
RESEARCH Open Access

Protein complex detection based on flower
pollination mechanism in multi-relation
reconstructed dynamic protein networks
Xiujuan Lei1*, Ming Fang1, Ling Guo2 and Fang-Xiang Wu3

From The 17th Asia Pacific Bioinformatics Conference (APBC 2019)
Wuhan, China. 14-16 January 2019

Abstract

Background: Detecting protein complex in protein-protein interaction (PPI) networks plays a significant part in
bioinformatics field. It enables us to obtain the better understanding for the structures and characteristics of
biological systems.

Methods: In this study, we present a novel algorithm, named Improved Flower Pollination Algorithm (IFPA),
to identify protein complexes in multi-relation reconstructed dynamic PPI networks. Specifically, we first
introduce a concept called co-essentiality, which considers the protein essentiality to search essential
interactions, Then, we devise the multi-relation reconstructed dynamic PPI networks (MRDPNs) and discover
the potential cores of protein complexes in MRDPNs. Finally, an IFPA algorithm is put forward based on the
flower pollination mechanism to generate protein complexes by simulating the process of pollen find the
optimal pollination plants, namely, attach the peripheries to the corresponding cores.

Results: The experimental results on three different datasets (DIP, MIPS and Krogan) show that our IFPA
algorithm is more superior to some representative methods in the prediction of protein complexes.

Conclusions: Our proposed IFPA algorithm is powerful in protein complex detection by building multi-relation
reconstructed dynamic protein networks and using improved flower pollination algorithm. The experimental results
indicate that our IFPA algorithm can obtain better performance than other methods.

Keywords: Protein complex, Dynamic protein-protein interaction (PPI) network, Essential protein, Flower pollination
algorithm

Background
Understanding biological processes is an important task
in the living organisms. Proteins are vital components in
many biological processes, such as metabolism, signal-
ing, transportation and so on. Biological functions are
performed by protein complexes composed of proteins
interacted with each other, rather than by individual pro-
teins [1, 2]. Detection of protein complexes made great
contribution to our knowledge of the molecular mecha-
nisms in cellular life activities. To the best of our

knowledge, a large number of works have been done to
identify protein complexes from the PPI networks up to
now.
As one of the earliest computational methods to pre-

dict protein complexes, the Molecular Complex Detec-
tion (MCODE) [3] weighted all vertices by using their
local neighborhood density and identified the densely
connected areas in PPI networks. ClusterONE [4] was
utilized to find overlapping protein complexes in the PPI
networks. The Clustering-based on Maximal Cliques
(CMC) [5] method weighted the interacting protein
pairs to identify protein complex. Recent studies
TP-WDPIN [6] and NEOComplex [7] were based on the
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seed-extension idea to mine protein complexes. WG-
Cluster [8] considered the edge weights to detect net-
work modules. Markov Clustering (MCL) [9] discovered
relatively dense regions based on the random walks.
After that, F-MCL [10] used the firefly algorithm into
Markov clustering to optimize the parameters and then
recognized protein complexes.
It is well known that Gavin et al. [11] introduced the

proteins in complexes consist of two types: core and at-
tachment (periphery), namely, core-attachment structure,
core represents the proteins that are densely linked and
attachment are those proteins that have a few connections
to the core. And then, CORE [12] first identified cores
and then added proteins that had interactions with the
majority of core proteins in the protein complex as attach-
ment proteins. COACH [13] predicted cores in complexes
and involved attachments into the cores to obtain protein
complexes. Similarly, DCA [14] also used core-attachment
feature to identify protein complexes.
In general, the judgment of interactions between two

proteins is implemented by using experimental methods.
Unfortunately, these methods are not always dependable
[1] and it means that this may contain false positive inter-
actions. There are many previous literatures have revealed
the fact that the incorporation of additional biological in-
formation can improve the accuracy of protein complex
prediction to some extent. For example, Zhang et al. [15]
proposed CSO method to predict complexes by combin-
ing gene ontology (GO) information with PPI networks.
InteHC method [16] integrated different types of data
sources to predict protein complexes, including PPI data,
GO data, gene expression profiles and AP-MS data. Zhao
et al. [17] constructed the weighted protein interaction
network by using gene expression information for protein
complex identification. Zhou et al. [18] utilized GO to
measure semantic similarities as the weights.
Since the flower pollination algorithm (FPA) [19] has

shown excellent performance in many applications, such
as clustering problem [20] and the identification of es-
sential proteins [21], we explore the application of FPA
in detecting protein complexes. In this study, we elicit a
concept named co-essentiality, whose basic idea is to use
the protein essentiality to find essential edges. Then the
multi-relation reconstructed dynamic protein networks
are built by combining heterogeneous topology and biol-
ogy information. Next, those closely linked proteins are
grouped together as the cores. Finally, based on the core–
periphery structure, the modified FPA algorithm is devel-
oped to find the optimal pollination plants for pollen,
which means that the peripheries attach to the best core
to form the predicted protein complex. The experiments
between IFPA and several typical algorithms including
MCODE, MCL, ClusterONE, CSO, COACH and CORE
are performed on three different PPI networks, and the

results demonstrate that IFPA algorithm is more robust
and powerful than those existing methods in protein com-
plexes recognition.
The remaining part of this paper is organized as fol-

lows. Section 2 (Methods) elucidates our proposed new
algorithm called IFPA. Section 3 (Results and Discus-
sion) provides the exhaustive analysis and descriptions
for the experiments. Finally, Section 4 (Conclusions) is
the summary of this study.

Methods
The PPI network can be represented generally as an un-
directed graph, and the proteins are treated as nodes
and the interactions are considered as edges. Here, the
static PPI networks are converted into the multi-relation
reconstructed dynamic PPI networks. And then we apply
IFPA to add attachments to the appropriate cores based
on the core-attachment structure.

Building multi-relation reconstructed dynamic PPI
networks
The availability of gene expression data enables re-
searchers to reveal the dynamics of molecular networks
and improve the identification of protein complexes
[22–24]. Hence, based on the study [25], the time course
gene expression data is integrated into original static PPI
networks to generate dynamic PPI subnetworks so that
we can capture the dynamics of protein complexes, that
is to say, we split the original static PPI network (OSPN)
into twelve dynamic PPI subnetworks (DPSNs), in which
all interactions in a DPSN can occur simultaneously,
and then perform complex discovery on each DPSN.
First, we use three-sigma method [25] in order to con-

struct dynamic PPI subnetworks with time series gene
expression data. The gene expression data involves three
metabolic cycles and each cycle contains twelve time-
stamps. A protein v is considered to be active in DPSN
if its gene expression value is not less than the active
threshold Active_Th(v):

Active Th vð Þ ¼ μ vð Þ þ 3σ vð Þ 1−F vð Þð Þ ð1Þ

F vð Þ ¼ 1
1þ σ2 vð Þ ð2Þ

where μ(v) is the algorithmic mean of gene expression
values of v over times 1 to n and σ(v) is the standard devi-
ation of its gene expression values. For each protein,
three-sigma method is used to calculate the active thresh-
old Active_Th(v). A original PPI network can be described
as an undirected graph G(V, E), where V denotes node set
that are proteins and E presents edge set that are their
connections. And the dynamic PPI network can be repre-
sented as Gt (Vt, Et) at timestamp t (t = 1,2,…, n). At a cer-
tain time point, if two proteins vi and vj are active and
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interact with each other in the original static PPI network,
then there is a connection between protein vi and vj in a
DPSN. After that, twelve dynamic PPI subnetworks are
constructed from the original static PPI network.
Moreover, integrating heterogeneous data source

into a single network can enhance the reliability of
networks, which inspires us that assigning the suitable
weights to edges can strengthen the confidence of in-
teractions, and the implementation will be discussed
in the following. Figure 1 illustrates an example of
multi-relation reconstructed dynamic PPI networks
construction.

Definition 1 (Co-essentiality) Essential proteins are
indispensable for the survival of an organism. Then we
can believe that the interaction between two essential
proteins is also necessary. Hence, a concept based on
essential protein is extended to measure the essentiality
between two proteins, and the essentiality values are
considered as their weights.

Before giving the concept of co-essentiality, we first
elaborate the definition of an essential edge. Given two
proteins vi and vj, the edge between them is considered
as an essential edge if both of vi and vj are the essential
proteins, similarly, the edge between them is considered
as an uncertain edge if vi or vj is the essential protein,
and the edge between them is considered as a nonessen-
tial edge if neither of vi and vj is the essential protein.
Only the essential edges are taken into account to recon-
struct the networks here. And eeij is the essential edge
between vi and vj, the co-essentiality between these two
proteins can be represented as follows.

co−essentiality i; jð Þ ¼ ESSij
sum ESS j

� � ð3Þ

where ESSij denotes the weight value of essential edge
which equals to one and sum(ESSj) denotes the sum of
the weight values of a column.

Fig. 1 An example of multi-relation reconstructed dynamic PPI networks construction
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Definition 2 (Co-localization) Given two interacting
proteins vi and vj, the interaction between them will be
more reliable if vi and vj exist in same subcellular
location, its co-localization is defined by the following
equation.

co−localization ði; jÞ ¼ jSCLi ∩ SCLjj2
jSCLij � jSCLjj ð4Þ

where |SCLi| and |SCLj| are the number of subcellular
location of proteins vi and vj, respectively.

Definition 3 (Co-annotation) Given two interacting
proteins vi and vj, they have the similar function if
there are some common GO annotations between vi
and vj, its co-annotation is calculated as follows.

co−annotation i; jð Þ ¼ GOi∩GOj

�� ��2
GOij j � GOj

�� �� ð5Þ

where |GOi| and |GOj| are the number of GO annota-
tions of proteins vi and vj, respectively.

Definition 4 (Co-cluster) Given two interacting
proteins vi and vj, its co-cluster is measured by using
the edge clustering coefficient (ECC) [26] as follows.

co−cluster i; jð Þ ¼ Zij

min Nij j−1; N j

�� ��−1� � ð6Þ

where Zij represents the number of triangles built on
edge (vi, vj), |Ni| and |Nj| are the degrees of protein vi
and vj, respectively.
Multiple relation defined above are used to weight the

networks. The multi-relation value between vi and vj is
stands for as follows.

multi−relation i; jð Þ ¼ co−essentiality i; jð Þ
þ co−localization i; jð Þ

þco−annotation i; jð Þ þ co−cluster i; jð Þ ð7Þ
These multi-relation values are regarded as the

weights of edges W(i,j) to upgrade the credibility of in-
teractions. For an edge, its normalized W(i,j) value
NW(i,j) is expressed by the following formula.

NW i; jð Þ ¼ multi−relation i; jð Þ
num multi−relationð Þ ð8Þ

where num(multi-relation) is the total number of the

network relations, i.e., the four kinds of relations includ-
ing coessentiality, colocalization, coannotation, cocluster
and the networks are reconstructed by mixing them.
Eventually, the dynamic PPI subnetworks (DPSNs) are
switched into the multi-relation reconstructed dynamic
PPI networks (MRDPNs).

Finding cores
As we all know that protein complex core should be a
densely connected subgraph in the PPI network. Thus,
we pick the seed proteins in the first stage, and extend
seed proteins to the cores in the second stage.

Definition 5 (Weighted Degree) The proteins with
weighted degree greater than average weighted degree
are sorted in descending order as the candidate core
set CC. The weighted degree of a protein i in the
MRDPN is the number of interactions in which this
protein is involved, which can be expressed as follows.

Weighted Degree ið Þ ¼
X
j

interactions i; jð Þ ð9Þ

Let first node in the candidate core set CC be a seed
protein which plays an irreplaceable role in protein com-
plex. The neighbors of the seed protein are inserted into
a core set when the condition that the density of core
set is greater than a given threshold DT is satisfied. The
threshold DT will be discussed in the next section.

Definition 6 (Density) The density of core set CS can
measure how close the core is, and its definition is as
follows.

Density CSð Þ ¼ 2�P
i; jð ÞNW i; jð Þ

CSj j � CSj j−1ð Þ ð10Þ

where |CS| denotes the number of nodes in core set. Ini-
tially, core set CS contains one seed protein i. A neighbor
of seed protein is added to the core set if adding it can
make the Density(CS) greater than the threshold DT. This
process is repeated until all neighbors of seed protein are
sought and the predicted core is generated. Once a com-
plex core is completed, all nodes in it will be labeled with
“1” and cannot be extended into any other complex cores.
This process will stop when the CC is empty.

Finding peripheries
Since the core plays a central role, the periphery plays a
supporting role. The key idea behind our presented IFPA
algorithm is to utilize the pollination mechanism to mimic
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the process of pollen falling on suitable flowers, which is
completely different from other general methods. In this
subsection, we first give a brief introduction to the flower
pollination algorithm (FPA) [19], and then we find the op-
timal cores for peripheries by ameliorating it.
FPA is a nature-inspired optimization algorithm that

comprises two main patterns, that is global pollination
and local pollination. The global pollination can be rep-
resented as:

xtþ1
i ¼ xti þ L xti−G

� �
11ð Þ

where xti is the pollen i at iteration t, and G is the
current best solution. The parameter L is the strength of
the pollination, namely a step size, we use a Lévy flight
to represent that insects move over a long distance with
various distance steps. That is, L is greater than 0 and
obeys the Lévy distribution:

L � λΓ λð Þ sin πλ=2ð Þ
π

1
s1þλ

; s≫s0 > 0ð Þ 12ð Þ

where Γ(λ) is the standard gamma function. The local
pollination can be defined as:

xtþ1
i ¼ xti þ Ψ xtj−x

t
k

� �
13ð Þ

where xtj and xtk are pollen from the different flowers of
the same plant species. This substantially simulates the
flower constancy in a limited neighborhood. Mathematic-
ally, if xtj and xtk come from the same plant species or se-

lect from the same population, this can be seen as a local
random walk if Ψ obeys the uniform distribution of 0 to 1.
Then, we use IFPA which is an advanced version of

FPA algorithm to find the closest cores for peripheries,
which is equivalent to finding the most satisfactory flow-
ering plants for pollen. The workflow of IFPA algorithm
is shown in Fig. 2. Those proteins not included in the
core set are considered as the candidate pollen. In IFPA
algorithm, the pollen corresponds to attachments and
the pollination plants correspond to cores. The pollen
position equals the core sequence numbers. The update
of pollen position is expressed as follows.

Stþ1
i; j ¼ Sti; j; if Pollination Priorityi; j > Thr

randperm Num; dð Þ; otherwise
	

14ð Þ

where Thr denotes a threshold and it is set as 0.2 here. The
function of randperm is to return an integer from one to
Num which means to find new core sequence number, and
Num is the number of cores and the value of d is one.
Definition 7 (Pollination Priority) As a part of an en-

tire protein complex, the attachments maintain relatively
close relationship with the core, we call this relationship

as pollination priority. The “pollination priority” of a
pollen to its core set CS is represented as follows.

Pollination Priority pollen;CSð Þ ¼
X
u∈CS

co−cluster pollen; uð Þ 15ð Þ

where u is the protein in core set CS. The pollination
priority depends on the affinity between the pollen and
the flowers. The closer the relationship between pollen
and a flower, the higher priority it pollinates on this
flower. In the update procedure, if the pollen can find a
flower that makes the value of pollination priority better,
then the pollen falls on this flower, otherwise, the pollen
finds a new flower to pollinate.

Finally, we further merge all the candidate protein
complexes mined in twelve subnetworks and filter highly
overlapping complexes, as our final predicted protein
complexes. Algorithm 1 outlines the implementation
process of our IFPA method.

Results and discussion
Datasets
Three popular datasets, i.e., DIP [27], MIPS [28] and
Krogan [29], are used to verify our proposed IFPA algo-
rithm. The DIP dataset contains 5028 proteins and
22,302 interactions, the MIPS dataset composes of 4546
proteins and 12,319 interactions, and the Krogan dataset
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includes 2674 proteins and 7075 interactions. The gene
expression data is obtained from GEO [30] and the dataset
contains 9336 genes in three cell life cycles, each cycle
having twelve time points. The dynamic PPI networks are
built by combining original static PPI networks with gene
expression data and the details of dynamic PPI networks
on three datasets are presented in Table 1.
The protein subcellular localization dataset is down-

loaded from the COMPARTMENTS database [31]. There
are eleven subcellular localizations as follows: Cytoskel-
eton, Golgi apparatus, Peroxisome, Nucleus, Extracellular
space, Vacuole, Cytosol, Endosome, Mitochondrion,
Plasma membrane, Endoplasmic reticulum. After prepro-
cessing, it still includes 6892 subcellular localization re-
cords. The GO information was gained from the SGD

database [32]. There are 1285 essential proteins are col-
lected from the following databases: MIPS [33], SGD [32],
DEG [34], and SGDP (http://sequence.stanford.edu/
group/yeast_deletion_project). CYC2008 [35] is used as
the benchmark dataset which contains 408 protein
complexes.

Evaluation metrics
The most commonly used evaluation metrics are used in
our experiments and their specific definitions are de-
scribed below.
Definition 8 (Overlapping Score) Given a predicted

protein complex P and a known protein complex K, the
Overlapping Score (OS) between P and K is defined as
follows.

Fig. 2 The overall framework of our presented IFPA algorithm

Lei et al. BMC Bioinformatics 2019, 20(Suppl 3):131 Page 68 of 118

http://sequence.stanford.edu/group/yeast_deletion_project
http://sequence.stanford.edu/group/yeast_deletion_project


OverlappingScoreðP;KÞ ¼ jVP∩VK j2
jVPj � jVK j ð16Þ

where |VP ∩VK| is the number of common proteins in the
predicted protein complex P and the known protein com-
plex K, |VP| is the size of the predicted complex and |VK|
is the size of the known complex. If OS ≥ 0.2, we consider
that the predicted complex matches with the real one.
Definition 9 (Sensitivity, Specificity and F-measure)

Sensitivity (Sn), Specificity (Sp) and F-measure are repre-
sented as follows.

Sn ¼ TP
TP þ FN

17ð Þ

Sp ¼ TP
TP þ FP

18ð Þ

F−measure ¼ 2 � Sn � Sp
Snþ Sp

ð19Þ

where TP is the number of the predicted complexes
which are matched with the known complexes, FN is

the number of known complexes which are not matched
with any predicted complexes, and FP is the number of
the predicted complexes which are not matched with
any known complexes. F-measure is a comprehensive
metric combined sensitivity and specificity.
Definition 10 (p-value) In order to estimate the statis-

tical significance of detected protein complexes, the re-
searchers annotate their biological functions by using
p-value. Given a predicted protein complex, the p-value
[36] is the probability that a protein complex is enriched
by a given functional group by chance. Let k is the num-
ber of proteins of the functional group in the complex,
N is the size of the whole PPI network, C is the size of a
protein complex and F is the size of a functional group
in the network. And the p-value is defined as follows.

p−value ¼ 1−
Xk−1
i¼0

F
i


 �
N−F
C−i


 �

N
C


 � 20ð Þ

Table 1 The number of proteins and interactions in dynamic PPI networks on three datasets

Dataset Timestamp t

1 2 3 4 5 6 7 8 9 10 11 12

DIP

Protein 860 1029 863 671 645 598 530 1000 1194 638 690 489

Interaction 1103 1608 1337 839 835 752 627 1861 2447 950 1026 569

MIPS

Protein 737 897 781 583 570 531 470 839 1014 523 616 402

Interaction 1097 1443 1183 754 684 642 504 1238 1637 878 1207 700

Krogan

Protein 336 379 320 256 206 189 202 580 626 304 330 250

Interaction 334 464 331 234 210 184 213 1025 1081 314 373 258

Fig. 3 The impact of DT on the performance of IFPA in terms of F-measure
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The p-value is used to evaluate the biological rele-
vance of the predicted protein complexes. Generally, the
protein complex is considered to be meaningless if its
p-value is greater than 0.01. And for a complex, the
smaller its p-value is, the more biological significance it
has.

Parameter analysis
The density threshold DT decides whether a protein
could be merged into the current core. How to
choose a relatively suitable DT should be carefully
considered to achieve better performance of our IFPA
algorithm. Thus, varying DT from 0.1 to 0.9 with the
interval 0.05, we calculate F-measure to observe the
effect of the variation of DT on the performance of
our IFPA algorithm, so as to choose the relatively ap-
propriate DT, as shown in Fig. 3. Obviously, all three

datasets show similar trends in most cases from Fig. 3. Es-
pecially, the major evaluation metrics F-measure obtains
the better value when DT is set as 0.25 based on the both
DIP and MIPS datasets and when DT is set as 0.15 based
on the Krogan dataset, which means that IFPA is
more effective. For this reason, the density threshold
DT is set as 0.25 in DIP and MIPS datasets and 0.15
in Krogan dataset.

Performance comparison
To prove the validity of our proposed algorithm, we com-
pare IFPA algorithm with MCODE, MCL, ClusterONE,
CSO, COACH and CORE on three different PPI net-
works. Figures 4, 5, 6 show the overall comparison in
terms of Sn, Sp and F-measure based on DIP, MIPS and
Krogan datasets, respectively. Apparently, IFPA algorithm
yields the best F-measure in comparison with other

Fig. 4 Comparative performance of IFPA and other methods on DIP dataset

Fig. 5 Comparative performance of IFPA and other methods on MIPS dataset

Lei et al. BMC Bioinformatics 2019, 20(Suppl 3):131 Page 70 of 118



existing methods in all datasets, which means that our
IFPA method remarkably outperforms other methods. Be-
sides, in Table 2, PC denotes the total number of detected
protein complexes, MPC is the number of detected pro-
tein complexes which were matched, MKC represents the
number of matched known protein complexes, Perfect

denotes OS = 1 which means that the predicted protein
complexes are perfectly matched with the known protein
complexes. As shown in Table 2, the protein com-
plexes detected by our IFPA method dominates other
methods in the aspects of Perfect both in DIP and
MIPS datasets.
Many of our detected protein complexes have a good

match with the known protein complexes. We consider
a detected complex to be biologically significant if its
p-value is less than 0.01. In order to confirm the biological
significance of detected protein complexes, the p-value is
calculated by using the tool GO::TermFinder (https://
www.yeastgenome.org/cgi-bin/GO/goTermFinder.pl). We
randomly select some predicted protein complexes to cal-
culate their p-value concerning Biological Process ontol-
ogies based on Krogan dataset, as shown in Table 3. From
Table 3, all of these detected protein complexes obtain
smaller p-value and it demonstrates that the protein com-
plexes predicted by our IFPA method have strong bio-
logical significance. The predicted complexes with strong
biological significance can provide help for biology re-
searches to some extent.
Figure 7 visualizes an example of predicted protein

complex named golgi transport complex in Krogan
dataset so as to display the detection result more ob-
viously. Figure 7 (A) displays a benchmark protein
complex, Fig. 7 (B), (C), (D), (E) and (F) illustrate the
identified protein complexes by MCODE, MCL,
CORE, ClusterONE and IFPA, respectively. The pur-
ple nodes are the correctly identified proteins, the
blue nodes are proteins that are not recognized, and
the pink nodes are the wrongly identified proteins.
From Fig. 7, we can see that MCODE and CORE cor-
rectly identifies four and two proteins, respectively.
And MCL identifies a total of four proteins including

Fig. 6 Comparative performance of IFPA and other methods on Krogan dataset

Table 2 Comparative performance of IFPA and other methods
on three datasets

Dataset Algorithm PC MPC MKC Perfect

DIP MCODE 165 102 70 6

MCL 1541 386 245 14

ClusterONE 972 329 197 15

CORE 1517 420 259 39

CSO 342 214 136 11

COACH 474 265 144 13

IFPA 935 425 219 47

MIPS MCODE 135 72 60 4

MCL 1259 254 196 17

ClusterONE 744 208 152 17

CORE 1217 303 225 29

CSO 246 127 87 6

COACH 396 145 92 5

IFPA 772 288 167 32

Krogan MCODE 160 127 73 10

MCL 658 300 178 40

ClusterONE 585 271 161 28

CORE 677 279 172 39

CSO 189 156 89 10

COACH 221 179 85 11

IFPA 447 288 131 21
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one that is misidentified. Albeit ClusterONE recog-
nizes more proteins, it also has misidentifications.
IFPA successfully detects the most proteins and all of
them are correct, indicating that our predicted com-
plex match very well with benchmark complex and
our IFPA method is more accurate than other com-
parative methods.

Conclusions
Identification of protein complexes from PPI networks
is distinctly important in proteomics. In this study, a
flower pollination mechanism-based method is pro-
posed to detect protein complexes in multi-relation

reconstructed dynamic protein networks. To begin
with, we build multi-relation reconstructed dynamic
protein networks. Then, according to the core–per-
iphery structure, we group the closely connected pro-
teins as the cores and apply IFPA algorithm to attach
peripheries to the optimal cores to form the predicted
protein complexes. IFPA algorithm has been carried
out on three different multi-relation reconstructed dy-
namic PPI networks and the experimental results
demonstrate that our IFPA algorithm can obtain
better clustering performance compared with other
methods in most cases. The protein complexes we de-
tected are likely to help the biologists gain some use-
ful biological insights.

Table 3 Function enrichment analysis of predicted protein complexes detected on Krogan dataset

No. Gene Ontology term p-value Cluster frequency Genes annotated to the term

1 intra-Golgi vesicle-mediated transport 1.91e-16 100.0% COG3/YER157W, COG7/YGL005C, COG1/YGL223C, COG2/YGR120C,
COG8/YML071C, COG6/YNL041C, COG4/YPR105C

2 polyadenylation-dependent snoRNA
3’-end processing

3.32e-18 100.0% RRP43/YCR035C, RRP45/YDR280W, MTR3/YGR158C, SKI6/YGR195W,
LRP1/YHR081W, RRP40/YOL142W, RRP6/YOR001W

3 exonucleolytic trimming involved in
rRNA processing

5.02e-20 100.0% RRP43/YCR035C, RRP42/YDL111C, RRP45/YDR280W, MTR3/YGR158C,
SKI6/YGR195W, RRP4/YHR069C, LRP1/YHR081W, CSL4/YNL232W

4 negative regulation of gluconeogenesis 3.00e-17 100.0% GID7/YCL039W, RMD5/YDR255C, VID30/YGL227W, VID28/YIL017C,
FYV10/YIL097W, GID8/YMR135C

5 chromatin disassembly 3.83e-20 100.0% HTL1/YCR020W-B, RSC6/YCR052W, RTT102/YGR275W, STH1/YIL126W,
RSC58/YLR033W, SFH1/YLR321C, RSC2/YLR357W, NPL6/YMR091C

6 positive regulation of transcription
from RNA polymerase I promoter

5.96e-16 87.5% UTP4/YDR324C, UTP5/YDR398W, UTP8/YGR128C, UTP9/YHR196W,
UTP10/YJL109C, UTP15/YMR093W, NAN1/YPL126W

Fig. 7 The golgi transport complex detected by different methods
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