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Abstract

Background: In the field of drug repositioning, it is assumed that similar drugs may treat similar diseases, therefore
many existing computational methods need to compute the similarities of drugs and diseases. However, the
calculation of similarity depends on the adopted measure and the available features, which may lead that the
similarity scores vary dramatically from one to another, and it will not work when facing the incomplete data. Besides,
supervised learning based methods usually need both positive and negative samples to train the prediction models,
whereas in drug-disease pairs data there are only some verified interactions (positive samples) and a lot of unlabeled
pairs. To train the models, many methods simply treat the unlabeled samples as negative ones, which may introduce
artificial noises. Herein, we propose a method to predict drug-disease associations without the need of similarity
information, and select more likely negative samples.

Results: In the proposed EMP-SVD (Ensemble Meta Paths and Singular Value Decomposition), we introduce five
meta paths corresponding to different kinds of interaction data, and for each meta path we generate a commuting
matrix. Every matrix is factorized into two low rank matrices by SVD which are used for the latent features of drugs and
diseases respectively. The features are combined to represent drug-disease pairs. We build a base classifier via
Random Forest for each meta path and five base classifiers are combined as the final ensemble classifier. In order to
train out a more reliable prediction model, we select more likely negative ones from unlabeled samples under the
assumption that non-associated drug and disease pair have no common interacted proteins. The experiments have
shown that the proposed EMP-SVD method outperforms several state-of-the-art approaches. Case studies by
literature investigation have found that the proposed EMP-SVD can mine out many drug-disease associations, which
implies the practicality of EMP-SVD.

Conclusions: The proposed EMP-SVD can integrate the interaction data among drugs, proteins and diseases, and
predict the drug-disease associations without the need of similarity information. At the same time, the strategy of
selecting more reliable negative samples will benefit the prediction.
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Background

De novo drug discovery is a complex systematic project
which is expensive, time-consuming and with high fail-
ure risks. As reported, it will take 0.8—1.5 billion dollars
and about 10-17 years to bring a small molecule drug
into market, and during the development stage, almost
90% of the small molecules can not pass the Phase I clin-
ical trial and finally be eliminated [1, 2]. For the approved
drugs in market, their pharmacological and toxicologi-
cal properties are clear and the drug safeties are often
guaranteed, but only some of their indications are found.
For example, there are 2589 approved small molecule
drugs in DrugBank [3], and more than 25000 diseases
in UMLS medical database [4], resulting in over 60 mil-
lions of drug-disease pairs. However, only less than 5% of
the drug-disease pairs were identified to have therapeutic
relationships, and most of the drug-disease relationships
are unknown [5]. Therefore, to discover the new indica-
tions of approved drugs, known as drug repositioning, can
greatly save money and time, especially can improve the
success rate, has become a promising alternative for de
novo drug development.

Historically, finding a new indiction of a drug is likely
to be an accidental event with a bit of luck. For example,
Minoxidil, originally for the treatment of hypertension,
was found by chance to have the treatment efficacy for
hair loss [6]; Sildenafil (trade name: Viagra), originally
for the treatment of angina, was occasionally found to
have the potential to treat erectile dysfunction [7]. Such
occasional findings of the drugs’ new indictions suggest
a new methodology of drug development. However, the
“pot-luck” approach can not promise drug repositioning
effectively and efficiently. It is necessary to develop a com-
putational method that helps to redirect approved drugs.
Fortunately, with the accumulation of multiple omics data
and the development of machine learning methods, it is
possible to mine the drugs’ potential indications in sil-
ico. Up to now, many computational methods have been
proposed to find new indictions of drugs by predicting
potential treatment relationships of drug-disease pairs.

Based on the hypothesis that the gene expression signa-
ture of a particular drug is opposite to the gene expression
signature of a disease, some gene expression based meth-
ods [8, 9] have been proposed. Noticing that such kind of
methods may fail to consider the different roles of genes
and their dependencies at the system level, system-level
based approach that integrates the gene expressions and
related network has recently been proposed [10].

Recently, along with the increase of drugs and diseases
related multi-omics data, many methods have been pro-
posed to integrate multiple sources of data to predict
the drug-disease interactions based on machine learn-
ing techniques. Gottlieb et al. proposed a method (PRE-
DICT) to predict new associations between drugs and
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diseases by integrating five drug-drug similarities and two
disease-disease similarities data [11]. Wang et al. pro-
posed a computational framework based on a three-layer
heterogeneous network model (TL-HGBI) by integrat-
ing similarities and interactions among diseases, drugs
and drug targets [12]. Luo et al. utilized some compre-
hensive similarities about drugs and diseases, and pro-
posed a Bi-Random walk algorithm (MBiRW) to predict
potential drug-disease interactions [13]. Martinez et al.
developed a method named DrugNet for drug-disease
and disease-drug priorization by integrating heteroge-
neous data [14]. Wu et al. integrated comprehensive
drug-drug and disease-disease similarities from chemi-
cal/phenotype layer, gene layer and treatment network
layer, and proposed a semi-supervised graph cut method
(SSGC) to predict the drug-disease associations [15].
Moghadam et al. adopted the kernel fusion technique to
combine different drug features and disease features, and
then built SVM models to predict novel drug indications
[16]. Liang et al. integrated drug chemical information,
target domain information and gene ontology annota-
tion information, and proposed a Laplacian regularized
sparse subspace learning method (LRSSL) to predict drug-
disease associations [17]. Zhang et al. introduced a linear
neighborhood similarity [18] and a network topological
similarity [19], then proposed a similarity constrained
matrix factorization method (SCMFDD) to predict drug-
disease associations by making use of known drug-
disease associations, drug features and disease semantic
information [20].

However, most of the existed methods are facing two
main problems: one is that most of them are based
on the hypothesis that similar drugs treat similar dis-
eases, thus they need the similarity information between
drugs, proteins, diseases, and so on. However, the simi-
larity data can be not easily obtained. People often need
to customize a program to collect data and to calculate
the similarities so as to satisfy their own needs. More-
over, the calculation of similarity scores depends on the
adopted measures, which may lead that the similarity
score of a pair varies dramatically from one method to
another. For example, two proteins are similar accord-
ing to their structures, while they may be dissimilar
according to their sequences. Even worse, some features
required for calculating the similarities may be unknown
or unavailable, resulting that these methods fail to work
[21]. The other problem is that supervised learning based
methods usually need both positive and negative sam-
ples to train the prediction models, whereas the drug-
disease pair data, like other biological data, is lack of
experimental validated negative samples. To train the
models, most of the existing methods randomly select
some unlabeled samples as the negative ones. Obvi-
ously, such strategy is very rough, for we are not sure
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whether there are some positive samples uncovered in the
unlabeled data.

In this paper, we propose a method, called EMP-SVD
(Ensemble Meta Paths and Singular Value Decomposi-
tion), to detect drug-disease treatment relations by using
drug-disease, drug-protein and disease-protein interac-
tion data. Unlike other methods, EMP-SVD needs no
similarity information at all. In order to integrate different
kinds of interaction data and consider different dependen-
cies, we introduce five meta paths. For each meta path,
we first generate a commuting matrix based on the corre-
sponding interaction data, and then get latent features of
drugs and diseases by using SVD (Singular Value Decom-
position). All drug-disease pairs can be represented by the
features. Finally, we train a base classifier by using the
Random Forest algorithm. Five base classifiers are com-
bined as an ensemble model to predict the drug-disease
interactions. The framework of our method is shown in
Fig. 1. In order to train out a more reliable prediction
model, we select more likely negative ones from unla-
beled samples under the assumption that non-associated
drug and disease pair have no common interacted pro-
teins, which is different from other methods. To evaluate
our proposed method, we will compare it with the state-
of-the-art methods, and also do case studies by literature
investigation.
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Materials and methods

Data sets

In this paper, we mainly made use of the interaction
data of drug-disease, drug-protein and disease-protein to
build the prediction model. We collected such data from
DrugBank (3, 22, 23], OMIM [24] and Gottlieb’s data set
[11]. Concretely, we collected 4642 drug-protein interac-
tion data from DrugBank, involving 1186 drugs and 1147
proteins; 1365 disease-protein interactions from OMIM,
involving 449 diseases and 1147 proteins; and 1827 drug-
disease interactions from Gottlieb’s data set, involving 302
disease, 551 drugs. Obviously, the heterogenous network
composed of drugs, proteins, diseases and the known
interactions is sparse. The statistic of the data is shown in
Table 1.

Although our method does not need the similarity infor-
mation, most of other machine learning based methods
do need. For the convenience of comparison, we still col-
lected the chemical structure of drugs and the sequence
data of proteins from DrugBank. We computed the drug-
drug chemical similarities according to their SMILES
strings [25] via Openbabel tool [26], and the protein-
protein similarities according to the sequence data by
Smith-Waterman algorithm [27]. Moreover, we directly
downloaded the disease-disease similarities from Mim-
Miner [28].
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Fig. 1 The framework of our proposed EMP-SVD
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Table 1 Statistic information of the drug-protein-disease
heterogenous network

Type Property Number(Density)
Nodes Drug 1186
Protein 1147
Disease 449
Known interactions Drug <— Protein 4642 (0.0034)
Disease <— Protein 1365 (0.0027)
Drug <— Disease 1827 (0.0034)

Density= #known interactions between node1 and node2 / (#nodel * #node2)

Definitions and notations
In this section, we will give the formal definitions and
notations used in this paper.

Definition 1 (Heterogeneous drug-protein-disease net-
work schema) . For a given heterogenous drug-protein-
disease network G = (V,E), where V. = DUPUS,
D, P and S are the sets of drug, protein, disease nodes
in the network respectively, while E = Eg, U E, 4 U
Eys U Esp U Egs U Eg, are the sets of heterogeneous
links in G, which include the “binds to” link between
drugs and proteins, ‘causes/caused by’ link between
proteins and diseases, “treats/treated by” link between
drugs and diseases. The schema of G can be defined as
Mg = (T,R), where T = ({Drug, Protein, Disease} ,
R = {binds to, cuases, caused by, treats, treated by} , T
and R are the sets of node types and link types in G,
respectively.

The network schema Mg severs as a template of a
network G. For a drug-protein-disease heterogenous net-
work, the network schema is shown in Fig. 2.

Protein

é\ — treats 5

treated by Disease

Fig. 2 Schema of drug-protein-disease heterogeneous network
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Definition 2 (Heterogenous network meta path) Based
on a given heterogenous network schema Mg = (T,R),

P=T N T R ﬁ Ty is defined to be a het-
erogenous network meta path in network G, where T; € T,
i e {1,2,.,k}and R; € R, i € {1,2,...,k — 1} and if
(T1, Ty, ..., Ty are not all the same) v (R, Ry, ..., Ri_1 are

not all the same).

For simplicity, we also omit the link types in denoting
the meta path if there is no multiple links between the two
types, for examples, P = T} — Tp — ... > T denotes

Ry
the meta path P = T} ﬁ, Ty &) N T. The length
of P is the number of links in P.

Definition 3 (Commuting matrix [29]) Given a network
G = (V,E) and its network schema Mg, a commuting
matrix for a meta path P = T1 — To — ... > T is
defined as X = Arr,Ar,15.- AT} T Where AT,T,- is the
adjacency (interaction) matrix between type T; and type
Tj. X (i, )) represents the number of path instances between
object u; € Ty and object v; € Ty under meta path P.

Since we want to detect the interactions between the
drugs and the diseases, we only consider the cases of
T1 = Drug and Ty = Disease.

Now that there are only three kinds of nodes (drug, pro-
tein and disease) in the heterogenous network, we think
the meta path with length greater than three may be too
long to contribute to the prediction. Sun’s work also has
shown that short meta paths are good enough, and long
meta paths may even reduce the quality [29]. Therefore,
in this work, we only selected meta paths with length no
longer than three. As a result, we select five meta paths
described below.

Let Ay be the drug-disease interaction matrix, Ay,
be the drug-protein interaction matrix, and Agz, be the
disease-protein interaction matrix, we can get the com-
muting matrices of the five meta paths as follows:

Meta-path-1: Drug %, Disease. The commuting
matrix of it, denoted as X1, can be obtained by:

X1 =Ay (1)

binds t . .
Meta-path-2: Drug 225, Protein 5 Disease. The

commuting matrix of it, denoted as X2 , can be obtained by :
X2=Ag x AL, ()

By using meta-path-2, we can integrate the drug-protein
interaction information and the disease-protein interac-
tion information, that is to say, we easily take the protein

related information into account.

bind. bind.
Meta-path-3: Drug 21 protein — Drug

Disease. The commuting matrix of it, denoted as X3, can
be obtained by:

treats
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3)

By using meta-path-3, we can integrate drug-protein
interaction and drug-disease interaction information.
What’s more, meta-path-3 also indicates that if two drugs
share some common proteins, they may have similar indi-
cations.

X3 =Agy x Agp x Ay

treat: . treated b
Meta-path-4: Drug 2%, Disease ——— 2 Drug

Disease. The commuting matrix of it, denoted as X4, can
be obtained by :

treats
—_—

Xd=Agg x AL x Agg (4)

By using meta-path-4, we can integrate the drug-disease
interaction information. Besides, meta-path-4 also indi-
cates that if two drugs share some common indications,
then the indication of one drug may also be the potential

indication of another drug.

caused by

treat . .
Meta-path-5: Drug T% Disease ——> Protein

causes . . . .
—— Disease. The commuting matrix of it, denoted as

X5, can be obtained by :

X5=Ags x Agp x AL, (5)

By using meta-path-5, we can integrate the drug-disease
interaction and the disease-protein interaction informa-
tion. What'’s more, meta-path-5 also indicates that if two
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disease share some common proteins, the drug for treat-
ing one disease may also be the potential therapeutical
drug for another disease.

As the definition, the element X (i, /) of the commuting
matrix X denotes the number of path instances from drug
d; to disease s; under the corresponding meta path. We
show an example in Fig. 3. There are two path instances
from drug d3 to disease sy under Meta-path-2, d3 —
p3 — sy and d3 — ps — sp, thus we have X2(3,2) = 2 in
commuting matrix X2.

Feature extraction with singular value decomposition

Now that element X (i, j) in a commuting matrix X denotes
the number of path instances from the drug d; to disease
sj, then row i in the commuting matrix can be used as
features of drug d;, and column j can be used as features
of disease s;. And we can use the concatenation of them
to represent the drug-disease pair. Suppose there are m
drugs and # diseases, we will have m + n (In this work,
m = 1186,n = 449) features to represent the drug-
disease pair. By contrast, the number of drug-disease
pairs is small (We only have 1827 known interactions in
this work). Obviously, the feature dimension is relatively
high, which is not proper to construct a robust prediction
model. Now that the singular value decomposition (SVD)
has been successfully used to reduce the dimension in

meta-path-2:

Commuting Matrix:

binds to
¢ —— &

Protein

causes

Drug Disease

X2=A4 X Asp”

Disease

Protein

Agp:  drug-protein interaction matrix
Agp:  disease-protein interaction matrix
Agp Agp” X2
P1 P2 P3 Pa Ds S1 Sz S3 S1 S2 S3
01]0 P1{0]0]O di|0]0]0
dyy(o|1]0]0]0 p210 dy[1]00
X =
dylolo|1]0]1 P3foj1]o0 dzlo|2 0
d,|0]0]0|0]O Ps]0|0]0 ds[{010]0
Ps|0 |10
X2(32) =2

©dylololo

Fig. 3 An example of the meaning of commuting matrix

There are 2 path instances from drug d3 to disease s, following meta-path-2:

d3 > p3 > s, ds > ps =5
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many researches, we also employed SVD to extract small
number of features in our work.

By using SVD, the commuting matrix X € R"*” can be
factorized into U, ¥ and V such that

X=uxvT (6)

where U € R, ¥ € R"*" and V € R"*". The diag-
onal entries of ¥ are equal to the singular values of X
(Other elements in ¥ other than diagonal entries are 0 ).
The columns of U and V are, respectively, left- and right-
singular vectors for the corresponding singular values.

As is known to all, the magnitude of the singular values
represents the importance of the corresponding vectors;
and in ¥, the singular values are ordered in descending
order. Moreover, in most cases, the sum of the first 10%
or even 1% of the singular values is over 99% of the total
sum of all singular values. Specifically in this drug-disease
associations prediction problem, in the biomedical mean-
ing, the most useful information about drug and disease
features will be included in the first 10% even less singu-
lar values. In the process of dimensionality reduction, the
useful data will not be lost, but the redundant informa-
tion will be discarded. That is to say, we can use the top r
singular values to approximate the matrix X:

X~ UmerrerTrxn (7)

where r < min(m, n).

Row i in U can be used as latent features of drug d;, and
row j in V can be used as latent features of disease s;. As
a result, the dimension of the latent feature vector of each
drug-disease pair can be reduced to 2 * r. In this work, we
will introduce a parameter latent_feature_percent far less
than 1 (say 1%, 2%,...) to control the value of » such that
r = latent_feature_percent x min(m, n).

Selection of likely negative samples from unlabeled
drug-disease pairs

To build a prediction model by using supervised learning,
we need both positive and negative samples. The known
drug-disease treatment relations are positive samples.
Being lack of validated negative samples, most methods
simply select some of unlabeled samples as negative ones
by random. However, the unlabeled samples are not nec-
essarily negative, some of them may be positive samples
that still remain uncovered by experiments [30]. Different
with other methods, we try to find more reliable negative
samples from the unlabeled ones in this work.

If a drug shares some proteins with a disease, then the
drug may have potential to treat the disease. Intuitively, if
a drug and a disease have no common related proteins, we
can think the disease is not the indication of the drug, and
thus the drug-disease pair is more likely a negative sam-
ple. By this means, we can select out more reliable negative
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samples from the unlabeled pairs based on the drug-
protein and disease-protein interactions information. The
procedure is listed in Algorithm 1.

Algorithm 1 proteinFilteredNegative

Input:
Drug-protein interaction matrix A4, € R™>P,
Disease-protein interaction matrix Az, € R"*?.
Output:
Filtered negative samples set filterNeg .
1 X =Agy x AL;
2: filterNeg < ;
3. fori=1tomdo
4. forj=1tondo
5: if X(i,j) = 0 then
6 filterNeg < filterNeg U (i, )) pair;
7 end if
8. end for
9: end for
return filterNeg;

,_.
=

Construction and ensemble of classifiers

The five meta paths we have selected to integrate hetero-
geneous data reflect different aspects of the drug-disease
treatment relationship, such as two drugs with common
proteins having similar indications, two drugs sharing one
common indication also sharing another indication, and
so on. Thus we can build five base classifiers for the
prediction of drug-disease treatment relations from dif-
ferent sides. In our work, the base classifiers are built
based on the Random Forest algorithm which was imple-
mented by using the RandomForestClassifier function in
the scikit-learn package [31], we set the number of trees
as 256.

Since ensemble learning can often help to improve the
performances [32, 33], after the five base classifiers are
constructed, we can obtain an ensemble classifier. For an
input of drug-disease pair, each base classifier outputs
two probabilities indicating that the pair being negative
and positive respectively. Since we want to know whether
the pair has treatment relation, we only take the positive
probability as considered in the ensemble model.

For a drug-disease pair x with unknown label, suppose
the predicted score (probability) of each base classifier be
hi(x),i =1,2,..5, we used average strategy to get the final
score of the ensemble model:

1 5
H(x) = - Z hi(x) (8)
=1

If H(x) is greater than a predetermined threshold, then
the sample x is predicted as the positive. Because Fj-
measure is a comprehensive metric, in this work, we let
the program automatically determine the threshold value
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when F;-measure reaches the maximum value, which is
the same strategy as the other researchers used.

Experiments and results

We perform 5-fold cross validation to evaluate our
method. Since the filtered negative samples are more than
the positive ones, we randomly select a subset from them
that with size equal to the positives, and use the balanced
data to train the models. We first select the appropriate
number of features according to the relationship of the
model performance and the feature number. Then we did
three kinds of evaluation experiments: (1) We investigate
whether our negative samples filtering strategy can help
to improve the prediction performance; (2) We compare
EMP-SVD with other state-of-the-art methods by using
the same data; (3) We check the practicality of our method
by doing case studies.

Evaluation metrics

Just as most other work, we performed 5-fold cross
validation in the experiments. To evaluate performance
of a method, there are some common metrics: Pre-
cison (PRE), Recall (REC), Accuracy (ACC), Matthews
Correlation Coefficient (MCC) and F;-measure (Fj).
They can be calculated according to the following
equations:

TP
PRE= —— 9)
TP + FP
TP
REC= —— (10)
TP + FN
TP + TN
ACC = + (11)
TP 4+ FP + TN + FN
TP x TN — FP x FN
MCC =
(TP ¥ EPY(TP + EN)(IN + EP)(TN + EN)
(12)
2 x PRE x REC
F = < X PRE X REL 13)
PRE + REC

where TP, FP, TN and FN denote the number of true pos-
itive samples, false positive samples, true negative samples
and false negative samples, respectively.

Since Precision(PRE) and Recall(REC) have some con-
flicts, in general, a classifier gets a higher PRE will
have a lower REC, and vise versa. To get a com-
prehensive performance, Area Under Precison-Recall
Curve(AUPR) and Area Under Receiver Operating Char-
acteristic Curve(AUC) are often used. AUPR takes both
PRE and REC into account, AUC takes both the true pos-
itive rate(TPR, the same as REC) and the false positive
rate (FPR) into account, so they are comprehensive met-
rics. At the same time, with the help of the curves we
can intuitively find which classifier is better. Therefore,
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in this work, we adopted AUPR and AUC as the main
metrics.

Determination of appropriate number of features
Parameters are often used in existing computational
methods, which limits the generalization of a model. So,
it will be better to use fewer parameters or to get an
analytical solution.

In this work, we just need to determine the number of
singular values (corresponding to the feature number that
is controlled by the parameter latent_feature_percent)
during the model construction, which is very differ-
ent with most state-of-the-art methods. Just mentioned
above r < min(m,n), so we set latent_feature_percent
as 1%, 2%, 3%, ... , 20% respectively, and the perfor-
mance curves of five base classifiers and the ensemble
one with different latent_feature_percent are shown in
Fig. 4. The results have shown that the performances of
the ensemble classifier are better than other five base
classifiers, illustrating that our ensemble rule is effec-
tive. Moreover, the performances of the six classifiers are
robust across different parameter settings. Anyway, we set
latent_feature_percent as 3% according to the curves in
this work.

We also find that the performances of classifiers based
on meta-path-1 and meta-path-4 are the worst. Notic-
ing that both meta-path-1 and meta-path-4 just take
drug-disease interactions into consideration, while the
other three meta paths contain more information on
drug-protein or protein-disease interactions, we think
integrating more interaction information into the meta
path can help to improve the performance of the
classifier.

Investigation of the filtering strategy of negative samples

Being lack of validated negative samples, most of the
other methods randomly select unlabeled samples to
be negative ones. However, the unlabeled samples are
not necessarily negative, some of them may be posi-
tive samples still uncovered by experiments. So in this
work we selected out more likely negative samples from
unlabeled ones according to the common protein infor-
mation (as described in Algorithm 1). As shown in
Table 2, all the classifiers achieve better performances
in most metrics when using our negative samples fil-
tering strategy. We also noted that the improvement is
little, which may due to the fact that the known drug-
protein interactions and disease-protein interactions are
too few (with density of 0.0034 and 0.0027, as shown in
Table 1), resulting that very few proteins could be used
in the filtering process. Anyway, our strategy for select-
ing more reliable negative samples is useful, feasible and
interpretable. We believe that along with the increase
of interactions data, we will get more reliable negative
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samples and thus achieve more great performance
improvements.

Comparison with other methods
In this section, we compare EMP-SVD with state-of-the-
art methods to demonstrate the superior performance of
our method. PREDICT [11] and TL-HGBI method [12]
are classical methods used to predict the drug-target and
drug-disease interactions. MBiRW [13], LRSSL [17] and
SCMFDD [20] are the methods proposed in these two
years, and achieved high performance in the prediction of
drug-disease interaction. So we choose these state-of-the-
art methods to compare.

PREDICT calculates the score of a given drug-disease
pair (d;,d;) according to all the known drug-disease
pairs (d/ , di’) associated with that given pair by equation

Score(d,, d;) = VS (d,,d’) x S(d;,d;’), where

max
dr/:di/?édhdi

S (dr, d,’ ) is drug-drug similarity and S (d,-, d; ) is disease-
disease similarity. TL-HGBI is a three layer heterogenous
network model, which makes use of the similarities and
interactions of drugs, diseases and targets by iterative

update. MBiRW adjusts the similarities of drugs and dis-
eases by correlation analysis and known drug-disease
associations, then uses Bi-random walk algorithm to pre-
dict the potential drug-disease associations. LRSSL is a
Laplacian regularized sparse subspace learning method
used to predict the drug-disease associations which inte-
grates drug chemical information, drug target domain
information and target annotation information. SCMFDD
is a similarity constrained matrix factorization method
for the prediction of drug-disease associations by using
known drug-disease interactions, drug features and dis-
ease semantic information.

We obtained the source code of PREDICT, TL-
HGBI and SCMEDD from the authors, the code of
MBIRW, LRSSL are publicly available, and the parame-
ters were set according to their papers. The parameter
latent_feature percent in EMP-SVD was set 3%. To be
fair, the five parts data were kept the same division in all
methods when conducting 5-fold cross validation.

As shown in Table 3, compared with other five state-
of-the-art methods which make use of several kinds of
similarities as well as the interaction data, the proposed

Table 2 Performances comparison with different negative samples selecting strategies (random strategy is denoted “random”, our

strategy is “reliable”)

Methods AUPR AUC PRE REC ACC MCC F1
Random Reliable Random Reliable Random Reliable Random Reliable Random Reliable Random Reliable Random Reliable

meta-path-1 0.894 0.896 0.859 0.861 0.786 0.771 0.875 0.891 0.835 0.835 0.673 0.677 0.827 0.826
meta-path-2  0.930 0.936 0.925 0.928 0.873 0.850 0.839 0.873 0.850 0.861 0.702 0.722 0.855 0.860
meta-path-3 0.921 0.926 0.902 0.905 0.826 0.832 0.862 0.883 0.843 0.858 0.690 0.719 0.842 0.855
meta-path-4 0894 0895 0858 0860 0782 0790 0882 0867 0836 0832 0676 0.667 0.828 0.826
meta-path-5 0918 0920 0892 0895 0809 0800 0900 0925 0859 0865 0721 0.737 0.852 0.858
ensemble 0954 0956 0949 0951 0924 0913 0837 0854 0871 0876 0.745 0.755 0878 0.882
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Table 3 Performances of proposed EMP-SVD and state-of-the-art methods

Methods AUPR AUC PRE REC ACC MCC Fi
EMP-SVD 0.956 0.951 0913 0.854 0.876 0.755 0.882
PREDICT 0.908 0.895 0.809 0.850 0.830 0.662 0.828
TL-HGBI 0.852 0.846 0.829 0.750 0.774 0.552 0.787
LRSSL 0.881 0.861 0.864 0.732 0.770 0.553 0.790
SCMFDD 0.836 0.854 0.926 0.713 0.774 0575 0.805
MBIRW 0.952 0.942 0.867 0.901 0.884 0.769 0.884

classifier EMP-SVD only uses the known interaction data
but achieves better performances in most metrics, espe-
cially the comprehensive metrics (AUPR and AUC). To
make it more intuitively, we plotted the Precison-Recall
Curve and ROC curve, which are shown in Fig. 5a and b,
respectively. The AUPR and AUC of the proposed EMP-
SVD are 0.956 and 0.951, respectively, better than the
compared methods. Hence, it shows the simplicity and
effectiveness of our method.

Case studies

Here, we test the practicality of EMP-SVD for predicting
unknown associations. Except for training set composing
of the known 1827 drug-disease associations and ran-
domly selected 1827 negative samples by using our strat-
egy, we used the trained EMP-SVD model to predict the
associations for other unknown drug-disease pairs, and
validate the results by literature investigation.

The new predicted top 20 drug-disease associations are
shown in Table 4. We checked them carefully by literature
validation and found that 13 of the top 20 predicted asso-
ciations have been reported in the literatures. And these
predicted associations were not originally in our data set,

but we could find it out by our method, thus showing the
practicality of our proposed EMP-SVD.

It should be noted that Triamcinolone (DrugBank ID:
DB00620) and Betamethasone (DrugBank ID: DB00443),
as glucocorticoid, are commonly used in the treatment of
various skin diseases such as “Eczema” [34—36], and we
find that their predicted associations include the disease
“Growth Retardation, Small And Puffy Hands And Feet,
And Eczema” (OMIM ID:233810). During the process of
literature validation, we also find a case of growth retarda-
tion and Cushing’s syndrome due to excessive application
of betamethasone-17-valerate ointment [37]. In a respon-
sible attitude, we think that whether they can be used to
treat the disease “Growth Retardation, Small And Puffy
Hands And Feet, And Eczema’, or the usage and dosage
should be further carefully studied by the chemists and
doctors, especially should be with caution when used on
children and pregnant women.

In more details, we checked the predicted potential indi-
cations of drug “Amitriptyline” (DrugBank ID: DB00321).
Amitriptyline is a tricyclic antidepressant which is often
used to treat symptoms of depression with the brand
name: Vanatrip, Elavil, Endep. As shown in Table 5, we can
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Table 4 The predicted drug-disease associations (Top 20)

Page 100f 118

Rank  Score  DrugBankID  Drug name OMIMID  Disease name Literature validation

1 0994  DB00776 Oxcarbazepine 239350 Hyperphosphatemia, Polyuria, And Seizures [38]

2 0992  DB01234 Dexamethasone 151590 Lichen Sclerosus Et Atrophicus; Lsa [39]

3 0.991 DB00443 Betamethasone 233810 Growth Retardation, Small And Puffy Hands And Feet,  [36]
And Eczema

4 0.991 DB00694 Daunorubicin 236000 Hodgkin Lymphoma [40, 41]

5 0.987 DB01234 Dexamethasone 146850 Immune Suppression; Is [42]

6 0986  DB01013 Clobetasol propionate 233810 Growth Retardation, Small And Puffy Hands And Feet, ~ N.A.
And Eczema

7 0986  DB00620 Triamcinolone 125600 Dermatosis Papulosa Nigra N.A.

8 0.986 DB00863 Ranitidine 600263 Helicobacter Pylori Infection, Susceptibility To [43]

9 0.985 DB00620 Triamcinolone 233810 Growth Retardation, Small And Puffy Hands And Feet, [34, 35]
And Eczema

10 0984  DB006%4 Daunorubicin 267730 Reticulum Cell Sarcoma [44]

1 0.984 DB00694 Daunorubicin 109543 Leukemia, Chronic Lymphocytic, Susceptibility To, 2 N.A.

12 0.984 DB00773 Etoposide 247640 Lymphoblastic Leukemia, Acute, With Lymphoma- [45, 46]
tous Features; Lall

13 0.984 DB00214 Torasemide 256370 Nephrotic Syndrome, Early-Onset, With Diffuse ~ N.A.
Mesangial Sclerosis

14 0983  DB00443 Betamethasone 188030 Thrombocytopenic Purpura, Autoimmune; Aitp [47]

15 0.981 DB00444 Teniposide 601626 Leukemia, Acute Myeloid; Aml [48,49]

16 0.981 DB00481 Raloxifene 215470 Chorioretinal Dystrophy, Spinocerebellar Ataxia, And ~ N.A.
Hypogonadotropic

17 0.980 DB00335 Atenolol 608622 Hypertension, Diastolic, Resistance To [50]

18 0.980  DB00612 Bisoprolol 608622 Hypertension, Diastolic, Resistance To [51]

19 0.980  DB00443 Betamethasone 146850 Immune Suppression; Is N.A.

20 0980  DBO1177 Idarubicin 109543 Leukemia, Chronic Lymphocytic, Susceptibility To, 2 N.A.

N.A.: We haven't found the literature evidence

find literature evidences to support 8 diseases in the top
10 predictions for Amitriptyline.

Breast cancer is a relatively common malignant tumor
for female, which seriously endangers women’s health and
life safety. To discover the potential drugs is of great value.
So we also checked the drug list that have been predicted
to treat the disease “Breast Cancer” (OMIM ID: 114480).
In the top 10 drugs, as shown in Table 6, we found that 8
have been reported to be used in the clinical treatment.

Therefore, the case studies have further shown the prac-
ticality of the proposed method EMP-SVD.

Conclusions and discussions

To uncover the potential drug-disease associations is
an important step in drug development, but it is time-
consuming and costly to uncover them by wet experi-
ments. Along with the accumulation of drug and disease
related multi-omics data, as well as the development of
machine learning techniques, more and more computa-
tional methods have been proposed to predict the poten-
tial drug-disease associations. To help the prediction,

many methods integrate multiple source of data, includ-
ing drugs, diseases, targets, side effects, and so on. They
achieved good performances and could provide a helpful
reference to the drug development. Most of them need
the similarities of drug and disease related data. How-
ever, the similarity data can not be easily obtained, and
people often need to customize a program to crawl data
and to compute the similarities to satisfy their own need.
Even worse, some features needed to calculate the sim-
ilarity are unknown or unavailable. These methods will
not work facing the incomplete data. Besides, being lack
of validated negative samples in the prediction of drug-
disease associations, most of the machine learning based
methods assume the unlabeled samples to be negative
ones in the training of the model. Such strategy may input
errors because there may be positive samples uncovered
in the unlabeled samples. What’s more, most of the exist-
ing methods use many parameters in the data integration
and the model construction. The parameters are diffi-
cult to tune, which limits the generalization ability of the
method.



Wu et al. BMC Bioinformatics 2019, 20(Suppl 3):134

Table 5 Top 10 predictions for the drug “Amitriptyline”

Rank  Score  OMIMID  Disease name Literature
validation

1 0.880 102300 Restless Legs Syndrome, [52]
Susceptibility To, 1; Rls1

2 0.877 200170 Acanthosis Nigricans With N.A.
Muscle Cramps And Acral
Enlargement

3 0.843 143465 Attention [53]
Deficit-Hyperactivity
Disorder; Adhd

4 0.837 600631 Enuresis, Nocturnal, 1; Enurl [54]

5 0.837 600808 Enuresis, Nocturnal, 2; Enur2 [54]

6 0.817 608088 Neuropathy, Hereditary [55]
Sensory And Autonomic,
Type I, With Cough And
Gastroesophageal Reflux

7 0.803 145590 Hyperthermia, Cutaneous, [56]
With Headaches And Nausea

8 0.774 164230 Obsessive-Compulsive N.A.
Disorder; Ocd

9 0.769 167870 Panic Disorder 1; Pand1 [57]

10 0.745 600082 Prostatic Hyperplasia, Benign; ~ [58]

Bph

N.A.: We haven't found the literature evidence

In this work, we proposed a method named EMP-SVD
to predict drug-disease interactions based on ensemble
meta paths and singular value decomposition. Five meta
paths from source node (drug) to end node (disease)
were selected to integrate the interaction information of
drugs, proteins and diseases. Then the commuting matri-
ces of these meta paths were calculated out, each ele-
ment indicates the number of path instances between
the corresponding drug and disease pair. By using sin-
gular value decomposition on the commuting matrices,
we can extract small number of latent features of drugs
and diseases. In order to get reliable negative samples, we

Table 6 Top 10 predictions for the disease “Breast Cancer”

Rank  Score DrugBankID  Drug name Literature validation
1 0.931 DB00541 Vincristine [59-61]
2 0.924 DB00399 Zoledronate [62]

3 0.902 DB00987 Cytarabine [63]

4 0.901 DB00884 Risedronate [64]

5 0.893 DB01073 Fludarabine N.A.

6 0.889 DB00755 Tretinoin [65]

7 0.884 DB00762 Irinotecan [66]

8 0.884 DB00630 Alendronate [67]

9 0.880 DB01005 Hydroxyurea [68]

10 0.878 DBO1196 Estramustine N.A.

N.A: We haven't found the literature evidence
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selected those unlabeled samples as negative under the
assumption that if a drug and a disease have no com-
mon proteins, then there is smaller probability for them
to be treatment relationship. Based on each meta path
we first built a base classifier, and then combined them
to get an ensemble classifier. The experiments results
have shown that our proposed EMP-SVD method out-
performed several state-of-the-art methods. Better than
other methods, EMP-SVD has few parameters and very
easy to set. Further more, case studies have shown the
predicted new associations could be useful for further
biomedical research, which demonstrate the practicality
of our method.

Although there are meta path based methods in social
network and some other networks, to the best of our
knowledge, it is the first work in the prediction of drug-
disease associations by using ensemble meta paths and
singular value decomposition. Different with many exist-
ing methods, we do not need the similarity data which are
not easily obtained or sometimes unavailable or unknown.
Instead, we just use the interaction data which can be
easily accessed in many databases to build the prediction
model. The other advantage of method is that there is only
one parameter that can easily set. Though we use ensem-
ble strategy to improve the performance, each of the five
base classifiers can independently act as the model as well
to predict the drug-disease interactions. Since there are
many computational methods to predict the target pro-
teins for a new drug such as docking methods. For a new
drug which has no known interactions with any diseases,
we still can predict its interacted diseases by building clas-
sifier using meta-path-2 by making use of drug-protein
and protein-disease interactions.

Though the results of our methods are promising, there
are still some limitations. Firstly, we only use the infor-
mation of drugs, proteins and diseases, there are many
other information could also be integrated in the further
work, such as the information of side effects, pathways,
tissues, and so on. Secondly, we only make use of common
proteins to select out the negative samples, some other
information such as gene expression data can also be used
for this purpose. Or we can directly build the model by
positive and unlabeled samples based learning method.
We will address these issues in the future study.
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