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Abstract

Background: The ab initio approaches to protein structure prediction usually employ the Monte Carlo technique to
search the structural conformation that has the lowest energy. However, the widely-used energy functions are usually
ineffective for conformation search. How to construct an effective energy function remains a challenging task.

Results: Here, we present a framework to construct effective energy functions for protein structure prediction. Unlike
existing energy functions only requiring the native structure to be the lowest one, we attempt to maximize the
attraction-basin where the native structure lies in the energy landscape. The underlying rationale is that each energy
function determines a specific energy landscape together with a native attraction-basin, and the larger the
attraction-basin is, the more likely for the Monte Carlo search procedure to find the native structure. Following this
rationale, we constructed effective energy functions as follows: i) To explore the native attraction-basin determined
by a certain energy function, we performed reverse Monte Carlo sampling starting from the native structure,
identifying the structural conformations on the edge of attraction-basin. ii) To broaden the native attraction-basin, we
smoothened the edge points of attraction-basin through tuning weights of energy terms, thus acquiring an improved
energy function. Our framework alternates the broadening attraction-basin and reverse sampling steps (thus called
BARS) until the native attraction-basin is sufficiently large. We present extensive experimental results to show that
using the BARS framework, the constructed energy functions could greatly facilitate protein structure prediction in
improving the quality of predicted structures and speeding up conformation search.

Conclusion: Using the BARS framework, we constructed effective energy functions for protein structure prediction,
which could improve the quality of predicted structures and speed up conformation search as well.
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Background
Determination of protein structure is important for
understanding protein functions [1]. The classical tech-
niques for protein structure determination include X-ray
crystallography, nuclear magnetic resonance, and electron
microscopy. These determination techniques, however,
often suffer from the limitations in both expensive costs
and long determination period, leading to the ever-
increasing gap between the number of known protein
sequences and that of solved protein structures [2]. Com-
putational approaches to protein structure prediction
from sequences are becoming increasingly important to
narrow down the gap [3].

The protein structure prediction approaches can be cat-
egorized into two families, namely, template-based mod-
eling [4–10] and ab initio approaches [11–15]. Recently
the predicted contacts have also been shown to be invalu-
able to protein structure prediction [16–21]. Unlike the
template-based modeling approaches, the ab initio pre-
diction approaches work without requirements of known
similar protein structures. Briefly speaking, most ab initio
prediction approaches are based on the hypothesis that
the native structure of a protein should be the highly-
populated one with sufficiently low energy; thus, ab initio
approaches usually perform conformation search to find
a structural conformation with sufficiently low energy.
For example, Rosetta employs the Monte Carlo technique
to search conformations assembled from fragments of
known structures, and finally reports the centroid of a
large cluster of low-energy conformations [11].

For the ab initio prediction approaches, one of the
key issues is designing an effective energy function
[11, 14, 15]. Typically, an energy function is a weighted-
sum of multiple energy terms. The energy terms charac-
terize specific structural features, especially the interplay
between local and global interactions of residues. For
example, the hydrophobic interaction term was designed
to capture the observed tendency of non-polar residues
to aggregate in aqueous solution and exclude water
molecules. Van der Waals force term is the sum of the
attractive or repulsive forces among residues. Hydrogen
bonding term describes the electromagnetic attractive
interaction between polar molecules in which hydrogen
is bound to highly electronegative atom oxygen in the
carboxyl [1]. In Rosetta, a total of 13 energy terms were
used at the residue level, and over 140 terms were used
at the full-atom level; therefore, it is important to find
the optimal weighting of so many energy terms [11]. This
study focuses on designing an optimal weighting of the 13
energy terms used in Rosetta.

Ideally, an effective energy function is expected to
be able to distinguish the native structure from non-
native conformations (called decoys), and could drive as
much as possible initial conformations to the native-like

one during the conformation search process. To achieve
these two objectives, a widely-used strategy for designing
energy function is to maximize the correlation between
energy and quality of decoys [22]. Here the quality of
a decoy refers to the structural similarity between the
decoy with the native structure, which is measured using
root mean square deviation (RMSD) of backbone atoms
in this study. Inspired by the idea of “funnel-shaped free
energy surface”, Levitt et al. proposed a funnel sculpt-
ing technique to construct energy functions that allow
the conformation search procedure to easily “roll” into the
native structure from a random starting conformation [23].
In another study, Shell et al. attempted to smooth energy
function to make the energy landscape a funnel [24].

In this study, we present a framework that constructs
effective energy function for protein structure prediction.
Our framework, called BARS, consists of two procedures,
i.e., broadening attraction-basin where the native struc-
ture lies in the energy landscape (hereafter denoted as
native attraction-basin), and reverse sampling. The under-
lying rationale is that the larger the attraction-basin is,
the more likely for the Monte Carlo procedure to find the
native structure. To explore the attraction basin, we per-
formed reverse sampling starting from the native struc-
ture. Subsequently, we tuned the weights of energy terms
to broaden the native attraction-basin and thus acquired
an improved energy function. We showed that both the
possibility of successful search and the quality of predicted
conformation increase when using the improved energy
function.

The manuscript is organized as follows: “Methods”
section describes the whole framework of our method,
and the linear program model to optimize protein energy
weights as well. “Results and discussion” section lists
experimental results of the optimized energy function. In
“Conclusion” section, we will discuss some limitations of
our method and possible future works.

Methods
To construct an effective energy function, our BARS
framework alternates two procedures, i.e., for an energy
function, we first explored the native attraction-basin in
the corresponding energy landscape using reverse sam-
pling, and then improved the energy function through
broadening the attraction-basin. These two procedures
were alternated until the energy function changes suffi-
ciently small between successive iterations as below.

The details of the two procedures are described as follows.

Exploring the native attraction-basin using reverse
sampling
When applying Monte Carlo technique to search the
structural conformation with the lowest energy, the ab
initio approaches might finally end with success if starting
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Algorithm 1 BARS framework
1: Set weights of energy terms W ′ with initial values;
2: repeat
3: W = W ′;
4: Run reverse sampling procedure to identify edge

point conformations of the energy landscape corre-
sponding to W ;

5: Run broadening attraction-basin procedure to
smoothen the identified edge point conformations
and generate a new weight scheme W ′;

6: until the difference between W and W ′ is sufficiently
small

7: return W ;

from some initial structural conformations, and might end
with failure if starting from other initial structural confor-
mations. An initial structural conformation is said to lie in
the native attraction-basin if the conformation can finally
evolve into the native structure during the conformation
search process.

To explore the native attraction-basin under a specific
energy function, we propose a technique called reverse
Monte Carlo sampling. Here, the term “reverse” comes
from the fact that the sampling process works essen-
tially reverse to the general Monte Carlo technique used
for conformation search. Specifically, the general Monte
Carlo search procedure starts from a random initial con-
formation and moves towards the native structure, during
which the energy of conformation is reducing. For each
inter-mediate structural conformation, a perturbation is
made to generate a new conformation. Some popular

perturbation techniques include fragment replacing used
by Rosetta [11] and torsion angle sampling used by FAL-
CON [13]. The newly-generated conformation is accepted
if it has lower energy relative to the original conformation;
otherwise the new conformation will be rejected with a
probability according to the Metropolis-Hasting rule [25]
(Fig. 1). To emphasize the difference between the general
Monte Carlo search technique and the sampling tech-
nique used in this study, we denoted the former one as
forward Monte Carlo technique.

On the contrary to the forward Monte Carlo search
technique, our reverse Monte Carlo sampling procedure
starts from the native structure and moves towards the
edge of the native attraction-basin, during which the
energy of conformations is increasing (Fig. 2). The reverse
sampling process ends at a conformation if any pertur-
bation of this conformation cannot leads to increase of
energy. Intuitively, this conformation lies at the edge of the
native attraction-basin and thus is denoted as edge point
conformation in this study.

Formally, each execution of reverse sampling will gen-
erate a path of conformations P = S0 → S1 → S2 →
... → Sn, where S0 denotes the native structure, Si (1 ≤
i ≤ n) denotes the ith inter-mediate conformations along
the reverse sampling path, and Sn denotes the final edge
point conformation. The energy of the inter-mediation
conformations increases along the path, suggesting the
monotonicity of energy within the native attraction-basin.
The RMSD between S0 and Sn is calculated as a rough
measure of the radius of native attraction-basin. For the
edge point conformation Sn, we perform m times of per-
turbation, thus acquiring m perturbation neighbors of Sn,

Fig. 1 Conformation searching process using the Monte Carlo technique. The protein structure prediction approaches usually employ the Monte
Carlo technique to search the conformation with the lowest energy. An execution of conformation search will generate a path of conformations,
e.g., the lines in blue and yellow. Here the energy landscape was drawn using 1000 decoys of protein 1ctfA: we calculated the RMSD among all
possible pairs of decoys, and then performed principal component analysis of the generated RMSD matrix [23]. The x and y axises represent the first
and second principal components, respectively. Decoy energy was calculated using score3 of Rosetta
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Fig. 2 Reverse Monte Carlo sampling and tuning weights of energy terms. Reverse Monte Carlo sampling starts from the native structure and
moves towards the edge of the native attraction-basin, during which the energy of conformations is increasing. Here the solid line shows a path of
conformations generated by reverse Monte Carlo sampling S0 → S1 → S2 → S3. S3 represents an edge point conformation as its perturbation
neighbors, e.g., S1

3 and S2
3, have lower energy than S3. The dash line shows these conformations after tuning weights of energy terms, where S3 is no

longer the edge point conformation as one of its perturbation neighbors, S2
3 has larger energy than S3. Note that during weight-tuning, the

monotonicity of energy is maintained within the native attraction-basin

denoted as N(Sn) =
{

S(1)
n , S(2)

n , ..., S(m)
n

}
(Fig. 2). In our

study, m is set as 1000.

Broadening the native attraction-basin by smoothening
the edge point conformations
Intuitively, if we can “smoothen” the edge point confor-
mations, the native attraction-basin will be broadened
since the reverse sampling process will not be stuck
at these edge point conformations. We accomplished
the “smoothening” operation through tuning weights of
energy terms such that the energy of Sn is decreased to
be less than at least one of its perturbation neighbors S(i)

n
(1 ≤ i ≤ m). To make the native structure still the lowest
one under the new energy function, we imposed a con-
straint on weight-tuning such that after tuning weights,
the new energy of Si should be lower than that of the
conformation Si+1. In other words, the monotonicity of
energy are maintained within the attraction-basin, and
thus the shape of the native attraction-basin will also be
maintained. Figure 2 shows how the conformation path
changes after improving energy function.

We designed a linear program to calculate the optimal
weights that satisfy this constraint.

min ||W − W0||
s.t. W · Ei ≤ W · Ei+1, 0 ≤ i ≤ n − 1 (1)

W · En ≤ 1
m

m∑
j=1

W · E(j)
n (2)

W ≥ 0 (3)
|W | = |W0| (4)

Here the vector W denotes the weights of energy terms,
and W0 denotes the original weights before tuning. For
an inter-mediate conformation Si in the reverse sampling
path, Ei denotes the vector of its energy terms, i.e. Ei =<

e(1)
i , e(2)

i , . . . , e(13)
i >, where e(k)

i represents the k-th energy
term. The objective of the linear program is to find a new
weighting scheme with change as small as possible. For-
mula (1) describes a constraint that the original relative
order of Si and Si+1, i.e., the monotonicity of energy within
the native attraction-basin, should be kept after tuning
weights. Formula (2) was designed to “smoothen” the edge
point conformation, i.e. at least one of the m perturbation
neighbors of the edge point conformation has a higher
energy; thus, Sn is no longer an edge point conformation
under the new energy function.

Results and discussion
Data set
We evaluated the BARS framework on Test101 dataset
that contains a total of 101 benchmark proteins. The
criteria for selecting these proteins are: i) The length
of these proteins are less than 120 amino acids as the
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energy terms used in this study were designed for small
proteins [11]. ii) These proteins cover most SCOP super-
families as energy functions differ with protein class. We
used three proteins as representatives of three SCOP
classes (Table 1) to explain the working process of the
BARS framework and summarized experimental results
on Test101 dataset in Additional file 1: Table S1.

Analysis of evolution of energy functions
As mentioned above, the BARS framework alternates the
broadening attraction-basin and reverse sampling steps to
gradually improve energy function. In our experiment, the
initial weights of energy terms were set as the weights used
by Rosetta in the scoring function score3.

Table 2 shows how the energy functions evolve as iter-
ation proceeds for protein 1ctfA. From this table, it can
be observed that the weights of energy terms are almost
fixed after 6 iterations. In addition, although the differ-
ence between consecutive iterations are not very large as
expected, the final weights are quite different from the
initial ones (Manhattan distance: 15.16).

We also compared the final weights for proteins in
different classes. As shown in Table 3, the final weights
exhibited considerable difference for proteins from
different classes. For example, the weight of Env term
in 1iieA (class A) is 5.69, about 4 times larger than that
of 1ctfA (class D), and over 2.5 times larger than
that of 1iloA (class C). This is consistent with the fact
that the environment local geometrical term is more
important for all-α proteins, since local residue-residue
interactions dominate the helix formation process. In
addition, 1ctfA (class D) can be distinguished from the
other two proteins at the sheet term: the final weight
of this term is 3.48 for 1ctfA, much larger than that of
1iloA (1.90) and 1iieA (1.14). This is also reasonable
as α+β proteins usually contain anti-parallel β-sheets,
whereas α/β proteins contains β-α-β motifs. Taken
together, the table supports the view point that different
energy terms are emphasized for proteins in different
classes.

Broadening attraction-basin as iteration proceeds
We further investigated whether the native attraction-
basin could be broadened after smoothening the edge

Table 1 Three benchmark proteins used in the study

PDB ID Chain Class #Residues #α helices #β strands

1ctf A α+β 68 4(38) 3(18)

1ilo A α/β 77 3(27) 4(18)

1iie A all α 75 3(42) -

The 3 proteins come from 3 different SCOP classes: all α (Class A), α/β (Class C), α+β

(class D). Residue numbers are 68, 77, 75, respectively. Columns 5 and 6 shows the
number and total length of α helices and β strands

Table 2 Weights of energy terms during the iteration process of
BARS

Weights at iteration

Energy terms Initial weights #1 #2 #3 #4 #5 #6

Env 1.00 1.00 0.97 0.48 0.49 1.26 1.30

Pair 1.00 1.23 1.22 0.64 2.71 2.62 2.59

Vdw 1.00 1.06 0.88 0.61 0.55 0.55 0.55

Hs 1.00 1.70 1.70 1.06 0.09 0.09 0.09

Ss 1.00 1.00 1.00 0.48 0.48 0.48 0.48

Sheet 1.00 1.00 1.00 1.00 3.48 3.48 3.48

R-sigma 1.00 1.00 1.00 0.53 0.53 0.53 0.53

Cb 1.00 0.02 0.01 0.41 0.00 0.00 0.05

Rg 3.00 3.00 3.14 6.05 0.49 0.49 0.49

Contact order 1.00 1.00 1.05 0.74 0.00 0.00 0.00

Ramachandran 0.00 0.00 0.00 0.01 0.91 1.01 1.02

Hb-srbb 0.00 0.00 0.02 0.00 3.27 2.49 2.41

Hb-lrbb 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Here, the initial weights were set as the weights used by Rosetta in score3. A total of
6 iterations are shown here. The Manhattan distances of each adjacent weighting
are 1.97, 0.44, 6.62, 17.47, 1.74, 0.21, respectively. The iteration process stopped when
the Manhattan distance is less than a threshold of 0.3. The cosine of angle of weight
vectors at iterations #4 and #5 is 0.98, while that of iterations #5 and #6 reaches 0.99

point conformations. To measure the size of the native
attraction-basin, we performed reverse sampling for 50
times, thus acquiring 50 edge point conformations. The
mean RMSD between these edge point conformations and
the native structure is calculated and used to measure the

Table 3 The optimized weights of energy terms calculated by
BARS for protein 1ctfA (after 6 iterations), 1iloA (after 5
iterations), 1iieA (after 5 iterations)

Energy terms Initial weights Final weights Final weights Final weights
for 1ctfA for 1iloA for 1iieA

Env 1.00 1.30 1.98 5.69

Pair 1.00 2.59 2.02 1.09

Vdw 1.00 0.55 0.72 0.20

Hs 1.00 0.09 0.82 1.28

Ss 1.00 0.48 0.37 0.20

Sheet 1.00 3.48 1.90 1.14

R-sigma 1.00 0.53 1.11 0.19

Cb 1.00 0.05 0.24 1.62

Rg 3.00 0.49 2.63 0.31

Co 1.00 0.00 0.00 0.62

Ramachandran 0.00 1.02 0.43 0.27

Hb-srbb 0.00 2.41 0.80 0.36

Hb-lrbb 0.00 0.00 0.00 0.00

The Manhattan distance of the weights of 1ctfA and 1iieA is 15.56, and that
between 1ctfA and 1iloA is 12.39, while that between 1iloA and 1iieA is
only 8.95. The cosine values of weight vectors are 0.63, 0.47, 0.77, respectively
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size of the native attraction-basin. Intuitively the calcu-
lated mean RMSD can be treated as radius of the native
attraction-basin.

As shown in Fig. 3, the mean RMSD was 6 Å initially,
and increased to nearly 14 Å at the final iteration. This
clearly suggested that the attraction basin was really
significantly enlarged as iteration proceeds.

Protein structure prediction using the improved energy
function
We further investigated whether the improved energy
function could facilitate protein structure prediction or
not. For this aim, we compared the predicted struc-
tures by running Rosetta with different energy functions.
Specifically, for each iteration step of BARS, we used the
corresponding weighting scheme of energy terms to con-
struct an energy function, and then run Rosetta using this
energy function to generate 1000 decoys. We investigated
two aspects of these predicted decoys: i) Quality of final
prediction results: Among these decoys, a clustering pro-
cedure was executed and the centroid of the largest cluster
was reported as the final prediction. Then we analyzed
RMSD of the final prediction with the native structure. ii)
Good decoy ratio: Among these generated decoys, we cal-
culated the ratio of “good” decoys. Here, we adopted the
widely-used criterion that for small proteins, a decoy is

called good decoy if its RMSD to the native structure is less
than 6 Å [13].

As shown in Fig. 4, the quality of the final prediction
results improved as iteration proceeded. Taking protein
1iloA as an example, the final prediction had a RMSD
of 2.7 Å when using the original weighting scheme
(Fig. 5, left panel). In contrast, when using the optimized
weighting scheme, the quality of the final prediction
structure improved (RMSD: 1.3 Å, Fig. 5, right panel).
We repeated this experiment on the 101 benchmark
proteins in Test101 set and observed that for 82
proteins, the quality of final prediction structure
improved (Fig. 6 and Additional file 1: Table S1). For
example, the quality of predicted structure for protein
1pchA was low (RMSD: 11.721 Å) when using the origi-
nal energy weight; in contrast, when using the optimized
weighting scheme, the predicted structure significantly
improved (RMSD: 3.417 Å).

Besides the quality of the final prediction, the good
decoy ratio also increased considerably (Fig. 7). For exam-
ple, if using the initial weights for protein 1iloA, only
11 decoys among the 1000 decoys were good decoys.
In contrast, over 200 good decoys were generated when
using the optimized weighting scheme. Taken together,
these results clearly suggest that using the energy function
constructed with BARS, the general Monte Carlo search
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Fig. 4 Quality of the final prediction for protein 1ctfA, 1iloA, and 1iieA. At each iteration step, a total of 1000 decoys were generated by
Rosetta with corresponding weights of energy terms. We run clustering procedure for the 1000 decoys and finally selected the centroid of the largest
cluster as the best decoy. The RMSD of the best decoys reduces as iteration proceeds, suggesting that the quality of prediction results increases

procedure significantly improved in both success possi-
bility and the quality of prediction results. This improve-
ment should also be attributed to the broadened native
attraction-basin.

Application range of the constructed energy functions
Application range is one of the key issues of energy func-
tions. An ideal energy function is expected to be appli-
cable on a large amount of proteins rather than a single
protein. To examine the application range of the energy
functions acquired using BARS, we run Rosetta with the
energy function acquired from protein 1ctfA on other

seven benchmark proteins in the same class to 1ctfA. As
shown in Table 4, on all of the seven proteins, the pre-
dicted structures have high quality (RMSD less than 7 Å).
More importantly, on five out of the seven proteins, the
prediction results using the energy function acquired from
1ctfA are much better than those predicted using the
original weights.

Similarly, we run Rosetta with the energy function
acquired from protein 1iieA on other 20 benchmark
proteins. As shown in Table 5, on 19 out of the 20 bench-
mark proteins, the predicted structures have RMSD less
than 5 Å. On 18 out of these benchmark proteins, the

Fig. 5 Predicted structures for protein 1iloA. Left panel: the predicted structures using the initial weights (RMSD: 2.7 Å). Middle panel: native
structure. Right panel: the predicted structures using the optimized weights (RMSD: 1.3 Å). Thus, the optimized weights help improve the quality of
predicted structures
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Fig. 6 Quality of predicted structures using the original weights and the optimized weights of energy terms on 101 benchmark proteins of the
Test101 dataset. For each benchmark protein, we predicted structures using both original weights and optimized weights of energy terms, and
showed RMSD of the predicted structures as x-axis and y-axis, respectively. Most proteins fall below the diagonal line, suggesting that when using
the optimized weights of energy terms, the predicted structures usually have smaller RMSD
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Fig. 7 Good decoy ratio increases as iteration proceeds. At each iteration step, a total of 1000 decoys were generated by Rosetta using
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suggests that the “good decoy ratio" significantly increases, e.g. the ratio increases from 0.01 to over 0.2 for protein 1iloA. Thus, Rosetta can
generate high-quality decoys more efficiently
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Table 4 Quality of predicted structures using the original weights
of energy terms and the weights acquired from protein 1ctfA

Quality of the predicted structure

Protein SCOP family Using original
weights

Using weights acquired
from 1ctfA

1osdA d.58.17.1 3.221Å 2.053Å

1cpzA d.58.17.1 2.810Å 2.054Å

1eigA d.9.1.1 1.786Å 2.071Å

4ubpA d.8.1.1 7.723Å 3.286Å

1ekzA d.50.1.1 4.411Å 3.448Å

1dtjA d.51.1.1 3.726Å 6.249Å

1ulrA d.58.10.1 10.322Å 6.948Å

On all of the seven benchmark proteins, the predicted structures have RMSD less
than 7 Å. On five out of the seven benchmark proteins, the predicted structures
using the weights acquired from 1ctfA are better than those predicted using the
original weights

predicted structures using the weights acquired from
1iieA are better than those predicted using the original
weights.

In summary, these results demonstrate the wide appli-
cation range of the energy functions acquired using the

Table 5 Quality of predicted structures using the original weights
of energy terms and the weights acquired from protein 1iieA

Quality of the predicted structure

Protein SCOP family Using original
weights

Using weights acquired
from 1iieA

1p7iA a.4.1.1 0.688Å 0.549Å

1am9A a.38.1.1 2.129Å 1.074Å

1cktA a.21.1.1 1.675Å 1.147Å

1oqpA a.39.1.5 1.697Å 1.273Å

1n1jB a.22.1.3 2.029Å 1.567Å

1nkpA a.38.1.1 1.991Å 1.645Å

1nkpB a.38.1.1 2.444Å 1.685Å

1bw5A a.4.1.1 2.273Å 1.891Å

1of9A a.64.1.4 1.945Å 2.053Å

1q08A a.6.1.3 2.584Å 2.316Å

1dgnA a.77.1.3 10.376Å 2.577Å

1ow5A a.60.1.2 3.082Å 2.659Å

1aoyA a.4.5.3 3.035Å 2.756Å

1hstA a.4.5.13 3.987Å 3.031Å

3ygsP a.77.1.3 8.804Å 3.14Å

1psrA a.39.1.2 4.700Å 3.451Å

1pueE a.4.5.21 9.321Å 3.545Å

1ngrA a.77.1.2 8.480Å 3.942Å

1hb6A a.11.1.1 4.138Å 4.542Å

1ctjA a.3.1.1 9.693Å 6.29Å

On 19 out of the 20 benchmark proteins, the predicted structures have RMSD less
than 5 Å. On 18 out of these benchmark proteins, the predicted structures using the
weights acquired from 1iieA are better than those predicted using the original
weights

BARS framework. A reasonable explanation of this wide
application range is that proteins in a class might share
similar folding process; thus, the energy function opti-
mized on a certain protein is also applicable for other
proteins in the same class.

Conclusion
In this study we report the BARS framework for con-
structing effective energy functions. The framework
attempts to improve energy function gradually such that
the native attraction-basin was broadened. During this
process, a reverse Monte Carlo sampling strategy was
proposed to explore the native attraction-basin. Exten-
sive experimental results demonstrate both effectiveness
and wide application range of the constructed energy
functions.

It has been reported that protein folding is a hierarchical
process. According to this observation, Rosetta employs a
multi-step prediction strategy. In particular, Rosetta first
uses score function score0 with only hydrophobic core
terms, then uses score2/score5 with secondary structure
terms, and finally uses score3 to incorporate a total of
13 energy terms [11]. This study focuses on the opti-
mization of weights for the third step. How to design
effective energy functions for the first and second steps
remains as one of our future works. We also noticed
that on 19 out of the 101 benchmark proteins, the qual-
ity of prediction results using the optimized weighting
scheme were low. How to design better energy functions
for these proteins is another future work. It should be
pointed out that the RMSD deviation of the 50 edge
point conformations is large at iteration 5 for protein
1ctfA (Fig. 3). This might imply the irregular shape of
the native attraction-basin. We will investigate this issue in
future work.

The application of the BARS framework is not limited
to protein structure prediction. Constructing an effec-
tive scoring function is usually the first important step
for optimization problems in various domains such as
RNA structure prediction, natural language processing,
etc. How to optimally combine multiple terms into a
scoring function is a challenging task. Our BARS frame-
work should greatly facilitate designing effective scoring
functions for a large variety of problems.

Additional file

Additional file 1: Quality of predicted structures using the original
weights and the optimized weights of energy terms on 101 benchmark
proteins. (PDF 82 kb)
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