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Abstract

Background: Drug candidates often cause an unwanted blockage of the potassium ion channel of the human
ether-a-go-go-related gene (hERG). The blockage leads to long QT syndrome (LQTS), which is a severe life-threatening
cardiac side effect. Therefore, a virtual screening method to predict drug-induced hERG-related cardiotoxicity could
facilitate drug discovery by filtering out toxic drug candidates.

Result: In this study, we generated a reliable hERG-related cardiotoxicity dataset composed of 2130 compounds, which
were carried out under constant conditions. Based on our dataset, we developed a computational hERG-related
cardiotoxicity prediction model. The neural network model achieved an area under the receiver operating characteristic
curve (AUC) of 0.764, with an accuracy of 90.1%, a Matthews correlation coefficient (MCC) of 0.368, a sensitivity of 0.321,
and a specificity of 0.967, when ten-fold cross-validation was performed. The model was further evaluated using ten
drug compounds tested on guinea pigs and showed an accuracy of 80.0%, an MCC of 0.655, a sensitivity of 0.600, and
a specificity of 1.000, which were better than the performances of existing hERG-toxicity prediction models.

Conclusion: The neural network model can predict hERG-related cardiotoxicity of chemical compounds with a high
accuracy. Therefore, the model can be applied to virtual high-throughput screening for drug candidates that do not
cause cardiotoxicity. The prediction tool is available as a web-tool at http://ssbio.cau.ac.kr/CardPred.
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Background
Many drug candidates are withdrawn owing to unex-
pected side effects. Therefore, it is a major challenge to
screen out potential toxic compounds in the drug dis-
covery process. Cardiac toxicity is one of the side effects
and a major cause of drug withdrawals in drug discov-
ery. A representative mechanism of cardiotoxicity in-
volves the binding of compounds to the cardiac
potassium channel encoded by the human ether-a-go--
go-related gene (hERG), which results in long QT syn-
drome (LQTS) and eventually leads to fatal ventricular
arrhythmias and sudden death [1, 2]. Recently, many
drugs, such as terfenadine, cisapride, astemizole,

sertindole, thioridazine, and grepafloxacin, were with-
drawn from the market owing to undesired cardiotoxi-
city effects [3]. The development of an accurate
prediction model for hERG channel blockers is, there-
fore, essential in the early stage of drug development.
Experimental high-throughput screening methods

have been developed [4], but experimental methods for
drug-induced cardiotoxicity are time-consuming and
costly. Thus, it is necessary to develop a computational
approach to accelerate drug discovery. In recent years,
several ligand-based in silico models have been devel-
oped to predict drug-hERG interactions based on the
pharmacophore, quantitative structure-activity relation-
ship (QSAR), and classification models [5–8].
The first pharmacophore model was developed based

on steric and electronic features associated with the bio-
logical effects on hERG binding affinity using 15
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compounds by Ekins et al. [9]. Because conventional
pharmacophore models were generally developed using
small training datasets of fewer than 500 [10, 11], their
applicability was highly limited. Thus, ensemble models
integrating diverse pharmacophore methods have also
been developed for a better prediction of the hERG
binding affinity [5, 12].
Three-dimensional (3D)-QSAR models based on 3D

structure information, such as the molecular interaction
fields, have been developed to predict the correlation be-
tween the 3D structure information and hERG binding
affinity by regression analysis. Two representative
methods used for 3D-QSAR modelling were the com-
parative molecular field analysis (CoMFA) [13] and
grid-independent descriptors (GRIND) [14]. Both
3D-QSAR models exhibited a high performance in pre-
dicting the binding affinity for most compounds that
were not lipophilic compounds [13, 15].
Classification models for toxicity prediction have been

developed using a set of physicochemical descriptors. To
improve prediction performance, various machine learn-
ing algorithms have been employed, including the sup-
port vector machine (SVM), naïve Bayes, decision tree,
random forest, and k-nearest neighbors (kNN) [16–19].
The machine learning algorithms have facilitated the ad-
vancement of prediction model development, but the in-
clusion of inconsistent experimental data included in
training datasets damps the development of accurate
prediction models [20]. Available hERG toxicity datasets
were compiled from the literature in which experiments
were conducted under different conditions and the def-
inition of toxicity was also different. To our knowledge,
there are no large hERG toxicity datasets obtained from
a single study. Recently, Czodrowski et al. developed a
hERG toxicity prediction model using a large dataset
containing 4415 compounds extracted from the
ChEMBL database [20]; however, the model showed a
low AUC value because of the inconsistency of the data-
base. Because the hERG toxicity database was compiled
from the literature, it included many inconsistent experi-
mental data.
For this study, we generated a large experimental data-

set of hERG assay results from 2130 chemicals, which
were carried out under the same conditions. Similar to
the ChEMBL hERG toxicity database, publicly available
datasets were generally collected from the literature and
may contain many inconsistent data. Such inconsistency
may lead to inaccurate computational models. Our data-
set was used to train machine learning models (linear re-
gression, ridge regression, logistic regression, naïve
Bayes, neural network, and random forest), and it was
found that the model using the neural network showed
a higher Matthews correlation coefficient (MCC) of
0.368, than the other models. In addition, when the

neural network model was further evaluated using a test
dataset of ten drug compounds obtained from in vivo
experiments in this study, the model showed a high ac-
curacy of 80% (MCC of 0.655). Therefore, the developed
hERG-toxicity prediction model can be utilized as a vir-
tual screening tool for the identification of the cardio-
toxicity of drug candidates in the early stage of drug
discovery.

Materials and methods
Binding assay for hERG based on fluorescence
polarization
The fluorescence polarization (FP)-based binding assay for
hERG was measured according to the protocol of the Pre-
dictor™ hERG FP kit (Thermo Fisher Scientific, Inc., Rock-
ford, IL, USA). The membrane fraction containing the
hERG channel protein (Predictor™ hERG membrane) and
tracer (Predictor™ hERG tracer red) was prepared with di-
lution in the binding buffer provided by the manufacturer.
The binding assay was conducted in a final volume of
20 μL with a 10 μL membrane, 5 μL of a 4 nM tracer, and
5 μL of test compounds. The assays were conducted in
384 well black flat-bottom microplates (Corning Life Sci-
ences, Lowell, MA, USA). After incubation for 4 h at room
temperature, the FP was determined using a multimode
reader (Infinite M1000PRO; Tecan, Mannedorf,
Switzerland) in the FP detection mode, with excitation
and emission filters of 535 and 590 nm, respectively.

In vivo experimental procedures and recordings of
electrocardiography
In this study, guinea pigs were used and fasted for 18 h
prior to the experimental procedures. The animals were
anesthetized with sodium pentobarbital (60 mg/kg, i.p.),
followed by artificial respiration using a rodent ventilator
(60 strokes/min, 1 ml/100 g BW). The animals were
placed on a heat pad with circulating water at a
temperature of 37 °C. A catheter was inserted into the
jugular vein for drug administration, and electrocardiog-
raphy (ECG) pin electrodes were positioned for the
standard limb lead and chest lead configurations. All the
animals were allowed to stabilize for 20 min after being
instrumented, prior to drug administration. When the
heart rate of each animal was constant, the lowest con-
centration of the drug was administered for 1 min
through the jugular vein. After 10 min, the test drug at
the following concentration was administered according
to the cumulative method. The QRS complex and the
PR, QT, PRC, and QRc intervals were measured with
the ECG measurement yields, in addition to the heart
rate, for the evaluation of the cardiac function. The
values were expressed as the mean and standard devia-
tions of each group. The data were analyzed using the
one-way analysis of variance (ANOVA) followed by
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Dunnett’s test, to verify the significant differences be-
tween the groups.

Data preparation
The hERG toxicities of 2130 compounds were measured
as IC50 values. Compounds with IC50 < 10 μM were clas-
sified as toxic and the other compounds were classified
as nontoxic [19]. Consequently, 221 compounds
(10.38%) were identified as hERG-toxic, and 1909 com-
pounds (89.62%) were identified as nontoxic. The toxic-
ities of ten drug compounds obtained from in vivo
experiments, which were not included in the 2130 com-
pounds, were used for testing our developed model.

Descriptor calculation
The compounds from the hERG toxicity assays were
expressed in the simplified molecular-input line-entry
system (SMILES) format [21], and the SMILES were
used for the DRAGON software (version 7.0.10) to cal-
culate their physicochemical descriptors and fingerprints
(2432 nonconstant molecular descriptors) [22]. In
addition, extended connectivity fingerprints (ECFPs)
were also generated [23] with a maximum diameter par-
ameter of 4 and length parameter of 1024. Thus, in this
study, 3456 molecular features were used for the training
of the learning models.

Feature correlation calculation and feature selection
To reduce the number of features in developing the pre-
diction models, 3456 features were ranked in order of
their correlation with toxicity. The phi coefficient was
calculated for binary features [24], and the point-biserial
correlation coefficient was calculated for continuous fea-
tures [25].
To calculate the point-biserial correlation coefficient,

the dataset was divided into toxic and nontoxic mole-
cules. The point-biserial correlation coefficient (rpb) was
calculated as follows:

rpb ¼ Mtoxic−Mnontoxic

sn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ntoxic � nnontoxic
n2

r

where sn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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n

X

n

i¼1

Xi−X
� �2

;

s ð1Þ

Mtoxic and Mnontoxic denote the mean feature values of
the toxic and nontoxic compounds, respectively. ntoxic
and nnontoxic denote the numbers of toxic and nontoxic
compounds, respectively, and n is the total number of
molecules. sn denotes the standard deviation of the fea-
ture. Xi represents each feature value and X denotes the
mean value of all the feature values.
The phi coefficient (∅) was calculated as below:

∅¼ ntoxic∙1 � nnontoxic∙0−ntoxic∙0 � nnontoxic∙1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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ntoxic∙0 þ nnontoxic∙0ð Þ

r

ð2Þ

where ntoxic ∙ 1 and ntoxic ∙ 0 denote the number of features
of toxic compounds, which are 1 and 0, respectively.
nnontoxic ∙ 1 and nnontoxic ∙ 0 denote the number of features
of nontoxic compounds, which are 1 and 0, respectively.

Models
Six machine learning algorithms were used to construct
the hERG toxicity prediction models. The linear regres-
sion is a simple regression algorithm that models the lin-
ear relationship between a dependent variable and
multiple explanatory variables [26]. The ridge regression
is an advanced linear regression model that introduces a
ridge regularization method for the optimization of the
model [27]. The logistic regression is a regression algo-
rithm that models a logistic relationship, which can be
used for binary classification [28]. A naïve Bayes is a
probabilistic classification model based on the Bayesian
theorem and the naïve independency between features
[29]. A random forest is an ensemble model that con-
structs multiple decision trees and combines them to de-
rive a merged result [30]. A neural network is a machine

Table 1 Top 20 features with a high correlation

Descriptor Coeff. Description

nRNR2 0.229 Number of tertiary amines (aliphatic)

Wap 0.215 All-path Wiener index

F02[C-C] 0.212 Frequency of C - C at topological distance 2

F03[C-C] 0.212 Frequency of C - C at topological distance 3

nC 0.211 Number of carbon atoms

F04[C-C] 0.210 Frequency of C - C at topological distance 4

D/Dtr06 0.208 Distance/detour ring index of order 6

ATSC5v 0.207 Centred Broto–Moreau autocorrelation of lag 5
(weighted by van der Waals volume)

F01[C-C] 0.205 Frequency of C - C at topological distance 1

SpDiam_Dt 0.205 Spectral diameter from detour matrix

SpAD_Dt 0.204 Spectral absolute deviation from detour matrix

SpPos_Dt 0.204 Spectral positive sum from detour matrix

N-068 0.203 Atom-centered fragment: Al3-N

Wi_Dt 0.203 Wiener-like index from detour matrix (detour index)

SpMax_Dt 0.203 Leading eigenvalue from detour matrix

TI1_L 0.203 First Mohar index from Laplace matrix

H_Dz(p) 0.202 Harary-like index from Barysz matrix (weighted by
atomic number)

IDET 0.202 Total information content on the distance equality

F10[C-C] 0.202 Frequency of C - C at topological distance 10

nR06 0.201 Number of six-membered rings
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learning model that refers to a network structure com-
posed of artificial neurons and nodes, which can
optimize the network to recognize patterns of input data
[31]. These algorithms were implemented in the Orange
3 Python machine learning package, and, in this study,
Orange 3 was used to develop the hERG toxicity predic-
tion models [32].

Performance evaluation
The six models trained with our dataset were evaluated
by ten-fold cross-validation. In this process, the optimal
number of features was also determined by the area
under the receiver operating characteristic curve (AUC).
Because the dataset was biased to nontoxic compounds,
we also calculated the MCC that is an accuracy measure
for unbalanced datasets. After the cross-validation and
feature number optimization, the best model was deter-
mined. This model was further evaluated with ten drug
compounds that were not included in the training data-
set and were tested in vivo on guinea pigs to assess the
applicability of our model developed using in vitro data
to in vivo toxicity. The performance of our model was
compared with other hERG prediction tools, the
Pred-hERG 4.1 [6] and OCHEM Predictor [33].

Results and discussion
Model construction
Correlation coefficients between the features and toxicity
were calculated and the top-ranked features were used
to train models. The top 20 features are listed in Table 1.
Computational hERG prediction models were trained
using six different machine learning algorithms with a
different number of top features. The six algorithms
were linear regression, ridge regression, logistic regres-
sion, artificial neural network, naïve Bayes, and random
forest. Their ten-fold cross-validation results and re-
spective optimal feature numbers are shown in Fig. 1
and Table 2. Of the six models, those developed based

on the neural network (AUC = 0.764, feature = 1400),
ridge regression (AUC = 0.774, feature = 400), and logis-
tic regression (AUC = 0.764, feature = 350) showed better
performances than those of the other models. Because
the performances of the three models were comparable,
they were further optimized to determine the best
model.

Model optimization
To select the best model, we optimized the threshold
values of the three selected models, which discriminated
toxic and nontoxic groups. The best threshold values
that showed the highest MCC are listed in Table 3.
MCC is an accuracy measure for highly unbalanced
datasets. Of the three models, the neural network model
showed the best performance, with an accuracy of
90.1%, an MCC of 0.368, and a positive predictive value
(PPV) of 0.542 after threshold optimization. The low
sensitivity and high specificity of the neural network
model were due to its high threshold value, but the high
threshold improved its performance expressed as MCC.
Consequently, the toxicity prediction model based on
the neural network was selected for further evaluation.

Test of the constructed model on in vivo data
The optimized model was further tested on ten known
drug molecules, whose cardiotoxicities were measured

Fig. 1 AUC with respect to feature number: AUC values of the six models were measured by a ten-fold cross-validation with respect to feature number

Table 2 Performance (AUC) results of six machine learning
methods

Algorithm Optimal number of features AUC

Linear regression 40 0.747

Logistic regression 350 0.764

Ridge regression 400 0.774

Neural network 1400 0.764

Naïve Bayes 40 0.687

Random forest 120 0.709
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in vivo using guinea pigs. In vitro experiments are sim-
pler and less expensive than in vivo experiments, hence,
they can be carried out at a larger scale. However, owing
to the complex physiology of in vivo systems, in vitro ex-
perimental results are often inconsistent with in vivo re-
sults. Thus, we further evaluated the applicability of our
model that was trained using in vitro data to the in vivo
toxicity. The prediction results of the test compounds
are shown in Tables 4 and 5. Our model showed an
overall accuracy of 80.0%, an MCC of 0.655, a sensitivity
of 0.600, a specificity of 1.000, and a PPV of 1.000. This
high performance indicates that our model could also be
utilized to predict in vivo cardiotoxicity.
Several computational methods have been reported

for the prediction of hERG toxicity (Pred-hERG and
OCHEM Predictor). We compared the performance
of our model with previous methods; the prediction
results of other methods are also listed in Table 5.
The Pred-hERG model is a web-tool based on the
statistical QSAR model of hERG channel blockers.
OCHEM is also a web-tool based on eight associative
neural network models. The prediction results of the
ten test drug compounds using the previous methods,
and their overall performances are listed in Tables 4
and 5, respectively. Pred-hERG has two models: bin-
ary and multiclass. The Pred-hERG binary model de-
cides whether a query compound is a hERG-blocker
or nonblocker. The Pred-hERG multiclass model de-
termines the group in which a query compound

belongs: nonblockers, weak/moderate blockers, or
strong blockers. In this study, we considered weak/
moderate and strong blockers as hERG-toxic. The
binary model of the Pred-hERG predicted eight out of
ten compounds as toxic molecules with an accuracy
of 30%. Whereas the multiclass model of the
Pred-hERG predicted nine out of ten compounds as
nontoxic with an accuracy of 60%. Their MCC values
were − 0.500 and 0.333, respectively. Similar to the
multiclass model of the Pred-hERG, the OCHEM Pre-
dictor predicted nine out of ten compounds as non-
toxic. Its accuracy and MCC were 60% and 0.333,
respectively. The three previous models made biased
predictions, resulting in a very low sensitivity or very
low specificity (Table 5). Our model correctly pre-
dicted eight out of ten compounds with an accuracy
of 80% and an MCC of 0.655, which indicates that
our model outperforms other methods and would be
useful for the prediction of the in vivo cardiotoxicity
of drug candidates. It can also be used for virtual
screening in drug discovery.

Additional comparison with previous models
Because in vivo cardiotoxicity assays require animal
experiments, it is difficult to obtain a large number of
in vivo data. Performance comparison with only ten
compounds was not fair, so we evaluated the perfor-
mances of previous methods using the training data-
set containing 2130 compounds obtained from in

Table 3 Performance results of the top three models with optimized thresholds

Algorithm Threshold Accuracy MCC Sensitivity Specificity PPVa

Logistic regression 0.57 0.814 0.307 0.557 0.844 0.292

Neural network 0.82 0.901 0.368 0.321 0.967 0.542

Ridge regression 0.64 0.864 0.332 0.448 0.912 0.371
aPPV: Positive predictive value is defined as the number of true positives/(the number of true positives + the number of false positives)

Table 4 Prediction results of ten drug compounds

Name In vivo result Prediction

Our model Pred-hERG binary Pred-hERG multiclass OCHEM Predictora

Haloperidol Toxic Toxic Toxic Nontoxic Nontoxic

Cimetidine Nontoxic Nontoxic Toxic Nontoxic Nontoxic

Disopyramide Toxic Toxic Nontoxic Nontoxic Nontoxic

Quinnidine Toxic Nontoxic Toxic Nontoxic Toxic

Terazosin Nontoxic Nontoxic Toxic Nontoxic Nontoxic

Spironolactone Nontoxic Nontoxic Toxic Nontoxic Nontoxic

Sotalol Toxic Nontoxic Nontoxic Nontoxic Nontoxic

Cefazoline Nontoxic Nontoxic Toxic Nontoxic Nontoxic

Chloropromazine Toxic Toxic Toxic Toxic Nontoxic

Loratadine Nontoxic Nontoxic Toxic Nontoxic Nontoxic
aConsensus II in the predictor was used
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vitro experiments. For a fair comparison, we divided
the dataset into training (90%) and test (10%) data-
sets; the training data was used to build our model
and the remaining test dataset was used to evaluate
the performances of our model, the Pred-hERG, and
OCHEM Predictor. The evaluation was iterated ten
times, and their averages were calculated (Table 6).
The MCC values of the previous models were lower
than that of our model. Specifically, the Pred-hERG
binary model showed an MCC of − 0.034, a sensitivity
of 0.912, and a specificity of 0.061, indicating that this
model classified most query molecules as toxic and
had many false positives. This high number of false
positives for the Pred-hERG binary model were also
shown on the test dataset (Tables 4 and 5). On the
contrary, the Pred-hERG multiclass and OCHEM Pre-
dictor showed a low sensitivity and a high specificity,
indicating that they classified most query molecules
as nontoxic. Because the dataset was highly unbal-
anced to negative (nontoxic) data, the biased predic-
tions of the Pred-hERG multiclass and OCHEM
Predictor to the nontoxic class increased the accuracy
to 90.2 and 88.5% and decreased their MCCs to 0.218
and 0.133, respectively. Consequently, our model con-
sistently showed a better performance for the small
test dataset as well as on the training dataset.

Conclusion
In this study, we aimed at producing a reliable hERG tox-
icity dataset and then at developing a better performing
cardiotoxicity prediction model. Computational models
are highly dependent on the reliability of datasets; how-
ever, the collected datasets from the literature may include
inconsistent experimental results. We generated our own
consistent dataset to build a model; the developed predic-
tion model using our dataset outperformed the other
hERG prediction tools. Our model can be useful for the
virtual screening for potential drug candidates that do not

cause cardiotoxicity and would facilitate the advancement
of in silico drug discovery. However, in this study, new fea-
tures and new machine learning methods were not intro-
duced, so there is scope to improve our model further if
new features specialized for describing the cardiotoxicity
of molecules are included or new machine learning algo-
rithms are used that efficiently and effectively classify mol-
ecules using the features.
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