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Abstract

to the methods of the state of the art.

Background: RNAs can interact and form complexes, which have various biological roles. The secondary structure
prediction of those complexes is a first step towards the identification of their 3D structure. We propose an original
approach that takes advantage of the high number of RNA secondary structure and RNA-RNA interaction prediction
tools. We formulate the problem of RNA complex prediction as the determination of the best combination (according
to the free energy) of predicted RNA secondary structures and RNA-RNA interactions.

Results: We model those predicted structures and interactions as a graph in order to have a combinatorial
optimization problem that is a constrained maximum weight clique problem. We propose an heuristic based on
Breakout Local Search to solve this problem and a tool, called RCPred, that returns several solutions, including motifs
like internal and external pseudoknots. On a large number of complexes, RCPred gives competitive results compared

Conclusions: We propose in this paper a method called RCPred for the prediction of several secondary structures of
RNA complexes, including internal and external pseudoknots. As further works we will propose an improved
computation of the global energy and the insertion of 3D motifs in the RNA complexes.

Keywords: RNA complex, Secondary structure, RNA interaction, Pseudoknot, Maximum weight clique heuristic

Background

RNAs can link to each other and form complexes having
catalytic functions. A well known example is the ribo-
some [1] composed of the 5S, 5.8S, 18S and 28S RNAs
(in eucaryotes) and of ribosomal proteins. The RNAs
present in the ribosome are involved in the formation of
peptid bonds and in the reading of codons in the site
A. RNA complexes are formed by canonical interactions
(the Watson-Crick base pairs (A-U, G-C) and the Wob-
ble base pair (G-U)) between several RNA strands and by
non canonical interactions (tertiary interactions). Canoni-
cal interactions are the strongest interactions that stabilize
RNA structure and they define the secondary structure.
Non-canonical interactions are weaker but more numer-
ous than canonical interactions. They involve chemical
H bonds in the Hoogsteen or the sugar edges of the

*Correspondence: fariza.tahi@univ-evry.fr
IBISC, Univ Evry, Université Paris-Saclay, 91025 Evry, France

nucleotides and are responsible of the RNA 3D struc-
ture. In this paper, we focus only on the strongest inter-
actions involved in RNA complexes, i.e. the canonical
interactions.

Many tools exist to predict the joint secondary struc-
ture of RNA duplexes (both the base pairs internal to
each RNA and the interaction or hybridization base pairs)
using either the thermodynamic approach [2-9] or the
comparative approach [6, 10-12]. However, to predict
the secondary structure of RNA complexes composed
of more than two RNAs is difficult and very few ded-
icated tools exist. The first proposed tool was MultiR-
NAFold [13]. In this tool, the RNAs are connected as one
strand with extra loops between them. The minimum free
energy of the complex is computed by a dynamic pro-
gramming algorithm derived from [14]. The NUPACK
package [15], proposed later, includes a software to pre-
dict RNA complex secondary structures. It extends the
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partition function computation of a single RNA, allow-
ing the computation of the minimum free energy struc-
ture, to the multiple RNA case. Later, the RNA complex
secondary structure prediction is modeled as a multiple
RNA interaction problem [16]. The authors proved that
this problem is NP-hard and proposed several approx-
imation algorithms. Then, the RNA complex secondary
structure prediction is formulated as a combinatorial opti-
mization problem called Pegs and Rubber Bands and an
approximation algorithm is proposed [17]. Then the tools
NanoFolder [18] HyperFold [19] for RNA complex predic-
tion are proposed. NanoFolder works in two steps, first
it computes all the possible helices using a simple energy
model and then a greedy algorithm selects the minimum
free energy helices and adds them into the RNA complex.
HyperFold also generates the possible helices but uses a
more sophisticated algorithm than NanoFolder to select
them. In MultiRNAFold, NUPACK and the algorithms of
[16, 17], it is assumed that the RNAs are linked in a spe-
cific order. This order directly impacts on the quality of
the predicted structures because the order can forbids
some base pairs and so the set of all possible secondary
structures is not explored. A solution could be to test all
possible RNA linking orders (#! for » RNAs) but it will not
guarantee that all the possible structures can be found and
the number of orders to test can become high in practice.

In some RNA secondary structures, specific motifs
called pseudoknots can occur. Pseudoknots are notably
involved in the readthrough mechanism of the transla-
tion. Therefore, they are important to study the function
of RNA complexes. However, pseudoknots are difficult to
predict, their prediction often leading to algorithms with
high execution times. Then, the prediction of RNA sec-
ondary structures with pseudoknots is often restricted to
subclasses of pseudoknots [20]. When pseudoknots occur
in the interaction of two RNAs, they are called external
pseudoknots or crossing interactions. Among the state of
the art, only NanoFolder and the algorithms of [16] are
able to predict pseudoknots.

All the tools and algorithms presented above are based
on different thermodynamic models aiming to minimize
the free energy. However, it is now known that the
real structure of an RNA is not always the structure of
minimum free energy but often a structure close to it.
Hence, being able to generate sub-optimal structures is
an important feature for the RNA complex prediction
problem. Moreover, RNAs can have several structures,
as the riboswitches, forming complexes with other RNAs
[21] or other molecules to regulate the gene expression.
Sub-optimal structures are, especially, used together with
SHAPE data to elaborate a conformational ensemble [22]
that helps to determine the different states of RNAs or
RNA complexes. Sub-optimal structures are also used to
identify homologous ncRNAs in bacteria [23]. To our

Page 54 0of 118

knowledge, only NUPACK provides sub-optimal struc-
tures.

Finally, among the state of the art, only NanoFolder,
the NUPACK package and MultiRNAFold are available.
NanoFolder is available on a web server and the NUPACK
package as well as MultiRNAFold are available as sources.

Here, we propose an original approach and a tool
for RNA complex prediction including pseudoknots and
crossing interactions. Our approach takes advantage of
the numerous tools dedicated to RNA secondary structure
prediction as well as RNA-RNA interaction prediction.
Indeed, an RNA complex can be considered as a set of
structured RNAs interacting with each other, where the
secondary structure of each RNA can impact the interac-
tions and vice versa. For each RNA and for each pair of
RNAs, several possible secondary structures can be pre-
dicted. The prediction of an RNA complex can therefore
be viewed as the best combination among those differ-
ent predictions that achieves the minimum free energy.
Thus, given a set of RNAs, our method takes as inputs
several secondary structures per RNA and several inter-
action sites per pair of RNAs. Then it returns several
possible complexes composed of some of the inputs. The
secondary structure of a single RNA, including or not
pseudoknots, can be obtained by several tools, which can
return sub-optimal solutions [6, 15, 24—26]. There also
exist many tools to predict interaction sites between two
RNAs. They do not predict crossing interactions but some
can return several solutions [6, 27-29].

In this paper, we show that the RNA complex prediction
problem can be defined as a combinatorial optimization
problem on a graph. The possible secondary structures
of each RNA and the possible interactions between each
pair of RNAs are the vertices of the graph. Each vertex
has a weight equals to the minimum free energy of its
corresponding secondary structure or interaction. If some
secondary structures and interactions can form a com-
plex, they are said to be compatible. This compatibility
relation between the inputs is represented with the edges
of the graph. The RNA complexes we are looking for can
be viewed as the combinations, with the minimum free
energies, of the various inputs. Hence, the problem con-
sists in finding the minimum weight subgraph where all
the inputs are compatible with each others. This kind of
subgraph, called a clique or a complete graph, is a graph
in which all vertices are linked to each other. More pre-
cisely, the prediction of RNA complexes corresponds to a
constrained version of the well known Maximum Weight
Clique Problem (MWCP). Since solving the MWCP is
NP-hard [30], several heuristics have been proposed to
find good solutions in polynomial time [31]. We pro-
pose an heuristic based on Breakout Local Search [32]
to find good solutions to our constrained MWCP. This
heuristic allowed us to develop a tool, called RCPred, for
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RNA Complex Prediction. We show that compared to
NanoFolder, NUPACK and MultiRNAFold, RCPred gives
better results for a large set of RNA complexes.

The paper is organized as follows: we first present
how the RNA complex problem can be modeled as a
constrained maximum weight clique problem. Then we
present the heuristic we propose to solve this problem
and finally present and discuss the results we obtain with
RCPred.

Methods

As stated before, the RNA complex prediction prob-
lem can be viewed as a graph problem in which we
must find a constrained clique. In this section, we
first describe the relationship between the RNA com-
plex prediction and the Maximum Weight Clique Prob-
lem (MWCP). Then, we propose an heuristic to find
good solutions in a polynomial time for the constrained
MWCP.

Predicting RNA complexes: a constrained MWCP

RNA complexes

An RNA complex is composed of a set of structured
RNAs that interact with each other. It can therefore be
considered as a set of RNA secondary structures and of
RNA-RNA interactions. A secondary structure involves
exactly one RNA strand and is composed of a list of
base pairs internal to this RNA strand (Fig. 1a). A sec-
ondary structure can contain pseudoknots (Fig. 1b). An
interaction site (Fig. 1c) involves two RNA strands, is com-
posed of a list of base pairs, and does not contain crossing
interactions (Fig. 1d).

Constrained MWCP
The RNA complex prediction problem can be formalized
using a weighted graph G(V, E) such as:

e V, the vertex set, is composed of two subsets, V° and
V1, where VS is the set of vertices representing the
secondary structures and V7 is the set of vertices
representing the interactions. Each vertex v € V has a
weight equals to the free energy associated to the
structure or the interaction.

o E, the edge set, represents the compatibilities
between the vertices. An edge exists if and only if two
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vertices are compatible. We consider that two
vertices are not compatible if at least two identical
nucleotides are involved in different pairings or if the
two vertices are secondary structures involving the
same RNA strand. These compatibility rules allow
the presence of any motif in RNA complexes:
pseudoknots (that can already be present in the
secondary structures, which are represented by the
vertices V) or crossing interactions.

An RNA complex can be viewed as a complete graph, or
a clique, where each vertex is linked to all the other ver-
tices. This clique is constrained because, for each RNA,
there must be exactly one secondary structure vertex. This
brings another constraint. In some known complexes, the
RNAs do not have internal base pairs, which implies to
add for each RNA a vertex corresponding to a secondary
structure with no base pairs. However, an RNA complex
only composed of secondary structures or interactions
with no base pairs at all is not an RNA complex. We call
the cliques corresponding to this type of RNA complexes
weak cliques.

The weight of a clique (constrained or not) is the sum of
the weights of the vertices composing the clique. We have
therefore a constrained maximum vertex weight clique
problem, denoted in the sequel by constrained MWCP,
where the clique i) is composed of exactly one secondary
structure per RNA, ii) is not weak and iii) has a minimum
free energy.

Free energy computation

To each secondary structure and each interaction is asso-
ciated a free energy represented by the vertex weights in
the graph. This energy is computed to unify the different
sources of secondary structures and interactions. We use
two energy models:

e The first model is the Turner model [33] (with the
2004 parameter release), which can be used for
secondary structure without pseudoknots and for
interactions.

¢ The second model is based on the sum of the
stacking energies taken from the Turner model (used
in [24]). This allows to compute the free energy of
pseudoknotted secondary structures.

AAN K N\ ™ 7T &

d Crossing interaction (or external pseudoknot)

Fig. 1 Secondary structure RNA motifs. a Pseudoknot-free secondary structure. b Pseudoknotted secondary structure. ¢ RNA-RNA Interaction.
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Once the free energy of each secondary structure and
interaction is known, it is used as the weight of each ver-
tex. Then, the free energy of a complex (a constrained
clique) is approximated by the sum of the free energies
(weights) of the secondary structures and interactions (the
vertices in the clique) composing it.

Solving the constrained MWCP

The MWCP is NP-hard. However, this problem is well
studied and various methods exist to solve it. Exact meth-
ods, which find the optimal solution by optimizing the
weight of the clique, are either generalization of meth-
ods for the unweight problem [34, 35] or are branch and
bound algorithms [36]. Since exact methods are time con-
suming due to the NP-hardness nature of the problem, a
lot of various heuristics have been proposed, either based
on local search [37], tabu search [38], both of them [32] or
other techniques [39, 40].

In this paper, we propose an adaptation of the heuristic
Breakout Local Search (BLS) published in [32] that pro-
vides good solutions in a short amount of time. In the
following, we first present BLS and then the heuristic we
propose for our constrained MWCP that we denote by
BLS-CMW(CP.

Breakout Local Search heuristic
The BLS heuristic [32] was proposed for the MWCP and
is based on both local search and tabu search.

Local search [41] is an heurisitic method to find good
solutions for combinatorial optimization problems. The
local search is an iterative method. It starts from an ini-
tial solution and modifies it at each step by looking in its
neighborhood, i.e. a set of neighboring solutions obtained
by performing small modifications (movements) on the
current solution, for a better solution. When a solution
cannot be improved anymore, it is called a local optimum
solution.

Tabu search [42] is a metaheuristic based on local
search. The main difference with the local search is that
at each iteration the best solution in the neighborhood of
the current solution is selected, even if it is not better than
the current solution. In order to avoid cycling through
previously encountered solutions, a tabu list is used.

BLS starts from a random solution and then performs
alternatively two phases until the known optimal solution
is found or the time limit is reached:

1 Local search: to perform a local search until a local
optimum is found.

2 Perturbation: to modify greatly the local optimum
solution to escape from it and explore further the
search space.

In the local search phase of BLS, all the possible move-
ments are considered and the one optimizing the most the
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solution weight is chosen. The available movements are
either to add a vertex in the clique or to replace a vertex in
the clique with one that is not in the clique. To define the
movements, some definitions are needed. Let G(E, V) be
a graph and C be the current clique.

e DA is the set of vertices that can be directly added in
the clique C, because there exist edges between them
and all the vertices of the clique C;

PA={vwv¢ C,Vue C3[v,ul] € E}.

e OM is the set of pairs of vertices (v, u) where v is not
in the clique C but there exist edges between it and
all the vertices of the clique C, except u which is in
the clique C; OM = {(v,u):v ¢ Candu € C,VV €
C\{u}3[v,V] € Eand [v,u] ¢ E}. The OM set is used
to do the replacement movements.

® OC is the set composed of all the vertices outside C;
OC = {v:V\C}.

The perturbation phase aims to modify the current solu-
tion to escape a local optimum. The perturbation can
greatly degrade the solution, the strength depending on
how many times the solution was not improved in the
local search phase. The perturbation strategies are based
on four movements that are performed several times:
to add, replace or remove a vertex of the clique (weak
perturbation) and to restart (strong perturbation). The
perturbation phase uses a tabu list in order to avoid to pick
up again a vertex for a movement if it was removed from
the solution some iterations before. The perturbation
phase is a main difference with other local search meth-
ods and allows to explore more efficiently and faster the
search space.

The authors show that this heuristic provides improved
results for a number of MWCP instances and that this
heuristic is usable for large graphs in reasonable time. It
makes this heuristic a good candidate to develop a tool for
the RNA complex prediction since large sets of inputs can
be used.

The BLS-CMW(CP algorithm
The BLS method is adapted for the constrained MWCP
by making some modifications to the initial clique find-
ing phase and to the movements, in order (i) to take into
account the different kinds of vertices, (ii) to take into
account the constraints related to the secondary struc-
tures and (iii) to avoid the weak cliques.

Before describing our BLS-CMWCP algorithm, let us
give the new definitions about the sets used (illustrated in
Fig. 2). Let C be a clique from the initial graph G(E, V).

e Let PA be the set composed of all the interaction
vertices that are outside C and are connected to all
the vertices in C;

PA={V ¢ C,Yue C3[V,u] eE}.
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Fig. 2 Sets used in BLS-CMWCP algorithm. C is a clique, PA is the set
composed of interaction vertices that are all linked to all the vertices
of the clique, OC is the set composed of interaction vertices that are
not in the clique

e Let OM be the set composed of the interaction
vertices pairs (VI ul ) (or secondary structure vertices
pairs (v, u%)) such that v (or v°) is outside C and is
connected to all vertices in C except to the vertex
ul € C(oru’ € Q).

e Let OC be the set composed of all interaction
vertices that are outside C; OC = {VI:VI\C}.

Having only the interaction vertices v/ in PA and in OC
and having only interaction vertex pairs (VI Jul ) or sec-
ondary structure vertex pairs (VS, us) in OM allow only
the movements respecting the constraint of having exactly
one secondary structure per RNA. In the following, we
describe each modification and the differences between
our algorithm BLS-CMWCP and BLS:

e To generate the initial clique: in BLS, the phase
consists in selecting randomly a vertex and then to
add iteratively vertices if they form a clique, until no
more vertex can be added. In BLS-CMW(CP, this
phase consists in selecting randomly an interaction
vertex and then selecting for each RNA a secondary
structure vertex that forms a clique. Forming a clique
is always possible thanks to the empty secondary
structures which are obviously compatible with any
interaction vertex.

¢ To add a vertex movement: an interaction vertex v/
is selected in PA and added into C.

e To replace a vertex movement: a vertex pair (vl Jul )
(or (VS, us)) is selected in OM, v (or v®) is added to

C and ! (or u®) is removed from C.
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¢ To remove a vertex movement: an interaction
vertex v/ is selected in C to be removed.

e To restart the clique movement: an interaction
vertex v/ from OC is added to the clique C. Then if
the structure vertices of the clique, v° € C, do not
form a clique, they are replaced with other structure
vertices. Finally, the remaining interaction vertices of
the clique, v/ € C, are removed if they do not form a
clique anymore.

¢ To generate sub-optimal cliques: contrary to BLS
method, we want to return several sub-optimal
cliques. In BLS-CMW(CP, at each iteration of the
local search and of the perturbation phases, any new
clique is saved. Then when the solutions are returned,
they are sorted according to their free energy.

¢ To forbid the weak cliques: during all the search, ifa
movement leads to a weak clique, it is not considered.

RCPred: implementation of BLS-CMWCP for RNA complex
prediction

The BLS heuristic proposed in [32] has a set of param-
eters to modulate the strength of the perturbation (Lo
and Lyj,y), the maximum number of non-improving solu-
tions before a strong perturbation is performed (7'), the
coefficients for accepting non-improving solutions (¢ and
a,), the coefficient for tabu tenure (¢) and the probability
for applying directed perturbations (Pp). Some parame-
ters were fixed in the BLS heuristic and we used them as
such in BLS-CMWCP. We determined the other parame-
ters by performing experiments on a dataset of 30 graphs
derived from RNA complexes. We then chose the follow-
ing parameters: Lo = 0.1 % | V|, Lyjgx = 0.1 % |V|, T = 10,
as = 0.5, 0 = 0.5, ¢ = 7 and Py = 1. The stop condi-
tion for the local search occurs either when the optimum
clique is found or the maximum number of iterations is
reached. In RNA complex prediction we do not know the
optimum clique, then the stop condition here is a maxi-
mum number of iterations (fixed at 500). This parameter
can be set by the user.

We implemented in C++ BLS-CMWCP and obtained
the tool called RCPred (RNA Complex Prediction).
RCPred takes as inputs n sequences of RNAs, several
secondary structures per RNA and several interactions
per pair of RNAs. First the energies of the secondary
structures and the interactions are computed. The com-
patibilities between the secondary structures and the
interactions are determined and the graph is built. BLS-
CMWCP returns constrained cliques from which are
derived RNA complexes. If some sequences are identi-
cal, symmetrical complexes can occur. These lasts are
identified and removed to avoid redundancies in the
results. Finally, the RNA complexes are sorted according
to their free energy. RCPred is available on the EvriyRNA
platform.
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Results

In this section, we present the results we have obtained
with RCPred on a large set of RNA complexes. First we
detail below the dataset used and how we recovered the
secondary structures and interactions. We then give the
results of RCPred and compare it with NanoFolder [19],
NUPACK [15] and MultiRNAFold [13].

Datasets and RCPred inputs

In the following experiments, we use a dataset com-
posed of 90 non-redundant RNA complexes. The dataset
is extracted from the database RNA STRAND [43] that
gathers 4,666 secondary structures of single and multi-
strand RNAs. All the recovered complexes are experimen-
tally validated by NMR or X-ray and are not composed
of modified nucleotides. We are interested here in com-
plexes longer than 20 nucleotides and smaller than 1000
nucleotides. Because of the complexity in time of the tools
from the state of the art, we exclude the complexes longer
than 1000 nucleotides in order to be able to generate sev-
eral secondary structures and interactions. The dataset of
the benchmark is available on the EvryRNA platform.

For each RNA, we generated the secondary struc-
tures using three tools from the literature for RNA sec-
ondary structure prediction, namely BiokoP [24], pKiss
[26] and RNAsubopt (from the ViennaRNA package [6]).
We chose these three tools because they are able to gen-
erate sub-optimal solutions. Moreover, they have good
performances as shown in [24]. For each of the three
tools, we fixed the maximum number of sub-optimal
solutions to 30. Note that BiokoP and pKiss can predict
pseudoknots while RNAsubopt predicts only pseudoknot-
free secondary structures. We merged the results of the
three tools to have a diversified set of secondary structures
for each RNA. To generate the interactions between each
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pair of RNAs, we used the tool RNAsubopt [6] which can
also predict RNA-RNA interaction sites with numerous
sub-optimal solutions. We fixed the maximum number of
sub-optimal solutions to 90.

Prediction results

We present in this section the results obtained by our
tool RCPred and the comparison with the results of
NanoFolder, NUPACK and MultiRNAFold. As RCPred
is based on an heuristic, the results presented here are
obtained from 5 executions. Among these tools, only
RCPred and NUPACK can return sub-optimal solutions
corresponding to different predicted complexes.

Statistics used

To evaluate the quality of predicted complexes, we used
the sensitivity to measure the ability of finding positive
base pairs and the Positive Predictive Value (PPV) to mea-
sure the ability of not finding false positive base pairs.
We also used the F;-score which is the harmonic mean
between the sensitivity and the PPV and the Mathews
Correlation Coefficient (MCC) which is a balanced mea-
sure between sensitivity and specificity (that measures
the proportion of negatives that are correctly identified).
These statistics are computed as follows:

TP

TP
PV = —
TP + FP

Sensitivity = TP L EN’ P

Sensitivity x PPV
Sensitivity + PPV

Fi-score =2 x

TP x TN — FP x FN

MCC =
JIP+ EP) x (IP + EN) x (IN + EP) x (IN + EN)
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where TP is the number of true positive base pairs, FN is  We report on Fig. 3 the F;-score results of the 10 first
the number of false negative base pairs, FP is the num-  solutions returned by RCPred in average on 5 . As we
ber of false positive base pairs and TN the number of true  can see, the solutions having the highest Fi-scores are in

negative base pairs. most cases the first returned. However, in many cases, the
sub-optimal solutions reach the highest F;-scores, there
RCPred evaluation are even some complexes for which the best prediction

Sub-optimal solutions We first study for each complex is given by the tenth sub-optimal solution. This confirms
the optimal and sub-optimal predictions of RCPred in  that better predictions can be found in the sub-optimal
order to see the relevance of generating several solutions.  solutions and therefore the need to generate them.
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Influence of the inputs We study here the influence of
the inputs by taking either the secondary structures gener-
ated by BiokoP, pKiss or RNAsubopt alone. We report on
Fig. 4 the F;-score results of the 10 first solutions returned
by RCPred in average on 5 executions, with inputs of
BiokoP (A), pKiss (B) and RNAsubopt (C). Knowing
that the performances of BiokoP, pKiss and RNAsubopt
depends on the size of the RNAg, it is expected that they
all predict accurate secondary structures for small RNAs.
Hence it is not surprising to observe similar results for
the smallest complexes (inferior to 62 nucleotides). For
longer complexes the results differ. A comparison of these
results with the ones obtained when the input secondary
structures generated by the three tools are merged (Fig. 3)
shows that we obtain better results when the inputs are
merged. This strongly suggests that when the inputs are
merged, the best secondary structure inputs are selected
by RCPred. This confirms the first interest of RCPred,
which is to deal with numerous and varied possible sec-
ondary structures and interactions, in order to predict
efficiently and in low time computing RNA complexes.

Comparison with the state of the art

We then compare RCPred with NanoFolder, NUPACK
and MultiRNAFold. We report the Fj-score results of
these tools on our dataset in Fig. 5. We execute RCPred 5
times and, for each execution, we recover the maximum
Fi-score solution of the 10 first solutions returned for
each complex. We then compute the mean of these recov-
ered solutions. For NUPACK, we report the maximum
F1-scores among the 10 first solutions returned. Note that
we could not test NanoFolder (which is usable through a
web server) on the longest complexes (of size greater than
550 nucleotides), because of the size limitation of the web
server. Also we encounter some difficulties with the tool
MultiRNAFold on some complexes.
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As we can see on Fig. 5, RCPred obtains better F; -scores
than the other tools in most cases. With the sub-optimal
solutions, we can guarantee that at least a predicted struc-
ture is close to the referenced one. For almost all com-

plexes smaller than 120 nucleotides, RCPred is able to
find accurate predictions with F;-scores higher than 80%.
For longer complexes, RCPred, as well as the other tools,
becomes less effective with a maximum F;-score around
70%. Similar results and findings are obtained with sen-
sitivity, PPV, and MCC statistics (see Additional file 1).
We summarize these results by reporting the average on
all the dataset in Table 1. As NanoFolder and MultiR-
NAFold were not able to give results for some complexes,
their means are done only on the complexes that were
successfully predicted. The results show that in average
RCPred is able to predict complexes more accurately than
NanoFolder, NUPACK and MultiRNAFold.

Conclusion and perspectives

In this paper, we propose a new method and a tool,
called RCPred, to predict secondary structures of RNA
complexes composed of several RNAs.

We model the problem of RNA complex prediction with
input knowledge as a constrained maximum weight clique
problem in a graph and we present an heuristic based on
Breakout Local Search to find good solutions, resulting in
the tool RCPred. This modeling allows to predict all kinds
of RNA complex motifs including pseudoknots or cross-
ing interactions. This is not the case of the tools NUPACK
and MultiRNAFold that do not predict at all these motifs.

RCPred is also able to provide sub-optimal solutions.
Generating sub-optimal solutions is very important in
RNA secondary structure prediction for several reasons.
First, because it is known that the real structure is not
always the structure of minimum free energy but often a
structure close to the structure of minimum free energy.
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Table 1 Mean sensitivity, PPV, Fy-score and MCC results of
RCPred, NanoFolder, NUPACK and MultiRNAFold on our dataset

RCPred NanoFolder NUPACK MultiRNAFold
Sensitivity 65.8 619 379 54.6
PPV 70.5 504 416 56.0
Fyscore 67.3 549 39.2 548
MCC 67.5 55.0 3838 54.6

For RCPred and NUPACK, the maximum F1-scores among the 10 first returned
solutions are taken for each complex to compute the mean. The corresponding
means of sensitivity, PPV and MCC are given. For RCPred, the mean is computed
over 5 executions. Bold text indicates the higher scores

Moreover, a model cannot capture all the subtleties of
the minimum free energy computation of an RNA com-
plex of more than two strands. Sub-optimal solutions
are then needed to allow to cover the discrepancies
of the model. Among the existing tools, only the tool
from the NUPACK package can generate sub-optimal
solutions.

We test RCPred on a large dataset composed of 90 RNA
complexes of various lengths, including or not pseudo-
knots. We show that RCPred is able to predict accurately
RNA complex secondary structures and gives competitive
results compared to NanoFolder, NUPACK and MultiR-
NAFold. Each returned RNA complex has a global free
energy resulting from the sum of the free energies of
the secondary structures and of the interactions compos-
ing it. A perspective could be to improve the global free
energy computation of the complexes (by adapting for
example the calculation method used in RNAeval from
ViennaRNA package [6]) and reorder them accordingly.

The time execution of RCPred varies between 0.05 s
in average on 5 executions for the smallest complex and
16.7 seconds for the longest. We are currently working on
optimizing the time execution.

In RNA complexes, the tertiary interactions are numer-
ous and have an important role in the stabilization of
the global structure. There exist databases gathering
3D motifs appearing in single RNA structures, like the
Rna3Dmotif database [44]. Moreover, it has been shown
that inserting 3D motifs in RNA secondary structures
helps in improving the prediction [45]. A perspective for
this project would be to insert 3D motifs of single RNAs
and of interacting RNAs in the predicted RNA complex
secondary structures.

Additional file

Additional file 1: Supplementary statistical results. Supplementary
Figures showing the sensitivity, PPV and MCC results of RCPred compared
to the results of NanoFolder, NUPACK and MultiRNAFold. (PDF 61.8 kb)
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BLS: Breakout local search; BLS-CMWCP: Breakout local search-constrained
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