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Abstract

image analysis approach based on Faster-RCNN.

other cellular structures as well.

Background: Cryo-electron tomography (cryo-ET) enables the 3D visualization of cellular organization in
near-native state which plays important roles in the field of structural cell biology. However, due to the low
signal-to-noise ratio (SNR), large volume and high content complexity within cells, it remains difficult and
time-consuming to localize and identify different components in cellular cryo-ET. To automatically localize and
recognize in situ cellular structures of interest captured by cryo-ET, we proposed a simple yet effective automatic

Results: Our experimental results were validated using in situ cyro-ET-imaged mitochondria data. Our experimental
results show that our algorithm can accurately localize and identify important cellular structures on both the 2D tilt
images and the reconstructed 2D slices of cryo-ET. When ran on the mitochondria cryo-ET dataset, our algorithm
achieved Average Precision > 0.95. Moreover, our study demonstrated that our customized pre-processing steps can
further improve the robustness of our model performance.

Conclusions: In this paper, we proposed an automatic Cryo-ET image analysis algorithm for localization and
identification of different structure of interest in cells, which is the first Faster-RCNN based method for localizing an
cellular organelle in Cryo-ET images and demonstrated the high accuracy and robustness of detection and
classification tasks of intracellular mitochondria. Furthermore, our approach can be easily applied to detection tasks of
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Background

In cells, most biological processes are dominated by
intricate molecular assemblies and networks. Analyzing
the structural features and spatial organization of those
assemblies is essential for understanding cellular func-
tions. Recently, cellular cryo-Electron Tomography (cryo-
ET) has been developed as an approach to obtain 3D
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visualization of cellular structures at submolecular resolu-
tion and in a close-to-native state [1]. Cryo-ET has been
proven to be a powerful technique for structural biology
in situ and has been successfully applied to the study of
many important structures, including vaults [2], Integrin
Linked Kinase (ILK) [3], and the nuclear pore complex
(NPC) [4]. However, the systematic structural analysis of
cellular components in cryo-ET images remains challeng-
ing due to several factors including low signal-to-noise
ratio (SNR), limited projection range (leading to the miss-
ing wedge effect) and a crowded intracellular environment
composed of complex intracellular structures.
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Given the critical roles played by mitochondria within
mammalian cells, and the distinctive morphology of these
organelles, we chose to examine mitochondria imaged by
in situ cryo-ET [5]. The 3D visualization of mitochon-
dria can provide insights into mitochondrial structure
and functionalities. Therefore, methodological improve-
ments in the detection and localization of mitochondria
within complex in situ cryo-ET datasets may significantly
improve accuracy of detection of these organelles and
directly impact further structural analyses.

Localization of the subcellular structures of interest can
facilitate subsequent study of specific macromolecular
components within the selected structures [6]. Such local-
ization can be performed through image segmentation,
which are usually performed manually or by specifically
designed heuristics. Although some visualization tools
have been developed to facilitate these approaches, man-
ual segmentation in Cryo-ET images still requires large
amounts of repetitive labor from researchers, and the
results of which are subjective. On the other hand, auto-
matic methods are fast and can produce consistent results.
Contour-based methods like Watershed yield great results
when the image complexity is low, but appear to be sen-
sitive to noise [7]. Threshold-based methods, which usu-
ally generate a mask according to the density threshold,
can be applied to foreground-background segmentation
but still have difficulty in identifying different cellular
components [8]. Recently, segmentation methods focus-
ing on specific types of structures including membranes,
microtubules and filaments [9-11], have drawn a lot of
attention. These methods perform well on specific cel-
lular structures, but lack generality. To date, machine
learning approaches to identify intracellular structures
appears to be promising. Consequently, we have devel-
oped an unsupervised segmentation method based on
manually designed heuristic rules [12], and by cluster-
ing representative features [13]. Luengo et al. [14] pro-
posed a supervised approach to classify each voxel with a
trained classification model. However, both of these meth-
ods require manually designed features or rules, which
might be time- and effort-consuming while having vari-
ous limitations. Chen et al. developed another supervised
segmentation method, taking advantage of the excellent
capability of feature extraction of convolutional neural
network (CNN) [15]. But in this way, a separate CNN has
to be trained for each type of structural features, and the
precise contours need to be manually annotated in the
training data, which may not be trivial.

Our goal is to design a simple and generic method
of automatic identification and localization of subcellu-
lar structures of interest within in situ cryo-ET images
with weak annotations, which is different from existing
segmentation-type methods and can greatly reduce the
time and effort cost of detailed manual annotation. We
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aim to detect all objects of interest in an image and
output corresponding bounding box with class predic-
tion simultaneously. Region-based convolutional neural
network (RCNN) [16], which generates region proposals
using Selective Search, extracts features from all the pro-
posals after normalization with CNNs, and finally feeds
the features to a classifier and a regression layer simul-
taneously to get both classification scores and bound-
ing box coordinates as output, lays the foundation for
our goal. And its last incarnation, Faster RCNN [17],
has achieved almost real-time detection with a high
degree of accuracy. Faster RCNN based localization meth-
ods have been applied to biomedical imaging data such
as breast mammography [18] and cellular fluorescence
imaging [19].

In this work, we proposed an automatic identification
and localization method based on Faster-RCNN, which
is the first Faster-RCNN based method for localizing an
cellular organelle in Cryo-ET images. Our algorithm is
trained and validated on 2D projection images of a cryo-
ET tomogram for localization and classification tasks of
mitochondira. Our experimental results show that our
algorithm is able to robustly predict the object’s bounding
box with classification scores. Moreover, we extended our
study to 3D tomogram slices and achieved accurate and
robust performance.

Method

Our mitochondria identification and localization method
is comprised of two main parts: (1) pre-processing to
improve the quality of samples, and (2) object detection
using Faster-RCNN. The input of our system is 2D pro-
jection images of a tomogram, and the output includes
coordinates of the bounding boxes of object of interest,
the class of each object and the probability of the classi-
fication. A flowchart of our method is shown in Fig. 1. In
this section, we willdescribe each part of our system in
details.

Preprocessing

Since biological samples are sensitive to radiation dam-
age, only low-dose electrons can be used for electron
microscopy imaging [6]. Compared to normal images,
electron tomography images are usually noisier and have
lower contrast. To make the images suitable for subse-
quent processing, we first perform noise reduction and
contrast enhancement. To reduce noise, considering the
edge features are often important for subcellular struc-
tures, we chose Bilateral Filtering [20], a nonlinear fil-
tering method that preserves the original edges as much
as possible. Bilateral Filtering considers the effects of
both spatial distance and gray scale distance, and can
be implemented by combining two Gaussian Filters. To
improve local contrast and the definition of details, we
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Fig. 1 Flowchart of our Faster-RCNN model. The denoised input image is fed into Conv layers to generate the feature map. Then, region proposal
network proposes potential regions that contain object of interest. The proposal regions are passed to 1) classifier for classification, 2) regressor for

use Histogram Equalization, which can also balance the
brightness of different images.

Object detection in 2D images

The main idea of our method is based on Faster RCNN
[17], in which the four modules of feature extraction, pro-
posal generation, Rol Pooling, classification and regres-
sion are organically combined to form an end-to-end
object detection system.

Feature extraction is the first step of our method. The
input of the deep convolutional neural network is the
image 7, and the output is the extracted feature map. These
features will be shared by subsequent modules. The basic
feature extraction network in our model, Resnet-50, is

based on [21]. He et al. proposed this deep residual learn-
ing method in 2015 to make the deeper network train
properly. The architecture of our network is shown in
Fig. 2. The original Resnet-50 network is split into two
parts in our model: part one including layers convl to
conv4_x is used for extraction of shared features, and
part two including layer conv5_x and upper layers further
extracts features of proposals for the final classification
and regression. The implementation of the model refers to
the work of Yann Henon in 2017 [22].

The feature extraction network is followed by a region
proposal network (RPN). A window of size n x n slides
onto the feature map, and at each location it stays the
features in the window are mapped to a low-dimensional
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Fig. 2 Detailed Architecture of the Faster-RCNN model. The basic feature extraction network Resnet-50 is split into two parts in our model: 1) layers
conv1 to conv4_x is used for extraction of shared features (in the shared layers), 2) layer conv5_x and upper layers further extracts features of
proposals for the final classification and regression (in the classifier). And the RPN implemented with three convolutional layers generates proposals

vector, which will be used for object-background classifi-
cation and proposal regression. At the same time, k region
proposals centered on the sliding window in the origi-
nal image are extracted according to k anchors, which are
rectangular boxes of different shapes and sizes. Moreover,
for each proposal, two probabilities for the classification

and four parameters for the regression will be achieved,
composing the final 6k outputs of the classification layer
and the regression layer. The sliding window, classifica-
tion layer and regression layer are all implemented using
convolutional neural networks. In practice, we chose
k = 9 with 3 scales of 1282, 2562, and 5122 pixels and
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3 aspect ratios of 1:1, 1:2, and 2:1 as the default in [17].
And non-maximum suppression(NMS) was adopted with
the IoU threshold at 0.7, while the maximum number of
proposals produced by the RPN was 300.

Features of different scales are then integrated into fea-
ture maps of the same size (7 x 7 in our experiment)
via Rol pooling layer, so that the features can be used in
final fully connected classification and regression layers.
For a region proposal of any size, like & x w, it will be
divided into a fixed number, like H x W, of windows of
size h/H x w/W. Then max pooling will be performed and
a fixed-size (H x W) feature map will be obtained with the
maximum of each window.

To train the whole model end-to-end, a multi-task loss
function is proposed as follows [17].

L (p,u,t*,v) = Las(p, ) + Al u = 1] Ly, (£, v) (1)

Where u is the ground truth label of the proposal, and
v = (VaVy Vw, V) represents the regression offset
between the proposal and the ground truth.The output of
the classification layer, p = (o, p1,..- px), represents the
probabilities of the proposal belonging to each one of the

K + 1 classes and t* = (

dicted regression offset for a proposal with label u. The
loss function of the classification task is defined as:

Les(p,u) = —logp,. (2)

And the loss function of the regression is a robust L1
loss as follows:

L, tj’f, t, tZ) represents the pre-

Lioe (t”, V) = Z smoothy (tl” - vi). (3)
iex,y,w,h
Where
0.5x%, if x| <1
smoothy 1 (x) = { llx|| — 0.5, otherwise )

The hyperparameter A is used to control the balance
between the two losses and is set to A = 1 in our exper-
iment. Similarly, the loss function of the RPN during
training is also defined in this form. In the training pro-
cess, the RPN with the shared layers is trained first and
then the classifier is trained using proposals generated by
the RPN, with the initial weights for both networks given
by a pretrained model on ImageNet [17, 23].

Results

Dataset and evaluation metrics

Data Acquisition:

Tissue Culture: Rat INS-1E cells (gift of P. Maechler, Uni-
versité de Genéve) were cultured in RPMI 1640 medium
supplemented with 2 mM L-glutamine (Life Tech-
nologies, Grand Island, NY), 5% heat-inactivated fetal
bovine serum, 10 mM HEPES, 100 units/mL penicillin,
100 pg/mL streptomycin, 1 mM sodium pyruvate, and
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50 uM b-Mercaptoethanol as described earlier (insert
reference: PMID: 14592952).

EM Grid Preparation: For cryo-ET imaging, INS-1E
cells were plated onto either fibronectin-coated 200 mesh
gold R2/1 Quantifoil grids or 200 mesh gold R2/2 London
finder Quantifoil grids (Quantifoil Micro Tools GmbH,
Jena, Germany) at a density of 2 x 10° cells/mL. Follow-
ing 48 h incubation under conventional culture conditions
in complete RPMI 1640 medium, grids were removed
directly from culture medium and immediately plunge
frozen in liquid ethane using a Vitrobot Mark IV (Thermo
Fisher FEI, Hillsboro, OR).

Cryo-Electron Tomography: Tomographic tilt series for
INS-1E cells were recorded on a FEI Polara F30 electron
microscope (Thermo Fisher FEI) at 300kV with a tilt range
of £60° in 1.5° increments using the Gatan K2 Sum-
mit direct detector (Gatan, Inc.) in super-resolution mode
at 2X binned to 2.6A/pixel; tilt series were acquired via
SerialEM.

Datasets: We collected 9 cryo-ET tomograms (786 2D
slices) contains mitochondria. 482 out of the 786 slices
were selected and annotated manually via Labellmg [24].
Then, the 2D slices were randomly divided into training
and testing set with a ratio of 5:1. Details of our dataset are
shown in Table 1.

Metrics: To evaluate the performance of our model, we
mainly use two metrics from common object detection
and segmentation evaluation: AP (average precision) and
Fj score . The definitions are as follows:

1
AP = / P(R) d(R) (5)
0
F _ 2P x R 6
1 Score = PIR (6)

where P represents precision, which indicates the ratio
of the true positives to all predicted positives; R repre-
sents recall, which indicates the ratio of the true positives
to all true elements. Neither precision nor recall alone

Table 1 Cryo-ET dataset properties

Tomogram basename Image size All slices  Used slices
Unstim_20k_mito1 3708 x 3838 101 75
Unstim_20k_mito2 3708 x 3838 89 44
CTL_Fibro_mito1 3708 x 3838 82 36
M2236_Fibro_mito2 3708 x 3838 90 46
M2236_turemito3 3708 x 3838 86 39
CHX + Glucose Stimulation A2~ 3708 x 3838 53 51
HighGluc_Mito1 3708 x 3838 101 71
HighGluc_Mito2 3708 x 3838 101 69
INS_21_g3_t10 3708 x 3838 81 51
Total 786 482
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is sufficient to fully evaluate the prediction performance.
Therefore, the F1 score defined by the weighted harmonic
mean of precision and recall is commonly used in the case
where both of them need to be high enough. And AP,
equivalent to the area under the precision-recall curve,
may provide an overall evaluation of the model’s per-
formance at different precision/recall rates. As an object
detection problem, the correctness of each sample predic-
tion is not only related to classification, but also related to
localization. The accuracy of localization is evaluated by
(Intersection over Union), which is defined as:

_ SpNSg

ol = —
SpUSg

7)
where Sp is the predicted bounding box and Sg repre-
sents the ground truth, and IoU measures the degree of
coincidence. In our experiments, different IoU thresh-
olds(0.5, 0.6, 0.7, 0.8, and 0.9) are set, and those samples
with mitochondria prediction labels and IoUs higher than
the specific threshold are considered. The higher the IoU
threshold, the higher the accuracy requirements for local-
ization. Thus we can see the difference in the detection
accuracy under different localization accuracy require-
ments, and judge the localization performance of our
model. The precision, recall, F1 score and AP in our
experiment are calculated.

Data preprocessing and model training
The 2D projection images we acquired from the original
tomograms have low SNR and contrast which interferes
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with subsequent identification and segmentation of intra-
cellular features. Thus, the images are first denoised via
a bilateral filter with o, = 1.2 and o5 = 100, sup-
pressing noise and retaining the original edge features
as much as possible. This is followed by enhancement
of contrast via histogram equalization which improves
in the resolution of previously indistinguishable details.
Figure 3 shows an example of two images before and after
preprocessing. The preprocessing methods and param-
eters in our method were finally determined based on
the single-image SNR estimated according to [25], gray-
scale distribution histograms and visual effect of the
image. Figure 4 shows SNR of the same image with dif-
ferent 0, and o, and the performance of different pre-
processing schemes. We found that performing histogram
equalization first will increase the noise in the origi-
nal image, and the contrast will be reduced again after
filtering, failing to achieve the desired effect. Further-
more, we found that Gaussian filtering used for noise
reduction cannot preserve the edge as well as Bilateral
filtering.

All the models in our experiments were trained and
tested using Keras [26] with Tensorflow [27] as the back-
end, using optimizer Adam (Adaptive Moment Estima-
tion) [28] with 81 = 0.9, 82 = 0.999 and learning rate
of 1 x 107> for both RPN and the classifier. The 482
annotated slices were randomly split into a training set of
402 slices and a test set of 80 slices according to a ratio of
5:1. The model would be saved only if the loss after one
epoch is less than the best loss before.

(a) Original

reduction and contrast adjustment

(b) Noise reduction

Fig. 3 a Original 2D projection images, b Images after noise reduction (Bilateral Filtering with o, = 1.2 and o4 = 100), € Images after noise

(c) Contrast adjustment
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Prediction performance
We trained the model on the training set and tested it on
the test set. Figures 5 and 6 show the test results visu-
ally and quantitatively. In addition to the bounding box,
our model also gives the most likely category of the object
and the probability of it belonging to that category. In
Fig. 5, the red bounding box is the manually annotated
ground truth, and the blue box is predicted by the model.
We notice that the predicted results and the ground truth
are highly coincident, and even the regions that can-
not be completely overlapped basically contain the entire
mitochondria, which means that our system can achieve
the goal of automatic identification and localization of
mitochondria quite successfully. The area where the mito-
chondria is located can be separated from the outside by
the bounding box, so as to eliminate the influence of the
surrounding environment as much as possible, making it
possible to analyze the internal structures in more detail.
In Fig. 6, we plotted the precision-recall curve and cal-
culated the APs at different IoU thresholds to measure
the detection performance. We noticed that when the IoU
threshold is set to 0.7 and below, the AP is close to 1,
which means that almost all samples were correctly pre-
dicted,indicating that our system can successfully identify
the mitochondria in the picture. However, when the IoU

threshold is increased to 0.9, the AP drops sharply to
around 0.4, which indicates that our system still has some
deficiencies in the accuracy of localization. The overlap
between the predicted area and the ground truth area can
be further improved, which can be an important aspect
of our future work. The precision-recall curve for IoU
thresholds of 0.7 is also given in Fig. 6. When the IoU
threshold is 0.7, all positive samples can be correctly pre-
dicted while the precision requirement is not higher than
0.9, that is, all mitochondria can be found in that condi-
tion; even with a precision of 1, which means all samples
predicted to be positive must be correct, 70% of the
mitochondria can still be detected.

In addition, we compared the effect of preprocessing
on the prediction results. It is noted that no matter how
the IoU threshold is set, the AP value of the model with-
out preprocessing is significantly lower than that of the
model containing the preprocessing, which again shows
that preprocessing is a necessary step for the overall sys-
tem. Especially when the IoU threshold is 0.8, the system
with or without preprocessing shows a great difference in
the average precision of prediction, which indicates that
the main contribution of preprocessing to the system is
to further improve the accuracy of localization. For the
model that does not include preprocessing, the predicted
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CHX + Glucose Stimulation A2 (projection image 13)

(a) (b) (c)
(d) (e) ()

Fig. 5 Examples of detection results: the red boxes are ground truth, and the blue ones are the predicted bounding boxes. Data source: a
Tomogram: Unstim_20k_mito1 (projection image 63), b Tomogram: Unstim_20k_mito2 (projection image 49), € Tomogram: HighGluc_Mito2
(projection image 47), d Tomogram: CTL_Fibro_mito1 (projection image 44), @ Tomogram: HighGluc_Mito1 (projection image 48), f Tomogram:

bounding box that has an IoU no less than 0.8 with ground
truth is quite rare, and the average precision calculated in
this situation is only 0.3. After the preprocessing step, it
becomes common that IoU of the predicted bounding box
and the ground truth reaches 0.8, resulting in an increase
of the average precision to 0.95 and higher.

Source of error

In order to further analyze the performance of our
method, we separately analyzed the prediction results
of the system on 9 different in situ cryo-ET tomo-
grams (Table 2), and studied the impact of different
factors including the quality of the original image, the

AP (with

w— AP Without

AP
o
wn

05 06 07 08 09
loU threshold

(a)

preprocessing)

preprocessing)

Fig. 6 Prediction performance: a AP with different loU threshold, b Precision-Recall curve with loU threshold=0.7
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Table 2 Prediction results on different tomograms

Tomogram basename Fy score AP mloU Incomplete
mitochondria
Unstim_20k_mitof1 091 098 0826 VES
Unstim_20k_mito2 1 1 0.864 NO
CTL_Fibro_mito1 0.97 099 0843 NO
M2236_Fibro_mito2 0.96 099 0.887 YES
M2236_turemito3 0.91 0.97 0783 NO
CHX + Glucose Stimulation A2 0.94 1 075  YES
HighGluc_Mito1 0.97 099 0843 NO
HighGluc_Mito2 0.97 096 0837 NO
INS_21_g3_t10 0 0 0 YES

The F; score and AP are calculated at an loU threshold of 0.7

intactness of the mitochondria etc. The F; score and
AP remain calculated at an IoU threshold of 0.7. In
most tomograms, our systems show high accuracy, con-
sistent with the overall results. However, we also found
that in INS_21_g3_t10, our system could not accurately
detect mitochondria. Therefore, we analyzed the pro-
jected image from INS_21 g3 t10 (Fig. 7). We noticed
that in all the 2D projection images from that tomogram,
the mitochondria included are too small and the struc-
ture appeared incomplete, especially the internal struc-
ture, which is basically submerged in noise and hard to
identify. Even after noise reduction and contrast adjust-
ment, the details of the mitochondria in the image are
still too blurred, causing strong interference in the extrac-
tion of features. We also calculated the SNR of the two-
dimensional projection images in INS_21_g3_t10, which
is approximately 0.06 on average. For reference, the SNR
of the original projection image from Unstim_20k_mitol
we analyzed in Fig. 4 is 0.12, which is significantly higher
than the images in INS_21_g3_t10. It is also worth not-
ing that in Unstim_20k_mito1, the subject of the projec-
tion images is the mitochondria we need to detect, while
in INS_21_g3_t10, the mitochondria only occupy a very
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small part of the image. As a result, other components of
the image are calculated as signal which may be not that
useful for our detection task, making the ratio of effec-
tive information to noise even lower than 0.06. This may
explain why the detection performance of it is particularly
unsatisfactory.

In order to better study the influence of different tomo-
grams on the accuracy of localization, mean Intersection
over Union (mloU) is calculated for each tomogram. It can
be noted that, on average, mIoU is higher in the tomo-
grams that contain complete mitochondria, that is, the
localization accuracy is higher, although the highest mIoU
comes from a tomogram containing incomplete mito-
chondria. We analyzed the characteristics of this tomo-
gram and found that it is the only one where mitochondria
do not appear circular or nearly circular, but instead pos-
sess a slanted strip shape (also shown in Fig. 7). Therefore,
when the mitochondrion is marked with a rectangular
box, the box occupies a larger area and contains more
non-mitochondrial regions, which may make the predic-
tion results more easily coincide with the ground truth.
Therefore, in general, we can still conclude that com-
plete mitochondria are more easily localized accurately.
This is also in consistent with our intuition that the com-
plete mitochondria have a complete outline of a bilayer
membrane that approximates a circular shape, which pro-
vides a powerful reference for determining its specific
boundaries. In fact, the tomogram with best results on the
Fj score and AP also contains intact mitochondria. There-
fore, the integrity of mitochondria has a certain impact on
the detection results of the system.

Prediction on tomogram slices

The ultimate goal is to detect mitonchondria in 3D
tomograms. The model trained on 2D projection images
can be directly applied to tomogram slices to generate
the output. Like projection images, the slices were first
preprocessed through Bilateral filtering and histogram

(a)

(b)

(c)
Fig. 7 An example of projection images from tomogram INS_21_g3_t10 (in which the mitochondria is hard to detect): a Original image, b Image
after noise reduction and contrast adjustment, € Projection image from M2236_Fibro_mito1
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M2236_truemito3 (slice 97), ¢ Tomogram: HighGluc_Mito1 (slice 58)

(b)

(c)

Fig. 8 Detection results on slices of reconstructed tomograms. Data source: @ Tomogram: Unstim_20k_mito_1 (slice 26), b Tomogram:

equalization with the same parameters, and then tested by
the Faster-RCNN model. The whole model is applied to
the tomogram slice by slice and the output includes all the
bounding boxes of mitochondria in the slice with a classi-
fication score for each box. And it only takes a few seconds
for each slice when tested on CPUs.

As shown in Fig. 8, the mitochondria in tomogram
slices can be successfully identified and localized, while
the accuracy of localization may be slightly reduced due
to higher noise, as compared to 2D projection images.
Therefore, it is only necessary to perform annotation and
training on the 2D projection images, which can greatly
reduce the computational costs, and we can detect mito-
chondria in 3D tomograms with a tolerable error. And
the probability of expanding to different organelles is still
retained even in the case of 3D.

Conclusion

In this paper, we proposed an automatic Cryo-ET image
analysis algorithm for localization and identification of
different structure of interest in cells. To best to our
knowledge, this is the first work to applied Faster-RCNN
model to Cryo-ET data, which demonstrated the high
accuracy (AP > 0.95 and Iol > 0.7) and robust-
ness of detection and classification tasks of intracellular
mitochondria. Furthermore, our algorithm can be gen-
eralized to detect multiple cellular components using
the same Faster-RCNN model, if annotations of multiple
classes of cellular component were provided. For future
work, we will further improve the accuracy of localization
by collecting more data and we will explore the effects of
different network structures to enhance the model.
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