dose level at 72 hours as our feature set. Since
the protein expressions are not available at 72 hours, we fit
a cubic spline to the expression values at each dose level for
the 5 time points available and extrapolate to 72 hours for
the required feature set. We use this extrapolated expres-
sions to predict the apoptosis fractions at each dose for

Fig. 2 Predicted synthetic data dose-response curves at t = 7 overlaid with the actual dose-response curves
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Table 1 Mean square prediction errors (MSPE) for recursive Hybrid Model and Individual RF Models for synthetic data

Subject

Leave-one-out MSPE
(×10−3

)

Noiseless Uniform Noise Gaussian Noise

Hybrid Model Individual Model Hybrid Model Individual Model Hybrid Model Individual Model

S1 0.605 36.816 2.778 38.562 1.969 36.952

S2 1.049 37.945 1.529 36.127 2.232 31.976

S3 1.246 4.620 1.538 5.038 2.035 6.337

S4 0.384 4.622 0.505 3.917 0.503 5.418

S5 1.536 8.050 2.889 9.469 3.298 8.597

S6 1.009 15.008 1.119 18.273 1.469 13.589

S7 0.800 35.575 3.153 37.474 1.211 39.244

Mean 0.947 20.377 1.930 21.266 1.817 20.302

Bold values indicate the best performance

cell lines MMAC-SF and SKMEL28. For K2, we use the
available 48 hour covariate data to train the RFs and per-
form prediction. We also plot the predicted dose-response
values from both models with the observed values in
Fig. 4 for 3 representative cell line – drug combination
scenarios.

Discussion
From the MSPE results in Tables 1 and 2, we can infer that
the hybrid model predictions fit the actual dose-response
curves significantly better than the individual RF models.

For synthetic data, the hybrid model shows a mammoth
decrease in MSPE values in Table 1 even when noise is
present. Specifically, the overall mean MSPE for hybrid
model is ∼ 22 times less than the mean MSPE for indi-
vidual models in noiseless scenario and ∼ 11 times less
in noisy cases. For the HMS-LINCS results in Table 2,
the overall mean MSPE achieved by our model is 0.0044,
which is a staggeringly ∼ 2.5 times less than the mean
MSPE produced by the individual models (0.0105). We
can also reach the same conclusion from examining the
predicted dose-response curve fits in Figs. 2 and 4. For

Fig. 3 Prediction of dose-response functions of apoptosis fraction from dose-expression functions of multiple proteins
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Table 2 Mean square prediction errors (MSPE) for recursive
Hybrid Model and Individual RF Models for HMS-LINCS data

Drug
Mean MSPE (×10−3)

Hybrid Model Individual Model

AZ-628 2.790 19.474

PLX-4720 6.482 7.410

SB590885 2.146 4.349

Selumetinib 1.550 10.556

Vemurafenib 8.825 10.538

Mean 4.359 10.465

Bold values indicate the best performance

synthetic data, the predicted curves closely follow the
observed dose-response variations even in the presence of
significant noise, as demonstrated in Fig. 2 for subject 7
(An additional section illustrates the dose-response pre-
dictions for all 7 subjects [see Additional file 1: Figures S4 -
S6]). For HMS-LINCS data, we have displayed predic-
tions for 3 representative cases (out of 15 cell line – drug
combinations) which also demonstrates the efficacy of our
proposed hybrid model. These results bolster our claim
that the recursive hybrid model is a much superior predic-
tor of the dose-time response behavior compared to the
standard RF methodology.

One important property of the hybrid model is that–
given an initial dose-response curve, all dose-response

curves at the subsequent time epochs inherit the theoret-
ical properties of the initial curve (following (13)). There-
fore, our model cannot accommodate situations where
the properties of dose-response curve changes with time.
This results in the 3 most glaring mismatches between
the observed and predicted dose-response curves for the
cell line – drug combinations: MMAC-SF – PLX4720,
MMAC-SF – Vemurafenib, and SKMEL28 – SB590885.
For these cases, the observed dose-response curves at 72
hours are partially observed sigmoidals where we do not
observe the upper asymptotes. Since the Gompertzian
kinetics enforces an upper asymptote proportional to the
upper asymptote observed at t = 0 (following (16)), the
model becomes ill-scaled. Due to this susceptibility of
our model to misspecification, a naïve RF model outper-
forms our model in all three situations, as shown in Fig. 5
(An additional section shows the predictions for all 15
cases [see Additional file 1: Figures S7 - S9]). Further-
more, although in 12 out of 15 test cases, our hybrid model
outperforms RF, there exists some mismatch between the
observed and predicted data. The main reason for this dis-
crepancy is the imprecision associated with the estimates
of αd,i & γd,i. Observe that for all dose points, we are esti-
mating the two Gompertzian parameters from only 3 time
points. With such limited data, the point estimates are
bound to have large uncertainties, reflected by the mis-
matches. However, an increase in time points can reduce
the imprecisions as illustrated in simulation study, where
we have included 8 time points and observed a much

Fig. 4 Predicted dose-response curves from Hybrid model and individual RF models at 48/72 hours for 3 representative cell line – drug
combinations. The observed dose-response curves are also overlaid
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Fig. 5 Predicted dose-response curves from Hybrid model and individual RF models at 72 hours for 3 cell line – drug combinations for which RF
models outperform the Hybrid model. The observed dose-response curves are also overlaid

closer fit for the predicted curves from the hybrid model
to the observed (synthetic) dose-response curves, even
with the presence of noise (Fig. 2).

Model scalability
The limited nature of HMS-LINCS datasets is precisely
the reason we decided on conceptualizing a hybrid model.
As mentioned above, to our knowledge, HMS-LINCS is
the only publicly available database providing both func-
tional predictor and response data. Several standard ML
approaches that have been demonstrated to work well
with large pharmacological datasets in literature [10],
from where we have chosen Random Forest as our regres-
sion model due to its superior predictive capabilities [9,
11] as well as efficient handling of large datasets [14].
Moreover, note that there are only a few functional predic-
tors (i.e., 14) and therefore, in terms of scalability, we could
handle a large number of samples with the same number
of functional predictors using the standard function-on-
function regression easily without much demand on the
computational resources. The computational burden may
appear to escalate if we increase the number of functional
predictors while keeping the sample size fixed, but this
will be significantly alleviated by the RF modeling that
connects the Gompertzian parameters with the slopes
of the predictors. Therefore, the posited model is easily
scalable for both large sample-size and large feature-size
without much demand on computational resources. The

time aspect is also not problematic since majority of the
studies report observations at 72 hours [3, 4]. Given this
time horizon, if the temporal resolution is very high, we
can always coarsen the resolution at hourly (or daily) scale.
The real bottleneck is the number of dose levels which
can enforce a large number of optimization operations
since the Gompertzian parameters are estimated sequen-
tially at each time point. However, in reality, we do not
expect too many dose levels due to the cost involved in
data collection at finely resolved dosages.

We, therefore, need to deal with only two effective
dimensions of scalability– (a) increase in the number of
subjects, and (b) increase in the number of predictors. The
model is set up to be simultaneously scalable in both these
dimensions. Moreover, the response model for each sub-
ject is modeled independently to obtain subject-specific
Gompertzian parameters, and therefore, estimation for
each subject is trivially parallelizable. Once the param-
eter estimates are obtained, an RF model is deployed
to connect the covariates with response parameters. To
put these above discussion into perspective, we can look
into the execution time for hybrid model prediction. For
our experiments, the synthetic data case roughly takes
∼ 1.1 sec to fit for 6 subjects and predict dose-time
responses for subject 7, while for HMS-LINCS data, it
takes ∼ 0.785 sec to fit the 7 training cell lines and
predict temporal dose-responses for all 3 validation cell
lines.
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Conclusions
We have developed a recursive hybrid methodology to
model dose-time responses of individuals characterized
by a set of functional covariates. Instead of directly
connecting the observed responses with the observed
covariates, we have taken a stepwise approach where the
responses are modeled separately according to a para-
metric specification and the parameters of the response
models are connected to the covariates via RF regression
models. Empirical results suggest that our model provides
significant improvement, in terms of MSPE, as compared
to a naïve RF model directly connecting responses with
covariates. The main strength of our methodology is
that it can incorporate additional information about the
expected behavior of the responses while letting machine
learning methodology drive the processes on which we
have no prior information about their expected behavior.
We have theoretically shown some desirable properties of
our hybrid model and demonstrated its predictive capa-
bilities.

However, all these properties are contingent on proper
specification of initial condition. Since all the later dose-
response curves inherit the properties of the initial curve,
our model cannot account for temporal variation in dose-
response curve properties leading to a naïve RF model
outperforming it (see Fig. 5). Furthermore, all our pre-
dictions are predicated on the availability of a baseline
dose-response curve. To handle the situations where an
individual comes along with only a set of baseline covari-
ates (say, gene expression), we propose to specify a regres-
sion model connecting the baseline dose-response curves
in the training set with their respective covariates using
either a functional regression approach [5] or a fully
data-driven functional random forest approach [15]. We
can then use the covariates of a new individual to pre-
dict the associated baseline dose-response curve. This
will provide us with the necessary initial conditions to
utilize our recursive framework to generate the entire
collection of dose-response curves at prespecified time
epochs. We propose to investigate this approach in future
studies.

We also note that the current model is devised to
demonstrate that incorporating some known biological
properties can bring about significant improvement in
predictions. The model is set up to be computation-
ally fast and easily scalable as number of subjects and
predictors increase. However, in order to achieve compu-
tational efficiency, we forego the opportunity to perform
a full blown likelihood based inference. We are cur-
rently investigating a Bayesian hierarchical specification
given by

yt,d,i = μt,d,i + εt,d,i (6)

with

μt,d,i = μ0,d,i eγd,i
(

1 − e−αd,it
)

+ ηt,d,i

μ0,d,i ∼ T N

⎛

⎜
⎝

⎡

⎢
⎣a0 + b0 − a0

1 +
(c0

d

)θ0

⎤

⎥
⎦, σ 2

0

⎞

⎟
⎠

(7)

where T N (μ, σ 2) is a truncated Normal distribution on
an appropriate compact support, while ε, η are inde-
pendent Gaussian noises with appropriate supports that
match the support of the response. This hierachical model
in (6 - 7) offers a formal stochastic extension of the posited
hybrid model and the subsequent posterior analysis will
allow us to create posterior predictive bands for the test
cases, thereby offering insights into the adequacy of our
model.

Methods
The following sections provide a detailed analysis of our
proposed Recursive Hybrid Model along with the desired
underlying properties.

Model specification
Let yt,d,i be the mean apoptosis fraction at time t and dose
d for subject i, d = 1, 2, · · · , D; t = 1, 2, · · · , T ; i =
1, 2, · · · , m. We suppress the subscript i for the moment
and develop a dose-time model for each individual. A
simple parametric model for dose-time responses can be
written as

yt,d = f (t) g(d) + ε

where

f (t) = a0 eγ (1 − e−αt)

g(d) = a + b − a

1 +
( c

d

)θ

(8)

where f (t) is a Gompertz model in time t with α control-
ling the growth rate and g(d) is the sigmoidal model in
dose d with a being the lower asymptotic response at d =
0, b being the upper asymptotic response at d = ∞, c is
often interpreted as EC50, θ is the Hill slope i.e., the slope
at the steepest part of the sigmoidal curve and ε is usually
assumed to be Gaussian noise. Cross-sectionally, the four
parameter sigmoidal function g(d) is widely used in dose-
response studies [16–20] while longitudinally, the two
parameter Gompertz model f (t) is arguably the most pop-
ular growth model in tumor modeling efforts [16, 21–24].
Therefore, both g(d) and f (t) are well suited if we wish to
model the corresponding marginal processes separately.
However, assuming a separable product model describing
the joint process enforces some unjustifiable assumptions.
For instance, such a separable model induces dose invari-
ant temporal growth rate which contradicts Haber’s law
[7] and also empirical observations suggesting growth rate
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at higher dose is significantly different from that observed
at small dose levels [6].

To remove separability, we can introduce dose-
dependent parameters in f (t) and time-dependent param-
eters in g(d). However, specification of time-dependent
parameter makes temporal prediction of responses
quite challenging. Furthermore, inclusion of both time-
dependent and dose-dependent parameters in Eq. (8) will
make the model heavily overparametrized. Therefore, to
guarantee the estimability of these parameters, we need
to enforce some dependence among these parameters.
We capture this dependence by specifying a temporally
recursive model for dose-response curves which implicitly
induces dependence among the parameters. The recur-
sion relation enables us to generate temporal predictions
without incorporating the foregoing dependence explic-
itly.

Gompertzian recursion
Broadly speaking, our strategy is to fit a sigmoidal dose-
response curve at the first observed time epoch and then
enforce the subsequent dose-response curves to follow
Gompertzian law at each dose point. Gompertzian kinet-
ics essentially suggests exponential growth with expo-
nentially decaying growth coefficient. Several empirical
studies have reported Gompertz model to best fit tumor
growth data [23, 25, 26]. Now, in order to effectively
reduce the size of tumor, the kill rate induced by the drug
should mimic the tumor growth pattern and hence we
expect the dynamics of apoptosis fraction to follow Gom-
pertzian kinetics too. To illustrate our conceptualization
of Gompertzian law, we drop the subscript d momentarily.
We begin with Ricker’s parametrization [27] of Gompertz
model given by

nt = n0 eγ (1 − e−αt), γ ≥ 0, α ∈ R (9)

where nt is expected value of the trait (number, density,
etc.) under consideration at time t, n0 is the initial value of
the trait giving the starting point on the growth curve, α is
the growth coefficient and γ controls the upper asymptote
of the growth curve (n0 eγ ) by scaling the curve vertically
(i.e., the scaling coefficient). In our situation, the focal trait
is the mean apoptosis fraction. Therefore, our temporal
model for the apoptosis fraction is posited as

yt = y0 eγ (1 − e−αt), γ ≥ 0, α ∈ R (10)

where y0 is viewed as the mean apoptosis fraction
observed immediately after drug application. Now, we can
insert the dose subscript d in (10) and specify a sigmoidal
dose-response model for y0, i.e.

y0,d = a0 + b0 − a0

1 +
(c0

d

)θ0
(11)

Inserting (11) in (10) yield a model for expected dose-
response at time t and dose d as

yt,d =
⎡

⎢
⎣a0 + b0 − a0

1 +
(c0

d

)θ0

⎤

⎥
⎦ eγ (1 − e−αt) (12)

It is easy to see (12) yields the following recursion rela-
tion between the apoptosis fractions observed at two
consecutive time points at each dose d

yt+1,d = yt,d e[γ (1 − e−α)e−αt] (13)

Now, observe that if we assume α and γ to be dose
invariant in (12), since eγ (1 − e−αt) is a non-negative quan-
tity, yt,d inherits the sigmoidal property from y0,d. There-
fore, the collection of dose-response curves over time are
sigmoidal in dose and Gompertzian in time. Furthermore,
Eq. (13) connects two sigmoidal curves at consecutive
time epochs with the Gompertzian law implicitly induc-
ing temporal dependence among sigmoidal parameters.
Evidently, the recursion relation allows prediction in time
despite having implicit time-dependent sigmoidal param-
eters.

Properties of the recursive model
Observe that in Eq. (12), the assumption of dose-invariant
Gompertzian parameters yields an unrealistic scenario.
Particularly at d = 0, the lower asymptotes of the sig-
moidal curves shifts with time. It is hard to justify why
apoptosis fraction will change with time even though
no drug is administered. To alleviate such drawbacks,
we make both growth and scaling coefficients dose-
dependent. Consequently, (12) becomes

yt,d =
⎡

⎢
⎣a0 + b0 − a0

1 +
( c0

d

)θ0

⎤

⎥
⎦ eγd

(
1 − e−αdt

)
(14)

while the recursion relation between two consecutive time
points at dose d is still given by (13) after incorporating
αd , γd. To investigate the asymptotic property of (14), we
impose the following reasonable constraints

(a) Since apoptosis fraction is expected to increase as
drug concentration increases, we assume that both
αd (∈ R ∀d ≥ 0) and γd

(∈ R
+ ∪ {0} ∀d ≥ 0

)
are

non-decreasing functions of dose d.
(b) limd → 0 γd = 0
(c) Apoptosis fraction is bounded in [ 0, 1], therefore, we

assume that limd → ∞ αd = α∗ and limd → ∞ γd = γ ∗
where α∗, γ ∗ are finite positive constants that satisfy
the bounded property of apoptosis fractions.

Under these assumptions, we have the following prop-
erties of the dose-response curve at time t, obtained from
(14).
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(i) At d = 0, assumption (b) forces the asymptotes of
the sigmoidal curves to be stationary at a0 regardless
of time. This is justifiable since we do not expect to
see any change in apoptosis fraction from the
baseline a0 without the application of a drug,
regardless of how much time has elapsed.

(ii) Given a particular time t, assumption (a) makes
eγd

(
1 − e−αdt

)
an increasing function of dose d. If y0,d

is also an increasing function of d, then so is yt,d
(following (14)) with lower asymptote at a0 and upper
asymptote at bt = b0eγ ∗(1 − e−α∗t

)
. From assumption

(c), α∗, γ ∗ > 0, therefore b0 > a0 =⇒ bt > a0.
(iii) Since bt is an increasing function of time, the upper

asymptotes of the dose-response curves increases
with time indicating the expected greater efficacy at
higher dose levels. In general, since the dose-response
curves at each time epoch is monotonically increasing
in dose (assuming y0,d is increasing in dose), Eq. (14)
suggests dose-response curves at later time points will
dominate the curves observed at initial time points.
Also, the fact that the apoptosis fraction is bounded
above by 1 is easily realized by specifying b0 < e−γ ∗ .

(iv) Eq. (13) and assumption (c) suggest that

lim
t→∞

[
yt+1,d

yt,d

]
= 1 (15)

indicating that the area under the curve (AUC) of the
dose response curves do not become arbitrarily large
with time but achieves a theoretical steady-state. A

graphical representation of the above properties of
our proposed recursive model (Eq. (14)) is shown in
Fig. 6.

Regression model for individuals
In the preceding sections, we have discussed the dose-
time model for responses observed for a single individual.
We have several such individuals, each characterized by
a set of protein expressions observed over both dose and
time. Let x(p)

t,d,i denote the observed expression for protein
p in subject i at dose d and time t, p = 1, 2, · · · , P, t =
1, 2, · · · , T , d = 1, 2, · · · , D, i = 1, 2, · · · , m. We now
connect these x(p)

t,d,i values with the individual dose-time
model specified in (14) by introducing the subscript i,
which yields

yt,d,i =
⎡

⎢
⎣a0,i + b0,i − a0,i

1 +
(c0,i

d

)θ0,i

⎤

⎥
⎦ eγd,i

(
1 − e−αd,it

)

(16)

and the recursion relation between consecutive time
points for an individual i at dose d is still given by (13) after
incorporating the parameters αd,i, γd,i.

For each individual, we begin with fitting a sigmoidal
dose-response curve at t = 0 to estimate a0,i, b0,i, c0,i, θ0,i.
We then posit that, for each individual, the growth and
scaling coefficients (αd,i & γd,i) are determined by the rate
of change in protein expressions over time i.e., fit a tempo-
ral trend model for each x(p)

·,d,i time series and use the slope

Fig. 6 An illustration of the behavior of the recursive Hybrid model developed in Eq. (14) for various dose-time points. The dose-response curve at
t = 50 (green) cannot be distinguished from the curve at t = 100 (indigo) demonstrating the asymptotic behavior of the dose-responses curves
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coefficients β
(p)

d,i

(
= dx(p)

·,d,i
dt

)
as the predictors in two Ran-

dom Forest (RF) regression models in (17). However, since
αd,i, γd,i are not observed, we plug their estimates in LHS.

αd,i = RFα

(
β

(1)

d,i , β(2)

d,i , · · · , β(P)

d,i

)

γd,i = RFγ

(
β

(1)

d,i , β(2)

d,i , · · · , β(P)

d,i

) (17)

The algorithm for the stepwise fitting procedure is given
below.

Stepwise fitting algorithm
→ At t = 0, fit a sigmoidal curve to the observed

dose-responses for each individual i and obtain the
estimates â0,i, b̂0,i, ĉ0,i, θ̂0,i and hence obtain ŷ0,d,i.

→ For each individual in the training set at each dose
level, obtain the least square estimates of αd,i & γd,i
using the recursion relation in (13). That is

(
α̃d,i, γ̃d,i

)=argmin
αd,i , γd,i

T∑

t=1

[
yt,d,i−ŷt−,d,i eγd,i

(
e−αd,it−−e−αd,it

)]2

(18)

where ŷt−,d,i is the dose-time response at the
immediate preceding time point t−. Usually, we
perform a one-step ahead prediction for a specific
time epoch t, considering t− = 0 and t = 1 in (18),
which yields

(
α̃d,i, γ̃d,i

) = argmin
αd,i, γd,i

T∑

t=1

[
yt,d,i − ŷt−,d,i eγd,i

(
1 − e−αd,i

)]2

(19)

To satisfy assumption (c), we take the final estimates
to be α̂d,i = max

(
α̃d,i, α̃d−,i

)
and

γ̂d,i = max
(
γ̃d,i, γ̃d−,i

)
where (·)d−,i is the estimate of

that parameter obtained at immediately preceding
dose level d−.

→ Fit a trend model to the time series of each protein
expression for each subject at each dose level and
obtain the slope coefficients β

(1)

d,i , β(2)

d,i , · · · , β(P)

d,i .
→ If the training set consists of m individuals, then at

each dose d, define m × 1 vectors α̂d, γ̂ d and m × P
matrix βd as

α̂d = [
α̂d,1 α̂d,2 · · · α̂d,m

]T

γ̂ d = [
γ̂d,1 γ̂d,2 · · · γ̂d,m

]T

βd =

⎡

⎢⎢⎢⎢
⎣

β
(1)

d,1 β
(2)

d,1 · · · β
(P)

d,1
β

(1)

d,2 β
(2)

d,2 · · · β
(P)

d,2
...

...
. . .

...
β

(1)

d,m β
(2)

d,m · · · β
(P)

d,m

⎤

⎥⎥⎥⎥
⎦

=

⎡

⎢⎢⎢
⎣

βd,1
βd,2

...
βd,m

⎤

⎥
⎥⎥
⎦

(20)

Use βd as the covariate matrix and α̂d, γ̂ d as the
output to train the RFs in (17) modeling the
Gompertzian parameters.

→ To predict for a new individual, use the
corresponding matrix β new

d as input to get
α̂

new
d , γ̂

new
d . Use the observed baseline dose response

for this individual and generate temporal forecast
using (16). For the one-step ahead prediction in (19),
the recursion relation in (13) simplifies as

yt,d,i = yt−,d,i e γd,i
(

1 − e−αd,i
)

(21)

Additional file

Additional file 1: Supplementary information to recursive model for
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