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Abstract

subtypes of influenza A viruses.

conventional t-test method.

Background: Different types of viruses have different envelope proteins, and may have their shared or distinctive
host-virus interactions which result in various post-infection effects in humans and animals. These effects often do not
appear at once but take time to unfold. To characterize the virus-specific effects, we applied a Multivariate Polynomial
Time-dependent Genetic Association (MPTGA) method, previously proposed for detecting differences in temporal
gene expression traits, to test for the differences in mouse lung transcriptome response to infection of different

Results: We compared two methods: the Multivariate Polynomial Time-dependent Genetic Association (MPTGA)
method, and the conventional modified t-test, to study the virus-specific effects on mouse lung gene expression. Both
methods found H3N2 to be the most different virus among the three viruses tested, with the largest number of genes
with H3N2-specific effects. However, the MPTGA method demonstrated much higher power of detection, and the
detected genes with virus-specific effects showed better biological relevance.

Conclusions: Transcriptome response to virus infection is dynamic. MPTGA which leverages temporal gene
expression traits showed increased power in detecting biologically relevant virus-specific effects comparing with

Keywords: Temporal association, Dynamic response, Flu virus

Background

Influenza viruses have various types and subtypes that
differ in their morbidity, virulence and pathogenicity.
Influenza A virus is the most virulent type and can
be further divided into several subtypes [1]. These sub-
types also include different strains which may evolve
over time and vary in their manifestations: zoonotic,
pandemic and seasonal [2]. The highly pathogenic avian
influenza H5N1 virus, for example, is a zoonotic influenza
virus that is transmitted from poultry to humans. The
H5N1 virus strain A/Vietnam/1203/04 was the most
pathogenic strain from the 2004 outbreaks of H5N1
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influenza viruses [3]. The pandemic HIN1/09 virus strain,
on the other hand, has led to the swine-origin HIN1 flu
pandemic in 2009. The seasonal H3N2 vaccine seed strain
A/Wyoming/03/2003 represents H3N2 viruses isolated
during the last three seasons [4].

Previous studies [5] have shown in time course experi-
ments that seasonal H3N2, pandemic HIN1, and zoonotic
H5N1 viruses differ strongly in the spatial and tempo-
ral dynamics of infection and associated lesions in the
ferret respiratory tract. Therefore, to characterize and to
differentiate the infection processes with the diverse cate-
gories and subtypes of influenza viruses, it is important to
acknowledge its highly dynamic nature.

In this paper, we investigated temporal mouse lung gene
expression traits in response to infection with influenza
A/California/04/09 (H1N1), A/Wyoming/03/03 (H3N2),
and A/Vietnam/1203/04 (H5N1) HALo virus (GSE98527)
and aimed to identify the virus-specific effects. To

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0

K BMC

International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver

(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.


http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-019-2653-4&domain=pdf
mailto: jun.zhu@mssm.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Chen and Zhu BMC Bioinformatics 2019, 20(Suppl 3):129

compare temporal gene expression traits, we proposed
a multivariate polynomial temporal genetic association
(MPTGA) method [6] previously in the context of genetic
association with temporal gene expression. We further
extended this method to a more general setting that
compares the temporal gene expression trait under differ-
ent conditions, which applies to the specific aim in this
study—to detect the differences in the way each virus
affects temporal gene expression traits over time. We also
compared the MPTGA method with the conventional
modified t-test to detect differential gene expression post
infection of different viruses, and demonstrated signifi-
cant increase in the power and specificity of our temporal
method.

Results

Mouse lung dataset

To characterize the cellular transcriptome response of
mouse lung to infection of HIN1, H3N2, and H5N1
influenza virus, six to eight week-old female C57BL/6
mice were infected with influenza A/California/04/09
(HIN1), A/Wyoming/03/03 (H3N2), and A/Vietnam/
1203/04 (H5N1) HALo virus in 3 experimental groups
respectively. The Influenza A/Vietnam/ 1203/04 (H5N1)
HALo mutant virus is an attenuated H5N1 virus gen-
erated from wild-type Influenza A/Vietnam/1203/04
(H5N1) virus [7]. Lungs were collected from each experi-
mental group with 3 mice infected with the same virus at
12h, 1d, 2d, 3d and 4d post infection. The cellular tran-
scriptome at each time point was profiled by mRNA-Seq
technology (GSE98527).

Detecting virus-specific effects on post-infection temporal
expression

We applied MPTGA to all 24,421 genes profiled in the
mouse lung dataset, testing for differential temporal post-
infection gene expression between infection with each
virus and the other two. In addition, we applied the
moderated t-test using an empirical Bayes method imple-
mented in the R package Limma [8] to test for differential
expression based on the last time point.

Genes have different temporal trajectories in response
to different subtypes of viruses. For example, Fig. 1
shows expression of Mill2 (MHC I like leukocyte 2),
an mouse ortholog for the MICB gene in human.
Mill2 is highly expressed in mouse lung according to
Mouse ENCODE transcriptome data [9]. It involves in
immunoregulatory interactions between a lymphoid and a
non-lymphoid cell and innate immune system. Its related
GO processes include immune response and immune
response-activating cell surface receptor signaling
pathway. Figures 1 and 2 illustrate the performance of
different methods in detecting virus-specific effects on
post-infection temporal expression of Mill2. Previous
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Fig. 1 Gene expression trajectories of the Mill2 gene in mouse lung.
Each dashed line represents the post-infection gene expression
trajectory for a sample. Dashed lines with the same line type but
different colors correspond to the same sample infected with
different viruses. Red, green, blue dashed lines each corresponds to
the gene expression trajectory with HIN1, H3N2, H5N1 infection,
respectively. Black dashed lines correspond to the gene expression
trajectory with the other 2 viruses infection. Solid lines are the fitted
curves. Red, green, blue solid lines each corresponds to the fitted
curve for the temporal gene expression trajectories with HIN1T, H3N2,
H5N1 infection, respectively. Black solid lines correspond to the fitted
curve for the temporal gene expression trajectories with other 2
viruses infection. Yellow solid lines correspond to the fitted curves
using the reduced model taking all samples together
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Fig. 2 MPTGA v.s. standard differential expression test on Mill2 gene. The p-values of differential temporal gene expression tests on Mill2

post-infection trajectories using MPTGA and the p-values of standard differential gene expression tests on Mill2 based on the last time point. Green

represents MTPGA, red represents standard differential expression test. Significant p-values are highlighted

studies [10-14] have investigated the immune-related
functions of Mill2 (or its orthologs) and have charac-
terized the underlying mechanisms. MICB activates the
cytolytic response of natural killer (NK) cells and CD8
T-cells. As is shown in Fig. 1 with H3N2 infection, Mill2
expression trajectories demonstrate an evidently distinct
pattern from the trajectories post-infection with the other
two viruses, consistent with previous observations that
H3N2 is less effective in induction of immune response in
lung [15]. However, at the last time point, all trajectories 2882
return to similar levels of gene expression values, which
suggests that the standard differential expression test

based on the last time point was not able to detect the dif- 23
ference, whereas the MPTGA method was able to detect AN
the subtype specific effect of post-infection temporal 342
expression of Mill2, as shown in Fig. 2. H5N1

Figure 3 provides a summary of the genes identified
by MPTGA with differential post-infection temporal gene Fig. 3 Venn diagram of MPTGA detected genes with virus-specific

expression specific to each virus. Figure 4 provides a effects. Venn diagram of the identified genes with significant
summary of the genes identified by the conventional differential post-infection temporal gene expression specific to each
differential gene expression test implemented by the R virus, detected by MPTGA. Bonferroni correction was applied to

package Limma [8] as a moderated t-test based on the correct for multiple testing
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Fig. 4 Venn diagram of Limma detected genes with virus-specific
effects. Venn diagram of the identified genes with significant
differential post-infection gene expression specific to each virus,
detected by Limma based on the last time point. Bonferroni
correction was applied to correct for multiple testing

last time point. MPTGA identified more temporal differ-
ential expression genes than the conventional test, with
3260 genes showing differential temporal gene expres-
sion specific to at least one virus, while only 401 genes
were identified by the conventional method. In addi-
tion, the conventional test results in three disjoint sets
of genes with differential gene expression specific to
each virus, suggesting that the test is only able to dis-
tinguish the post-infection effect on the gene expression
between at most one of the viruses and the others. On
the contrary, MPTGA identified 24 genes with differential
temporal expression specific to multiple viruses. These
results demonstrate significant superiority of the MPTGA
method over the conventional method in both the power
of detection and the specificity of virus-specific effects.
In spite of the differences, both MPTGA and the con-
ventional test resulted in the largest number of differ-
entially expressed genes specific to H3N2. The same
observation also holds for the genes uniquely specific to
each virus, with H3N2 having the largest number of genes
that are only found to take on a post-infection effect
specific to H3N2 but not to H5N1 nor HIN1. On the con-
trary, HIN1 appears to be the least specific virus, with the
smallest number of a temporal effect specific to HIN1.

Functional enrichment

We looked into the functional enrichment in the identi-
fied differentially expressed genes specific to H3N2 only
(without being specific to HIN1 or H5N1), as H3N2 was
shown to be the virus with the most specific post-infection
effects by both the MPTGA and the conventional method.
The MPTGA method identified 2882 genes of only H3N2-
specific effects, whereas the conventional method iden-
tified 390 genes of only H3N2-specific effects. Among

Page 112 0f 118

them, 381 (98%) genes were in the common between the
two. We compare the significance level of the top enriched
GO categories for the 2882 genes identified by MPTGA
with the significance level of these GO categories for
the 390 genes identified by the conventional method in
Fig. 5. The majority of the top enriched GO terms from
the MPTGA identified 2882 genes of only H3N2-specific
effects were related to immune or defense mechanisms.
Comparing with Limma, the MPTGA method shows a
consistently stronger enrichment in the immune related
categories. We also look into the 9 genes identified by
Limma but not by MPTGA and find no function enrich-
ment in any immune or defense related GO categories.
Next, we show the GO enrichment of the 2501 genes
among the set of 2882 genes identified by MPTGA but not
by Limma in Fig. 6. Most of the top enriched GO terms
are related to immune/defense mechanisms or cell cycle
regulation.

Previous studies [16—-22] have compared the patho-
genesis of different viruses in human cases and animal
models. The H5N1 and HIN1 subtype viruses are more
pathogenic and have a larger effect on lower respiratory
tract comparing the H3N2 subtype virus. The pandemic
2009 H1N1 virus is shown to have similar pathogenesis to
other influenza A viruses with high virulence such as the
H5N1 viruses, with extension of its inflammation process
of the larger airways into the alveoli causing diffuse alveo-
lar damage, while the less virulent seasonal H3N2 virus is
found to have less extension of its inflammatory process to
alveoli. The difference in the morbidity and pathogenesis
observed in these viruses is consistent with what we find
in comparing the effect of each of the viruses on the tem-
poral gene expression after infection, and finding the most
number of genes showing specific effects unique to H3N2.
Our results showed that H3N2 specific effects in lung
were related to immune response and cell cycle regulation,
indicating that the MPTGA method did not only detect
more genes with virus-specific effects, but also revealed
significant biological pathways underlying virus-specific
effects.

It has been shown that innate lymphoid cells (ILCs)
accumulated in lung after virus infection to promote lung
tissue homeostasis [23]. Monticelli et al. [23] reports a ILC
enriched signature consisting of 121 genes. We compared
the signature with our virus specific genes and identified
41, 1, and 0O genes in the overlap with H3N2, HIN1, and
H5NI1 specific genes, respectively. The significant overlap
with H3N2 specific genes (Fisher’s Exact test p-value =
5.0e-10) suggests a potential mechanism explaining why
H3N2 is least pathogenic to lung tissues.

Discussion
Virus infection in humans and animals is a dynamic pro-
cess, with wildly different virulence and pathology specific
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Fig. 5 GO enrichment of H3N2-specific genes. Comparison of GO enrichment from the 2882 genes showing H3N2-specific effects only (without
being specific to HINT or H5N1) identified by MPTGA and from the 390 genes showing H3N2-specific effects only identified by Limma. GO
categories are ranked by the significance level obtained from the MPTGA identified 2882 genes
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to types or subtypes of viruses. For health-care profession-
als, it is essential to understand the virus-specific effects
over a temporal dimension in order to accurately iden-
tify the virus and to proceed with appropriate treatment
strategies.

In this paper, we studied the temporal gene expression
response in mouse lung to infection with a seasonal H3N2
virus strain, a pandemic H1N1 virus strain, and a zoonotic
H5NI1 virus strain. We aimed to identify the virus-specific
effects on the post-infection gene expression. For this
purpose, we compared two methods, a Multivariate Poly-
nomial Time-dependent Genetic Association (MPTGA)
method proposed for temporal gene expression traits,
and the conventional modified t-test for differential gene
expression detection. Both methods showed that the sea-
sonal H3N2 virus was the most different among the three
tested, showing distinct response in the expression of the
largest number of genes. The MPTGA method identi-
fied significantly more genes with virus-specific effects for
each of the three viruses comparing with the modified t-
test. We looked into specific examples and observed that
the effects of the viruses infection varied over time, which
explained why the modified t-test failed to capture the

post-infection effects for many of the genes based on a
single static time point. Moreover, by comparing the genes
with virus-specific effects identified by the two meth-
ods, we showed that the MPTGA method identified more
genes involved in immune response and cell cycle reg-
ulation pathways, consistent with previous studies com-
paring patho-physiological effects of these virus subtypes.
Nevertheless, what virus-host interactions drive the virus
specific effects can not be derived from this study. Further
studies are needed to elucidate causal regulations leading
to the virus specific effects.

We also generalized the MPTGA model based on two
genotypes/groups to three or more genotypes/groups
(the MPTGA models based on 2 or 3 genotypes/groups
are noted as MPTGA2 and MPTGA3, respectively). We
applied MPTGA3 to the mouse lung data set and com-
pared results based on MPTGA2 and MPTGA3 (Fig. 7).
MPTGAS3 identified more genes differentially regulated
among 3 subtypes of viruses. There were also genes
identified by MPTGA2 but not by MPTGA3, suggest-
ing the model selection should be based on underlying
data distributions. For results based on MPTGA?2, it is
easier to interpret common of viruses and unique to
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Fig. 6 GO enrichment of H3N2-specific genes detected by MPTGA only. GO enrichment from the 2501 genes showing H3N2-specific effects only
(without being specific to HIN1 or H5N1) identified by MPTGA but not identified by Limma. GO categories are ranked by the significance level.
General GO terms with more than 1500 genes associated are not displayed here

each specific virus. However, it is not easy to biologi-
cally interpret the results based on MPTGA3. Thus, we
focused on the results based on MPTGAZ2 in the “Results”
section.

In the MPTGA model, we assumed expression levels
of a gene followed a group mean trajectory with vari-
ance at each time following a normal distribution. To
assess the performance of MPTGA in the cases where
variances deviate from a normal distribution, we simu-
lated data sets based on the empirical patterns identified
in the mouse lung data and added residuals sampling from
different distributions (normal, uniform, exponential dis-
tributions, and Student’s t-distribution with 3, 5, and 7
degrees). Then, we applied MPTGA to the simulated data
sets. The accuracy were greater than 99% for T3, T5, and
exponential distributions and 100% for other distributions
tested. The results are summarized in Fig. 8. In general,
MPTGA was robust to residuals deviated from a normal
distribution.

It is worth to note that there were lots of assumptions
made in the MPTGA model, such as cubic polynomial
function for mean trajectories and covariances related in
first order auto correlation. The choices were made mainly
due to limited number of time points in a time series data
set. If a long time series is available, high degree poly-
nomial functions and higher order correlation structure
should be explored.

Conclusions

Transcriptome response to virus infection may vary
between viruses and over time. The Multivariate Poly-
nomial Time-dependent Genetic Association (MPTGA)
method can be applied to detect virus-specific effects
on temporal gene expression traits. It is shown to
enhance the power and specificity of detection sub-
type specific effects, which could result a more
accurate target gene set for understanding the virus
pathology.
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Fig. 7 Venn diagram of MPTGA2 and MPTGA3 detected genes with
virus-specific effects. Venn diagram of the identified genes with
significant differential post-infection gene expression, detected by
MPTGA2 and MPTGA3. Bonferroni correction was applied to correct
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Methods

MPTGA and extension

Lin et al. [6] proposed a Multivariate Polynomial Time-
dependent Genetic Association (MPTGA) method to
detect genetic effects in temporal gene expression tra-
jectories. The MPTGA method assumes that for each
genotype j, the temporal gene expression trait y across
m time points follows a multivariate normal distribution
N (gj, £), with density function

fity) = exp [— y-g)= ' (y-g)" /2]'

The mean vector g; for genotype j is modeled with a
polynomial curve

1
(271’)”’/2|E |1/2

g =[50, = [Ezlf=oﬂkjtk] ,

1xm

where K is the degree of the polynomial function. In this
study, K was set to be 3.
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Fig. 8 Evaluation of MPTGA performance robustness to deviations from a normal distrubtion. Summary of the MPTGA test performance when the
underlying assumption of normal distribution is met or when the expression traits follow different distributions (normal, uniform, exponential,
Student’s t with 3,5, and 7 degrees)
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In particular, MPTGA assumes a first order auto-
regression model to take into account the auto-correlation
between different time points, with the covariance matrix
specified as

1 0 pm—l
P 1 pm—2
Y=o .
ol g2 ]

For each sample i, its gene expression trajectory y;(¢)
across m time points can be written as

K K
Yil) =8i0 Y _ Brot* +8u Y Bat' + e,
k=0 k=0
where 8;p and §;; are the indicator variables of sample i
taking genotype O or 1.
Given the joint likelihood

N
L£(©) = [ [[sufolys) + sufi(yo)]
i=1
The maximum likelihood estimates of the parameter set
e = (,Bkj, 0, O'ez) can be derived as described in the Lin
et al. [6] paper.

Lin et al. [6] compared longitudinal trajectories between
two different conditions (e.g. two possible genotypes in a
haploid system). The method can be extended to accom-
modate three or more conditions (e.g. effects of three pos-
sible genotypes in a diploid system; e.g. effects of different
viruses infection). This comparison can be done using
done using a pairwise test between conditions. Alterna-
tively, we can construct a full model to detect the (genetic)
effects:

K K K
yi(£) = dio Z Brot* + 8 Z Btk +8i Z Brat* + €
k=0 k=0 k=0
for a given trait Y, then the reduced model Hy (single gene
expression trait curve)

Hy : Bro = Br1 = Bra

can be compared against the full model H; (different
gene expression trait curve for different conditions (geno-
types/viruses infection)):

for allk

Hj : at least one of the equalities does not hold

to test the hypothesis of the existence of eQTL at a locus or
difference between effects of viruses by estimating these
parameters with a MLE procedure and performing a like-
lihood ratio test. The full model approach differs from the
pairwise test in that it imposes an extra condition of a
shared covariance structure among all three conditions,
which is estimated in the full model taking all three condi-
tions into account; whereas the pairwise test only requires
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the covariance structure to be shared between each pair,
which is estimated separately for each pair.

Similar to the MPTGA model with two genotypes, we
assume that for each genotype j = 0, 1, 2, the mean vector
g; for genotype j is modeled with a polynomial curve

g = [80]1 = [Zf:oﬁkjfk] j=012.

1xm

Given the joint log-likelihood

N N
log £(©) = siologfo(y) + Y _ i1 logfi(ys)

i=1 i=1

N
+ Y S logfly),

i=1

the maximum likelihood estimates of the parameter set
e = (ﬁoj, Buj» Bj» B3 ,o,aez) ,j = 0,1,2 can be derived by
first looking for the critical point of log £(®) by taking
its derivative with respect to 8’s and o2, finding that both
B's,02 can be expressed as functions of p at the critical
point, therefore log £(®) can be expressed as functions of
p at the critical point as well; then the MLE of p can be
derived by taking derivative of log £(®) with respect to p,
and thus f’s and o2 can be obtained accordingly.

The detailed derivation is as follows. Define T; =
Y 8y = 01,2 1o = [1-- Ui, I = [1--m],
L=5 =[1-m]I=F =[1.--m’; Q) U,V) =
e WVi+ U Vi) = 125 [0 UiV + Ui Vi +
L0 SIS UV, where U = [Uy,++,Uy] and V. =
[V1¢"‘ er]'

Taking derivative of log £(®) with respect to B¢’s gives
the following linear system:

a11B00 + 12810 + a13B20 + 21430 = b1
21 Boo + 22810 + @23 B20 + @24 B30 = bo
31800 + 32810 + 33820 + 034830 = b3
41 Boo + a2 P10 + a3 Pao + g4 P30 = by

where a;; = n0Q(p,1;-1,1;-1), b; = Q(p, To,Li-1), no =
Zf\il 8i0. Then Bo’s can be estimated by

-1

Boo o11 o12 013 014 by
Bro| _ | a1 a2 @23 ang . by
B20 o031 03 (33 O34 bz
B30 041 Q42 0143 0laq by
. ) 1
Similarly, define n, = YN, 8, ozi(j) =

mQ(p, Ii-1,Li-1), bl('l) = Qp, T, Li1); my = YN, 80,
o« = mQp. Y11, B = Q(p, T2 Lioy); then Bs
can be derived accordingly.
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Next, taking derivative with respect to o2 gives

N 2
op = ZQ(eri»Yi) + Z [Q(p, T;, T))

i=1 i=0

3

J

=0

3 3

+ 3 ) miBiBuQp 1, 1] § /(mN)

j=0 k=0

With the previously derived estimators of 8’s and o2 also
as functions of p, the log-likelihood can now be written as

N N
log L(®) = — mT log 2 — > [(m —1)log (1 — ,02)

N
+mlogol] — mT

Based on the MLE of the unknown parameters, a LRT
(—2log A~ xé) can be conducted comparing the afore-
mentioned full model H; with the null model Hy to test
for virus-specific effects.

Detecting virus-specific effects on post-infection temporal
expression

The MPTGA method can be applied to a broader set-
ting that compares the temporal gene expression traits
between two different conditions, whereas the original
setting proposed by Lin et al. [6] is a special case that
compares two possible genotypes in a haploid system. In
this paper, we are interested in detecting the virus-specific
effects on the post-infection temporal gene expression tra-
jectories. For a given virus v, we define j = 0,1 as the
indicator variable of a sample infected by virus v or other
viruses. The null hypothesis Hy assumes that the temporal
gene expression trait y; share the same trajectory pattern
after infected by virus v and other viruses:

Hy : Bro = Pra for all k

which is tested against the full model H;, assuming that
the temporal post-infection gene expression trait y; with
virus v has a unique trajectory pattern distinct from the
post-infection trajectories with other viruses:

Hj : at least one of the equalities does not hold

The hypothesis can be tested using a likelihood ratio test.
Similarly, MPTGA can be applied to cases with three or
more groups as outlined above.
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