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Abstract

Background: In order to fully characterize the genome of an individual, the reconstruction of the two distinct
copies of each chromosome, called haplotypes, is essential. The computational problem of inferring the full haplotype
of a cell starting from read sequencing data is known as haplotype assembly, and consists in assigning all
heterozygous Single Nucleotide Polymorphisms (SNPs) to exactly one of the two chromosomes. Indeed, the
knowledge of complete haplotypes is generally more informative than analyzing single SNPs and plays a fundamental
role in many medical applications.

Results: To reconstruct the two haplotypes, we addressed the weighted Minimum Error Correction (wMEC) problem,
which is a successful approach for haplotype assembly. This NP-hard problem consists in computing the two
haplotypes that partition the sequencing reads into two disjoint sub-sets, with the least number of corrections to the
SNP values. To this aim, we propose here GenHap, a novel computational method for haplotype assembly based on
Genetic Algorithms, yielding optimal solutions by means of a global search process. In order to evaluate the
effectiveness of our approach, we run GenHap on two synthetic (yet realistic) datasets, based on the Roche/454 and
PacBio RS II sequencing technologies. We compared the performance of GenHap against HapCol, an efficient
state-of-the-art algorithm for haplotype phasing. Our results show that GenHap always obtains high accuracy
solutions (in terms of haplotype error rate), and is up to 4× faster than HapCol in the case of Roche/454 instances and
up to 20× faster when compared on the PacBio RS II dataset. Finally, we assessed the performance of GenHap on two
different real datasets.

Conclusions: Future-generation sequencing technologies, producing longer reads with higher coverage, can highly
benefit from GenHap, thanks to its capability of efficiently solving large instances of the haplotype assembly problem.
Moreover, the optimization approach proposed in GenHap can be extended to the study of allele-specific genomic
features, such as expression, methylation and chromatin conformation, by exploiting multi-objective optimization
techniques. The source code and the full documentation are available at the following GitHub repository: https://
github.com/andrea-tango/GenHap.
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Background
Somatic human cells are diploids, that is, they contain
22 pairs of homologous chromosomes and a pair of sex
chromosomes, one copy inherited from each parent. In
order to fully characterize the genome of an individual,
the reconstruction of the two distinct copies of each chro-
mosome, called haplotypes, is essential [1]. The process
of inferring the full haplotype information related to a cell
is known as haplotyping, which consists in assigning all
heterozygous Single Nucleotide Polymorphisms (SNPs) to
exactly one of the two chromosome copies. SNPs are one
of the most studied genetic variations, since they play a
fundamental role in many medical applications, such as
drug-design or disease susceptibility studies, as well as in
characterizing the effects of SNPs on the expression of
phenotypic traits [2]. This information can be valuable
in several contexts, including linkage analysis, associa-
tion studies, population genetics and clinical genetics [3].
Obviously, the complete set of SNPs of an individual (i.e.,
his/her haplotypes) is generally more informative than
analyzing single SNPs, especially in the study of complex
disease susceptibility.

Since a direct experimental reconstruction of haplo-
types still requires huge sequencing efforts and is not
cost-effective [4], computational approaches are exten-
sively used to solve this problem. In particular, two classes
of methods exist for haplotype phasing [3]. The first class
consists of statistical methods that try to infer haplo-
types from genotypes sampled in a population. These
data, combined with datasets describing the frequency by
which the SNPs are usually correlated in different popu-
lations, can be used to reconstruct the haplotypes of an
individual. The second class of methods directly lever-
ages sequencing data: in this case, the main goal is to
partition the entire set of reads into two sub-sets, exploit-
ing the partial overlap among them in order to ultimately
reconstruct the corresponding two different haplotypes of
a diploid organism [5]. The effectiveness of these meth-
ods was limited by the length of the reads produced by
second-generation sequencing technologies, which might
be not long enough to span over a relevant number of
SNP positions. This results in the reconstruction of short
haplotype blocks [6, 7], since reads do not cover adja-
cent SNP positions adequately, hindering the possibility
of reconstructing the full haplotypes. However, in recent
years the development of new sequencing technologies
paved the way to the advent of the third-generation of
sequencing platforms, namely PacBio RS II (Pacific Bio-
sciences of California Inc., Menlo Park, CA, USA) [8, 9]
and Oxford Nanopore MinION (Oxford Nanopore Ltd.,
Oxford, United Kingdom) [10], which are able to produce
reads covering several hundreds of kilobases and spanning
different SNP loci at once. Unfortunately, the increased
length comes at the cost of a decreased accuracy with

respect to short and precise second-generation sequenc-
ing technologies, like NovaSeq (Illumina Inc., San Diego,
CA, USA) [11]; thus, in order to obtain reliable data, the
read coverage should be increased.

Among the computational methods for haplotype
assembly, the Minimum Error Correction (MEC) is one
of the most successful approaches. This problem con-
sists in computing the two haplotypes that partition the
sequencing reads into two disjoint sets with the least num-
ber of corrections to the SNP values [12]. Unfortunately,
MEC was proven to be NP-hard [13]. A weighted vari-
ant of MEC, named weighted MEC (wMEC), was then
proposed in [14]: the weights represent the confidence
for the presence of a sequencing error, while the correc-
tion process takes into account the weight associated with
each SNP value of a read. These error schemes gener-
ally regard phred-scaled error probabilities and are very
valuable for processing long reads generated by third-
generation sequencing technologies, as they are prone to
high sequencing error rates [5].

Several assembly approaches have been already pro-
posed in literature. Due to the NP-hardness of the MEC
problem, some methods exploit heuristic strategies. Two
noteworthy approaches are ReFHap [15], which is based
on a heuristic algorithm for the Max-Cut problem on
graphs, and ProbHap [16], which generalizes the MEC for-
mulation by means of a probabilistic framework. In [12],
Wang et al. proposed a meta-heuristic approach based on
Genetic Algorithms (GAs) to address an extended version
of the MEC problem, called MEC with Genotype Infor-
mation (MEC/GI), which also considers genotyping data
during the SNP correction process. A similar work was
presented in [17], where GAs are used to solve the MEC
problem by using a fitness function based on a major-
ity rule that takes into account the allele frequencies. The
results shown in [17] are limited to a coverage up to 10×
and a haplotype length equal to 700. More recently, an
evolutionary approach called Probabilistic Evolutionary
Algorithm with Toggling for Haplotyping (PEATH) was
proposed in [18]. PEATH is based on the Estimation of
Distribution Algorithm (EDA), which uses the promising
individuals to build probabilistic models that are sam-
pled to explore the search space. This meta-heuristic deals
with noisy sequencing reads, reconstructing the haplo-
types under the all-heterozygous assumption. These algo-
rithms present some limitations, as in the case of ReFHap
[15], ProbHap [16] and PEATH [18], which assume that
the columns in the input matrix correspond to heterozy-
gous sites [19]. However, this all-heterozygous assumption
might be incorrect for some columns, and these algo-
rithms can only deal with limited reads coverages. For
example, ProbHap [16] can handle long reads coverage
values up to 20×, which is not appropriate for higher
coverage short-read datasets; on the other hand, it works
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better with very long reads at a relatively shallow coverage
(≤ 12×).

More recently, a tool based on a dynamic programming
approach, called WhatsHap, was presented [5]. What-
sHap is based on a fixed parameter tractable algorithm
[20, 21], and leverages the long-range information of long
reads; however, it can deal only with datasets of limited
coverage up to ∼ 20×. A parallel version of WhatsHap
has been recently proposed in [22], showing the capa-
bility to deal with higher coverages up to ∼ 25×. An
alternative approach, called HapCol [23], uses the uni-
form distribution of sequencing errors characterizing long
reads. In particular, HapCol exploits a new formulation
of the wMEC problem, where the maximum number of
corrections is bounded in every column and is computed
from the expected error rate. HapCol can only deal with
instances of relatively small coverages up to ∼ 25 − 30×.

To sum up, even though high-throughput DNA
sequencing technologies are paving the way for valuable
advances in clinical practice, analyzing such an amount
of data still represents a challenging task. This applies
especially to clinical settings, where accuracy and time
constraints are critical [24].

In order to tackle the computational complexity of the
haplotyping problem, in this work we propose GenHap,
a novel computational method for haplotype assembly
based on Genetic Algorithms (GAs). GenHap can effi-
ciently solve large instances of the wMEC problem, yield-
ing optimal solutions by means of a global search process,
without any a priori hypothesis about the sequencing
error distribution in reads. The computational complex-
ity of the problem is overcome by relying on a divide-
et-impera approach, which provides faster and more
accurate solutions compared with the state-of-the-art
haplotyping tools.

The paper is structured as follows. In the next section,
we briefly introduce the haplotyping problem, and
describe in detail the GenHap methodology along with its
implementation. Then, we show the computational per-
formance of GenHap, extensively comparing it against
HapCol. We finally provide some conclusive remarks and
future improvements of this work.

Methods
Problem formulation
Given n positions on two homologous sequences belong-
ing to a diploid organism and m reads obtained after a
sequencing experiment, we can reduce each read to a frag-
ment vector f ∈ {0, 1, −}n, where 0 denotes a position
that is equal to the reference sequence, 1 denotes a SNP
with respect to the reference sequence, and − indicates
a position that is not covered by the read. We define a
haplotype as a vector h ∈ {0, 1}n, that is, the combina-
tion of SNPs and wild-type positions belonging to one of

the two chromosomes. Given the two haplotypes h1 and
h2—which refer to the first and second copy of the chro-
mosome, respectively—a position j (with j ∈ {1, . . . , n}) is
said to be heterozygous if and only if h1j �= h2j , otherwise
j is homozygous.

Let M be the “fragment matrix”, that is, the m×n matrix
containing all fragments. Two distinct fragments f and
g are said to be in conflict if there is a position j (with
j ∈ {1, . . . , n}) such that fj �= gj and fj, gj �= −, other-
wise they are in agreement. M is conflict-free if there are
two different haplotypes h1 and h2 such that each row Mi
(with i ∈ {1, . . . , m}) is in agreement with either h1 or
h2. The overall haplotype assembly process is outlined in
Fig. 1.

We can extend the heterozygous and homozygous def-
inition at the column level as follows: a column c of M
is homozygous if all its values are either in {0, −} or in
{1, −}, on the contrary c is heterozygous because its values
are in {0, 1, −}, meaning that both a SNP and a wild-
type exist in that position. Finally, we can detect the case
where two distinct fragments are in conflict, and measure
their diversity by defining a distance D(·, ·) that calculates
the number of different values between two fragments.
Namely, given f = (Mi1, . . . , Min) and g = (Ml1, . . . , Mln)

of M (with i, l ∈ {1, . . . , m}), we consider:

D(f, g) =
n∑

j=1
d(fj, gj), (1)

where d(fj, gj) is defined as:

d(x, y) =
{

1, if x �= y, x �= −, and y �= −
0, otherwise . (2)

Equation (1) defines the extended Hamming distance
between two ternary strings f and g [19], denoting the
total number of positions wherein both characters of f
and g belong to {0, 1} but they are different according to
Eq. (2).

If M is conflict-free, then it can be partitioned into two
disjoint matrices M1 and M2, each one containing a set of
conflict-free fragments. We can infer the two haplotypes
h1 and h2 from M1 and M2, respectively, as follows:

hkj =
{

1, if N1j(Mk) ≥ N0j(Mk)
0, otherwise , (3)

where j ∈ {1, . . . , n}, k ∈ {1, 2}, and N0j(Mk), N1j(Mk)
denote the number of 0s and 1s in the j-th column, respec-
tively. In such a way, N0(Mk) is the vector consisting of
the number of 0s of each column j using the reads of
the partition Mk , while N1(Mk) is the vector consisting
of the number of 1s of each column j represented by the
partition Mk .

In order to solve the wMEC problem, N0 and N1 are cal-
culated using the m×n weight matrix W, representing the
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Fig. 1 Simplified workflow of the haplotype assembly process. Raw sequencing data are initially aligned, defining m reads. Every position of the two
chromosome copies is compared against a reference chromosome. The black solid points denote n heterozygous positions, along with the
corresponding nucleobases. The fragment matrix M is defined assigning 1 to SNP positions and 0 to wild-type positions. To reconstruct the two
haplotypes h1 and h2 characterized by the least number of corrections to the SNP values among the 2n candidate haplotypes, the wMEC problem
is solved by partitioning the matrix M into two disjoint matrices M1 and M2

weight associated with each position in each fragment. As
a matter of fact, W can be divided into the two disjoint
partitions W1 and W2, whose row indices correspond to
those in M1 and M2, respectively. We can extend Eq. (3)
taking into account the weights as follows:

hkj =
{

1, if N1j(Wk) ≥ N0j(Wk)
0, otherwise , (4)

where j ∈ {1, . . . , n}, k ∈ {1, 2}, and N0j(Wk), N1j(Wk)
denote the sum of the weights associated with the 0 and 1
elements in the j-th column, respectively.

The distance D(·, ·) given in Eq. (1) can be used also to
evaluate the distance between a fragment and a haplotype,
by means of the following error function:

E(M1, M2, h1, h2) =
2∑

k=1

∑

f∈Mk

D(f, hk). (5)

The best partitioning of M can be obtained by minimizing
Eq. (5), inferring h1 and h2 with the least number of errors.
Equation (5) is used as fitness function in GenHap.

GenHap: haplotype assembly using GAs
GAs are population-based optimization strategies mim-
icking Darwinian processes [25–27]. In GAs, a population
P of randomly generated individuals undergoes a selec-
tion mechanism and is iteratively modified by means of
genetic operators (i.e., crossover and mutation). Among
the existing meta-heuristics for global optimization, GAs
are the most suitable technique in this context thanks
to the discrete structure of the candidate solutions. This
structure is well-suited to efficiently solve the intrinsic
combinatorial nature of the haplotype assembly problem.
In the most common formulation of GAs, each individ-
ual Cp (with p ∈ {1, . . . , |P|}) encodes a possible solution
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of the optimization problem as a fixed-length string of
characters taken from a finite alphabet. Based on a quality
measure (i.e., the fitness value), each individual is involved
in a selection process in which individuals characterized
by good fitness values have a higher probability to be
selected for the next iteration. Finally, the selected individ-
uals undergo crossover and mutation operators to possibly
improve offspring and to introduce new genetic material
in the population.

GenHap exploits a very simple and efficient structure
for individuals, which encodes as a binary string a parti-
tion of the fragment matrix M. In particular, each indi-
vidual Cp =[ Cp1 , Cp2 , . . . , Cpm ] (with p ∈ {1, . . . , |P|}) is
encoded as a circular array of size m (i.e., the number of
reads). In order to obtain the two partitions M1 and M2,
Cp is evaluated as follows: if the i-th bit is equal to 0, then
the read i belongs to M1; otherwise, the read i belongs
to M2. Once the two partitions are computed, GenHap
infers the haplotypes h1 and h2 by applying Eq. (4). Finally,
Eq. (5) is exploited to calculate the number of errors made
by partitioning M as encoded by each individual of P. This
procedure is iterated until the maximum number of iter-
ations T is reached, the number of errors is equal to 0 or
the fitness value of the best individual does not improve
for θ = �0.25 · T� iterations.

Among the different selection mechanisms employed by
GAs (e.g., roulette wheel [25], ranking [26], tournament
[27]), GenHap exploits the tournament selection to cre-
ate an intermediate population P′, starting from P. In each
tournament, κ individuals are randomly selected from P
and the individual characterized by the best fitness value is
added to P′. The size of the tournament κ is related to the
selection pressure: if κ is large, then the individuals char-
acterized by worse fitness values have a low probability to
be selected, therefore the variability of P′ might decrease.

Afterwards, the genetic operators (i.e., crossover and
mutation) are applied to the individuals belonging to P′
to obtain the offspring for the next iteration. GenHap
exploits a single-point crossover with mixing ratio equal
to 0.5. Crossover is applied with a given probability cr
and allows for the recombination of two parent individu-
als Cy, Cz ∈ P′ (for some y, z ∈ {1, . . . , |P|}), generating
two offspring that possibly have better characteristics with
respect to their parents.

In order to increase the variability of the individuals,
one or more elements of the offspring can be modified
by applying the mutation operator. GenHap makes use
of a classic mutation in which the elements Cpe (with
e ∈ {1, . . . , m}) of the individual can be flipped (i.e.,
from 0 to 1 or vice-versa) with probability mr . Besides
this mutation operator, GenHap implements an additional
bit-flipping mutation in which a random number of con-
secutive elements of the individual is mutated according
to probability mr . This operator is applied if the fitness

value of the best individual does not improve for a given
number of iterations (2 in our tests).

Finally, to prevent the quality of the best solution from
decreasing during the optimization, GenHap exploits an
elitism strategy, so that the best individual from the cur-
rent population is copied into the next population without
undergoing the genetic operators.

Unlike the work in [12], GenHap solves the wMEC
problem instead of the unweighted MEC formulation, by
means of Eq. (4). Moreover, differently from the other
heuristic strategies, such as ReFHap [15] and ProbHap
[16], we did not assume the all-heterozygosity of the
phased positions [19]. Under this assumption, every col-
umn corresponds to heterozygous sites, implying that h1
must be the complement of h2. In addition, since the
required execution time as well as the problem difficulty
increase with the number of reads and SNPs, to efficiently
solve the wMEC problem we split the fragment matrix
M into � = 
m/γ � sub-matrices consisting of γ reads
(see Fig. 2). Following a divide-et-impera approach [28],
the computational complexity can be tackled by parti-
tioning the entire problem into smaller and manageable
sub-problems, each one solved by a GA that converges
to a solution characterized by two sub-haplotypes with
the least number of corrections to the SNP values. The
solutions to the sub-problems achieved by the � GA
instances are finally combined. This approach is feasible
thanks to the long reads with higher coverage produced
by the second- and third-generation sequencing technolo-
gies. As a matter of fact, highly overlapping reads allow us
to partition the problem into easier sub-problems, avoid-
ing the possibility of obtaining incorrect reconstructions
during the merging phase.

The parameter γ , used for the calculation of �, depends
on the coverage value and on the nature of the sequenc-
ing technology; its value must be set to avoid discrete
haplotype blocks that do not exist in the input matrix
M. Generally, the intervals where several independent
historical recombination events occurred separate dis-
crete blocks, revealing greater haplotype diversity for the
regions spanning the blocks [7].

GenHap firstly detects all the haplotype blocks inside
the fragment matrix M and then, in each block, it auto-
matically sets γ equal to the mean coverage of that block
to partition the reads. Notice that GenHap solves each
block sequentially and independently, obtaining a num-
ber of haplotype pairs equal to the number of detected
blocks. So doing, for each block GenHap proceeds by
executing � different GA optimizations, one for each sub-
problem, calculating 2 · � sub-haplotypes. The length
of the individuals is equal to γ , except for the last sub-
problem that could have a number of reads smaller than γ

(accordingly, the length of the individuals could be smaller
than γ ).



Tangherloni et al. BMC Bioinformatics 2019, 20(Suppl 4):172 Page 6 of 14

Fig. 2 Scheme of the partition of the input matrix: the input matrix M ∈ {0, 1, −}m×n is split into sub-matrices consisting of γ reads, generating
� = 
m/γ � sub-problems that are solved independently by a GA instance. The last sub-matrix could have a number of reads lower than γ

Since the problem is divided into � sub-problems, two
sub-problems referring to contiguous parts of the two
chromosome copies might contain some overlapped posi-
tions that can be either homozygous or heterozygous.
However, the reads covering an overlapped position might
not be entirely included in the same sub-problem. For
this reason, during the GA-based optimizations, all the
phased positions are assumed to be heterozygous. If a
position j is homozygous (i.e., all the reads covering this
position have the same value, belonging to {0, −} or {1, −},
in both the sub-partitions and in every read covering it),
then only one of the two sub-haplotypes will have the
correct value. This specific value is correctly assigned

to the sub-haplotype covered by the highest number of
reads by following a majority rule. As soon as the two
sub-haplotypes are obtained, all the possible uncorrected
heterozygous sites are removed and the correct homozy-
gous values are assigned by checking the columns of the
two sub-partitions. Finally, once all sub-problems in � are
solved, GenHap recombines the sub-haplotypes to obtain
the two entire haplotypes h1 and h2 of the block under
analysis.

GenHap is also able to find and mask the ambiguous
positions by replacing the 0 or 1 value with a X symbol. We
highlight that an ambiguous position is a position covered
only by the reads belonging to one of the two haplotypes.



Tangherloni et al. BMC Bioinformatics 2019, 20(Suppl 4):172 Page 7 of 14

Implementation
In order to efficiently solve the wMEC problem and tackle
its computational complexity, GenHap detects the haplo-
type blocks inside the matrix M and then, for each block,
it splits the portion of M into � sub-matrices consist-
ing of γ reads. So doing, the convergence speed of the
GA is increased thanks to the lower number of reads to
partition in each sub-problem with respect to the total
number of reads of the whole problem. As shown in Fig. 3,
the � sub-matrices are processed in parallel by means of
a divide-et-impera approach that exploits a Master-Slave
distributed programming paradigm [29, 30] to speed up
the overall execution of GenHap. This strategy allowed
us to distribute the computation in presence of multiple
cores. As a matter of fact, GenHap works by partition-
ing the initial set of reads into sub-sets and solving them
by executing different GA instances. This strategy can
be exploited in GenHap, as it solves the wMEC problem
working on the rows of the fragment matrix M; on the
contrary, HapCol works considering the columns of M,
which cannot be independently processed in parallel.

The functioning of our Master-Slave implementation
can be summarized as follows:

1 the Master allocates the resources and detects the
haplotype blocks inside the fragment matrix. For
each detected block, it partitions the portion of the
matrix M into � sub-matrices and offloads the data
onto the available � Slaves (in real scenarios,
� � �). During this phase, each Slave generates the
initial population of the GA;

2 the σ -th Slave (with σ ∈ {1, . . . , �}) executes the
assigned wMEC sub-task, running the GA for either

θ non-improving iterations or T maximum
iterations, independently of the other Slaves;

3 the process is iterated until all the wMEC sub-tasks
are terminated;

4 the Master recombines the sub-solutions received
from the Slaves, and returns the complete wMEC
solution for the block under analysis.

GenHap was entirely developed using the C++ pro-
gramming language exploiting the Message Passing Inter-
face (MPI) specifications to leverage multi-core Central
Processing Units (CPUs).

Results
In this section we first describe the synthetic and real
datasets used during the tests and present the results
obtained to identify the best GA setting. Then, we dis-
cuss the performance achieved by GenHap with respect
to HapCol [23], which was previously shown to be more
efficient than the other existing methods for the haplotype
assembly problem, both in terms of memory consumption
and execution time.

The analyzed datasets
In order to test the performance of GenHap, we generated
two synthetic (yet realistic) datasets, each one consisting
of instances obtained from a specific sequencing technol-
ogy. In particular, we considered the Roche/454 genome
sequencer (Roche AG, Basel, Switzerland), representing
one of the next-generation sequencing (NGS) systems able
to produce long and precise reads, and the PacBio RS II
sequencer [9, 31], which is an emerging third-generation
sequencing technology. Note that the reads produced

Fig. 3 Scheme of the Master-Slave implementation of GenHap: the Master process orchestrates all the � Slaves sending one or more sub-partitions
to each Slave, which then solves the assigned wMEC sub-task
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by the Roche/454 sequencer are approximately 9-times
shorter than those generated by the PacBio RS II system.

In order to generate the datasets, we exploited the
General Error-Model based SIMulator (GemSIM) toolbox
[32]. GemSIM is a software able to generate in silico real-
istic sequencing data. It relies on empirical error models
and distributions learned from real NGS data, and sim-
ulates both single- and paired-end reads from a single
genome, collection of genomes, or set of related haplo-
types. GemSIM can in principle simulate data from any
sequencing technology producing output data encoded
in the FASTQ format [33], for raw reads, and Sequence
Alignment/Map (SAM), for aligned reads. In this work, we
exploited the error model for the Roche/454 sequencer,
already available in GemSIM, and defined an additional
error model for the PacBio RS II technology. The syn-
thetic reads were generated from the reference sequence
of the human chromosome 22 (UCSC Genome Browser,
GRCh37/hg19 Feb. 2009 assembly [34]), in which random
SNPs were inserted.

We exploited the GemHaps tool included in GemSIM
[32] to generate a haplotype file starting from a given
genome sequence, and specifying the number as well as
the frequency of SNPs in each haplotype, denoted by
#SNPs and fSNPs, respectively. Note that the SNP positions
were randomly determined. Then, the resulting haplo-
type file was processed by GemReads, together with an
error model file (generated by GemErr or supplied in
GemSIM), a FASTA genome file (or directory), and the
selected quality score offset. The resulting SAM file was
converted into the compressed Binary Alignment/Map
(BAM) format for a more efficient manipulation [35].
In order to store the SNPs, we exploited the Variant
Call Format (VCF) [36], which is the most used for-
mat that combines DNA polymorphism data, insertions
and deletions, as well as structural variants. Lastly, the
BAM and VCF files were processed to produce a What-
sHap Input Format (WIF) file [5], which is the input of
GenHap.

The two synthetic datasets are characterized by the follow-
ing features: i) #SNPs ∈ {500, 1000, 5000, 10000, 20000}
(equally distributed over the two haplotypes); ii) coverage
cov ∈ {∼ 30×, ∼ 60×}; iii) average fSNPs ∈ {100, 200},
which means one SNP every 100bp or 200bp [37, 38],
varying the portion of genome onto which the reads were
generated. Read lengths were set to 600bp and 5000bp for
the Roche/454 and the PacBio RS II sequencers, respec-
tively. The number of reads was automatically calculated
according to the value of cov and the sequencing tech-
nologies, by means of the following relationship:

#reads = cov · len(genome)
len(read)

, (6)

where len(genome) represents the length of the consid-
ered genome, which starts at a given position x and ends
at position y = x + fSNPs · #SNPs.

In order to test the performance of GenHap on real
sequencing data, we exploited a WIF input file present in
[39], which was generated starting from high-quality SNP
calls and sequencing data made publicly available by the
Genome in a Bottle (GIAB) Consortium [40]. In partic-
ular, we exploited data produced by the PacBio technol-
ogy and limited to the chromosome 22 of the individual
NA12878. Moreover, we tested GenHap on an additional
real dataset available at [41]. As for the previous dataset,
we limited our analysis to chromosome 22. The available
BAM file–containing long reads with high-coverage pro-
duced with the PacBio RS II sequencing technology–and
the VCF file were processed to obtain a WIF input file as
described above.

GA setting analysis
As a first step, the performance of GenHap was evaluated
to determine the best settings for the haplotype assem-
bly problem. We considered different instances for two
sequencing technologies employed (i.e., Roche/454 and
PacBio RS II), and we varied the settings of GenHap used
throughout the optimization process, as follows:

• size of the population |P| ∈ {50, 100, 150, 200};
• crossover rate cr ∈ {0.8, 0.85, 0.9, 0.95};
• mutation rate mr ∈ {0.01, 0.05, 0.1, 0.15}.

In all tests, the size of the tournament is fixed to κ =
0.1 · |P| and the maximum number of iterations is T =
100. A total of 6 different instances (3 resembling the
Roche/454 sequencer and 3 the PacBio RS II sequencer)
were generated by considering #SNPs ∈ {500, 1000, 5000}
and fSNPs = 100.

We varied one setting at a time, leading to 64 different
settings tested and a total number of 64×6 = 384 GenHap
executions. These tests highlighted that, for each value of
|P|, the best settings are:

1 |P| = 50, pc = 0.9, pm = 0.05;
2 |P| = 100, pc = 0.9, pm = 0.05;
3 |P| = 150, pc = 0.95, pm = 0.05;
4 |P| = 200, pc = 0.95, pm = 0.05.

Figure 4 shows the comparison of the performance
achieved by GenHap with the settings listed above, where
the Average Best Fitness (ABF) was computed by taking
into account, at each iteration, the fitness value of the
best individuals over the 6 optimization processes. Even
though all settings allowed GenHap to achieve almost
the same final ABF value, we observe that the conver-
gence speed increases with the size of the population.
On the other hand, also the running time of GenHap
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Fig. 4 Comparison of the ABF achieved by GenHap with the best
parameterizations found for each value of |P| tested here. The ABF
was computed over the results of the optimization of instances
characterized by #SNPs ∈ {500, 1000, 5000} and fSNPs = 100

increases with the size of the population. In particular,
the executions lasted on average 1.41 s, 2.33 s, 3.52 s,
4.95 s with |P| ∈ {50, 100, 150, 200}, respectively, run-
ning on one node of the Advanced Computing Center for
Research and Education (ACCRE) at Vanderbilt Univer-
sity, Nashville, TN, USA. The node is equipped with 2
Intel® Xeon® E5-2630 v3 (8 cores at 2.40 GHz) CPUs, 240
GB of RAM and CentOS 7.0 operating system. To perform
the tests we exploited all 8 physical cores of a single CPU.

Considering these preliminary results, we selected the
parameter settings |P| = 100, cr = 0.9, mr = 0.05, as
the best trade-off between convergence speed (in terms of
ABF) and running time.

Performance of GenHap
The performance achieved by GenHap was compared
with those obtained by HapCol [23], which was shown
to outperform the main available haplotyping approaches.
In particular, we exploited here a more recent version of
HapCol, capable of dealing with haplotype blocks [39].
The same computational platform used for the setting

analysis of GenHap was used to execute all the tests on the
two synthetic datasets described above.

We stress the fact that GenHap was compared against
HapCol only on the instances with cov 
 30×, since
HapCol is not capable of solving instances with higher
coverage values (i.e., the algorithm execution halts when a
column covered by more than 30 reads is found).

Considering the two sequencing technologies, we gen-
erated 15 different instances for each value of #SNPs and
fSNPs. The performance was then evaluated by computing
(i) the average haplotype error rate (HE), which represents
the percentage of SNPs erroneously assigned with respect
to the ground truth [42], and (ii) the average running time.

As shown in Table 1, in the instances generated using
the Roche/454 sequencing technology with fSNPs = 100,
both GenHap and HapCol reconstructed the two hap-
lotypes, achieving an average HE lower than 0.2% with
a negligible standard deviation in the case of #SNPs ∈
{500, 1000, 5000}. GenHap inferred the haplotypes char-
acterized by 10000 SNPs with an average HE lower than
2.5% and a standard deviation around 5%, while HapCol
obtained an average HE equal to 6.55% with a standard
deviation around 16%. For what concerns the running
time, GenHap outperformed HapCol in all tests except in
the case of #SNPs = 10000, as shown in Fig. 5, being
around 4× faster in reconstructing the haplotypes. In the
case of #SNPs = 10000, the running times are compa-
rable, but GenHap obtains a lower HE than HapCol. In
the instances generated using fSNPs = 200 and #SNPs ∈
{500, 1000}, both GenHap and HapCol reconstructed the
two haplotypes, achieving an average HE lower than 0.1%
with a negligible standard deviation. When #SNPs ∈
{5000, 10000} are taken into account, GenHap inferred the
haplotype pairs with an average HE lower than 3.65% and
a standard deviation lower than 3.5%. Notice that Hap-
Col was not able to complete the execution on all the 15
instances characterized by 10000 SNPs. As in the case of
instances with fSNPs = 100, GenHap is faster than HapCol
in all tests, except in the case of #SNPs = 5000.

Table 1 Comparison of GenHap and HapCol on the Roche/454 dataset with cov 
 30×
GenHap HapCol

fSNPs cov #SNPs Avg HE Std dev HE Avg running time [s] Avg HE Std dev HE Avg running time [s]

100 ∼ 30× 500 0.04 0.08 0.21 0.00 0.00 0.62

1000 0.09 0.08 0.36 0.00 0.00 1.20

5000 0.18 0.06 3.17 0.01 0.03 5.35

10000 2.50 5.52 10.33 6.55 16.38 10.23

200 ∼ 30× 500 0.09 0.14 0.34 0.00 0.00 0.50

1000 0.09 0.10 0.63 0.01 0.03 0.96

5000 3.61 3.43 6.07 0.38 0.78 4.90

10000 2.15 1.62 17.24 N/A N/A N/A

The performances were evaluated both in terms of HE and running time. The N/A symbol denotes that HapCol was not able to complete the execution on all the 15 instances
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Fig. 5 Comparison of the average running time required by GenHap (blue bars) and HapCol (red bars) computed over 15 instances for each value of
#SNPs ∈ {500, 1000, 5000} obtained with the Roche/454 sequencing technology, cov 
 30× and fSNPs = 100. In the case of fSNPs = 200 and
#SNPs = 10000, HapCol was not able to complete the execution on all the 15 instances

For what concerns the PacBio RS II sequencing dataset,
since this technology is characterized by a higher error
rate with respect to the Roche/454 sequencer, both Gen-
Hap and HapCol reconstructed the two haplotypes with
higher HE values (see Table 2). Nonetheless, the average
HE value is lower than 2.5% with a standard deviation
lower than 1% in all cases. Figure 6 shows the running
time required by GenHap and HapCol to reconstruct the
haplotypes. As in the case of the Roche/454 dataset, the
running time increases with #SNPs, but GenHap always
outperforms HapCol, achieving up to 20× speed-up.

Table 3 lists the results obtained by GenHap on the
instances of the Roche/454 dataset characterized by cov 

60×, #SNPs ∈ {500, 1000, 5000, 10000} and fSNPs ∈
{100, 200}. In all tests with fSNPs = 100, GenHap was

always able to infer the two haplotypes with high accu-
racy, indeed the average HE values are always lower than
0.15%. In the instances generated with fSNPs = 200,
GenHap reconstructed the haplotype pairs with an aver-
age HE lower than 0.2%. This interesting result shows
that higher coverages can help during the reconstruction
phase, allowing GenHap to infer more precise haplotypes.

Regarding the PacBio RS II dataset, the achieved HE is
on average lower than 1.25% with a standard deviation ≤
0.4% (see Table 4). In particular, the average HE decreases
when the value of #SNPs or the coverage increase, thus
suggesting that higher cov values can considerably help
in achieving a correct reconstruction of the two haplo-
types. On the contrary, the running time increases at most
linearly with respect to the coverage (see Table 4).

Table 2 Comparison of GenHap and HapCol on the PacBio RS II dataset with cov 
 30×
GenHap HapCol

fSNPs cov #SNPs Avg HE Std dev HE Avg running time [s] Avg HE Std dev HE Avg running time [s]

100 ∼ 30× 500 2.04 0.59 0.11 2.42 0.78 2.24

1000 1.27 0.51 0.19 1.20 0.61 1.89

5000 1.06 0.19 0.94 0.60 0.17 9.04

10000 0.96 0.19 2.50 0.43 0.11 15.51

20000 1.02 0.14 8.49 0.41 0.11 31.13

200 ∼ 30× 500 2.09 0.52 0.14 1.73 0.42 0.95

1000 1.70 0.24 0.22 1.09 0.41 1.84

5000 1.05 0.18 1.39 0.54 0.11 7.10

10000 1.13 0.18 4.09 0.51 0.17 14.13

20000 1.02 0.13 13.86 0.33 0.05 27.55

The performances were evaluated both in terms of HE and running time
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Fig. 6 Comparison of the average running time required by GenHap (blue bars) and HapCol (red bars) computed over 15 instances for each
#SNPs ∈ {500, 1000, 5000, 10000, 20000} obtained with the PacBio RS II sequencing technology, cov 
 30×, fSNPs = 100 (top) and fSNPs = 200
(bottom)

As a first test on real sequencing data, we exploited a
WIF input file codifying the SNPs of the chromosome 22
generated from high-quality sequencing data made pub-
licly available by the GIAB Consortium. This instance
contains #SNPs 
 27000 and #reads 
 80000 with aver-
age and maximum coverages equal to 22 and 25, respec-
tively. In [39], in order to down-sample the instances to
the target maximum coverages of 30× allowed by HapCol,
the authors applied a greedy-based pruning strategy. This
procedure selects the reads characterized by high base-
calling quality. GenHap detected and inferred the 305
different haplotype blocks in less than 10 min, obtaining
approximately an 87% agreement with respect to the Hap-
Col solution. This agreement was calculated considering
every SNP of both haplotypes in each block.

Table 3 Results obtained by GenHap on the Roche/454 dataset
with cov 
 60×

GenHap

fSNPs cov #SNPs Avg HE Std dev HE Avg running time [s]

100 ∼ 60× 500 0.00 0.00 0.26

1000 0.05 0.05 0.54

5000 0.10 0.03 6.57

10000 0.15 0.03 21.13

200 ∼ 60× 500 0.00 0.00 0.37

1000 0.07 0.09 0.89

5000 1.13 1.72 11.17

10000 2.00 1.02 53.77

The performances were evaluated both in terms of HE and running time

We tested GenHap also on the chromosome 22
sequenced using the PacBio RS II technology (publicly
available at [41]). This instance contains #SNPs 
 28000
and #reads 
 140000 with average and maximum cov-
erages equal to 29 and 565, respectively. GenHap recon-
structed the two haplotypes in about 10 min. This result
shows that GenHap is capable of dealing with instances
characterized by high coverages, avoiding pruning pre-
processing steps.

Discussion and conclusions
In this paper we presented GenHap, a novel computa-
tional method based on GAs to solve the haplotyping

Table 4 Results obtained by GenHap on the PacBio RS II dataset
with cov 
 60×

GenHap

fSNPs cov #SNPs Avg HE Std dev HE Avg running time [s]

100 ∼ 60× 500 1.22 0.36 0.17

1000 0.88 0.21 0.33

5000 0.56 0.10 1.81

10000 0.62 0.10 5.34

20000 0.60 0.07 17.14

200 ∼ 60× 500 1.22 0.37 0.22

1000 0.79 0.27 0.36

5000 0.53 0.09 3.26

10000 0.45 0.08 8.01

20000 0.49 0.05 27.15

The performances were evaluated both in terms of HE and running time
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problem, which is one of the hot topics in Computa-
tional Biology and Bioinformatics. The performance of
GenHap was evaluated by considering synthetic (yet real-
istic) read datasets resembling the outputs produced by
the Roche/454 and PacBio RS II sequencers. The solu-
tions yielded by GenHap are accurate, independently of
the number, frequency and coverage of SNPs in the input
instances, and without any a priori hypothesis about the
sequencing error distribution in the reads.

In practice, our method was conceived to deal with
data characterized by high-coverage and long reads, pro-
duced by recent sequencing techniques. The read accu-
racy achieved by novel sequencing technologies, such as
PacBio RS II and Oxford Nanopore MinION, may be
useful for several practical applications. In the case of
SNP detection and haplotype phasing in human sam-
ples, besides read accuracy, a high-coverage is required to
reduce possible errors due to few reads that convey con-
flicting information [43]. In [44], the authors argued that
an average coverage higher than 30× is the de facto stan-
dard. As a matter of fact, the first human genome that was
sequenced using Illumina short-read technology showed
that, although almost all homozygous SNPs are detected
at a 15× average coverage, an average depth of 33× is
required to detect the same proportion of heterozygous
SNPs.

GenHap was implemented with a distributed strategy
that exploits a Master-Slave computing paradigm in order
to speed up the required computations. We showed that
GenHap is remarkably faster than HapCol [23], achiev-
ing approximately a 4× speed-up in the case of Roche/454
instances, and up to 20× speed-up in the case of the
PacBio RS II dataset. In order to keep the running time
constant when the number of SNPs increases, the num-
ber of available cores should increase proportionally with
#SNPs.

Differently from the other state-of-the-art algorithms,
GenHap was designed for taking into account datasets
produced by the third-generation sequencing technolo-
gies, characterized by longer reads and higher coverages
with respect to the previous generations. As a matter of
fact, the experimental findings show that GenHap works
better with the datasets produced by third-generation
sequencers. Although several approaches have been pro-
posed in literature to solve the haplotyping problem
[5, 23], GenHap can be easily adapted to exploit Hi-C
data characterized by very high-coverages (up to 90×),
in combination with other sequencing methods for long-
range haplotype phasing [45]. Moreover, GenHap can be
also extended to compute haplotypes in organisms with
different ploidity [46, 47]. Worthy of notice, GenHap
could be easily reformulated to consider a multi-objective
fitness function (e.g., by exploiting an approach simi-
lar to NSGA-III [48]). In this context, a possible future

extension of this work would consist in introducing other
objectives in the fitness function, such as the methyla-
tion patterns of the different chromosomes [49], or the
gene proximity in maps achieved through Chromosome
Conformation Capture (3C) experiments [50]. As a final
note, we would like to point out that there is currently a
paucity of up-to-date real benchmarks regarding the lat-
est sequencing technologies. Therefore, collecting a reli-
able set of human genome sequencing data acquired with
different technologies against the corresponding ground
truth can be beneficial for the development of future
methods.
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