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Abstract

Background: In silico prediction of potential drug side-effects is of crucial importance for drug development, since
wet experimental identification of drug side-effects is expensive and time-consuming. Existing computational
methods mainly focus on leveraging validated drug side-effect relations for the prediction. The performance is
severely impeded by the lack of reliable negative training data. Thus, a method to select reliable negative samples
becomes vital in the performance improvement.

Methods: Most of the existing computational prediction methods are essentially based on the assumption that
similar drugs are inclined to share the same side-effects, which has given rise to remarkable performance. It is also
rational to assume an inverse proposition that dissimilar drugs are less likely to share the same side-effects. Based on
this inverse similarity hypothesis, we proposed a novel method to select highly-reliable negative samples for
side-effect prediction. The first step of our method is to build a drug similarity integration framework to measure the
similarity between drugs from different perspectives. This step integrates drug chemical structures, drug target
proteins, drug substituents, and drug therapeutic information as features into a unified framework. Then, a similarity
score between each candidate negative drug and validated positive drugs is calculated using the similarity integration
framework. Those candidate negative drugs with lower similarity scores are preferentially selected as negative samples.
Finally, both the validated positive drugs and the selected highly-reliable negative samples are used for predictions.

Results: The performance of the proposed method was evaluated on simulative side-effect prediction of 917
DrugBank drugs, comparing with four machine-learning algorithms. Extensive experiments show that the drug
similarity integration framework has superior capability in capturing drug features, achieving much better
performance than those based on a single type of drug property. Besides, the four machine-learning algorithms
achieved significant improvement in macro-averaging F1-score (e.g., SVM from 0.655 to 0.898), macro-averaging
precision (e.g., RBF from 0.592 to 0.828) and macro-averaging recall (e.g., KNN from 0.651 to 0.772) complimentarily
attributed to the highly-reliable negative samples selected by the proposed method.

Conclusions: The results suggest that the inverse similarity hypothesis and the integration of different drug
properties are valuable for side-effect prediction. The selection of highly-reliable negative samples can also make
significant contributions to the performance improvement.
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Background
Drug side-effects refer to secondary phenotypic responses
of the human organisms to drug treatments [1]. They
have gained broad public attention because they cause sig-
nificant fatality and severe morbidity. In America, it is
estimated that side-effects are the fourth leading cause
of death which should be responsible for 100,000 deaths
every year [2]. Moreover, drug side-effects account for
about one-third of drug failures during the drug develop-
ment process [3]. Therefore, it is of critical importance to
detect side-effects as early as possible.

Conventional approaches to side-effect prediction dur-
ing the drug development process are pharmacology
assays such as in vivo assays and in vitro assays [4]. How-
ever, such experimental predictions are expensive, time-
consuming, and tedious. Recently, several computational
methods have been proposed to tackle the side-effect pre-
diction problem based on drug profiles [2, 5–15]. These
methods can be categorized into target protein-based
methods and chemical structure-based methods.

The main idea of target protein-based methods is to
relate drug side-effects to drug target proteins directly or
indirectly. Previous studies on drug target identification
by side-effects have demonstrated the strong associa-
tions between drug targets and drug side-effects [16–18].
Yamanishi et al. [5] explored to predict drug side-effects
by integrating target proteins and drug structures in a
unified framework. Their experiments showed that the
prediction accuracy can be improved owing to the integra-
tion of target protein information. Researchers developed
prediction methods based on pathways which indirectly
involve proteins targeted by drugs [7]. Links between
pathways and side-effects have been established by ana-
lyzing compounds which share the same toxic phenotypes
and comparing these pathways with pathways modu-
lated by nontoxic compounds [6]. An efficient algorithm,
named CoopeRativE Pathway Enumerator, was proposed
to enumerate cooperative pathways which share common
active conditions. Then these cooperative pathways were
further adopted to predict side-effects and the method
achieved satisfactory performance [7].

The principle of chemical structure-based methods is to
relate drug side-effects to drug chemical structures. Early
in 2007, Bender et al. [8] attempted to predict drug side-
effects across hundreds of categories from their chemical
structures alone and established correlations between the
chemical space and side-effect prediction. Hammann et
al. [9] used a decision tree to determine the chemical,
physical and structural properties of drugs that predispose
them to cause side-effects. Canonical correlation analy-
sis (CCA) was employed for simultaneous prediction of
multiple side-effects from chemical structures by Atias
[10]. Based on CCA, an improved method called sparse
canonical correlation analysis (SCCA) [2] was designed

to predict potential drug side-effects from chemical sub-
structures. Related comparison experiments with CCA
have demonstrated that SCCA could provide more selec-
tive and informative correlation between drug chemical
substructures and side-effects without losing performance.
Schiber et al. [11] tried a global linkage analysis to map
drug chemical features to side-effects on a large scale.
However, the authors just aimed to relate chemical struc-
tures to side-effects instead of understanding the mech-
anism of relations. Moreover, they did not provide a
framework to predict drug side-effects for drugs.

Usually for the side-effect prediction task, only pos-
itive samples which are composed of drugs known to
have certain side-effects are validated. There is no defi-
nite prior knowledge that a drug is certain not to have a
side-effect. Thus there are no validated negative samples
in this task. Most existing side-effect prediction meth-
ods are based on the closed-world assumption, taking
labeled drugs as positive samples and unlabeled drugs
as negative samples to perform the prediction directly
[2, 5, 8, 15, 19, 20]. Labeled and unlabeled drugs are
drugs which are known and not known to have the side-
effect respectively according to the prior knowledge. They
solely depend on the use of known drug-side-effect rela-
tions (i.e., validated positive samples) to make predic-
tions. However, the unlabeled drugs still have considerable
probability to have these side-effects. It means that the
assumed negative samples may include a considerable
number of real positive samples which are yet unknown.
As a result, the quality of their negative samples can not
be guaranteed, and inaccurate selection of negative sam-
ples would largely degrade the prediction performance
[21]. To improve the prediction performance, we need
good methods to select reliable negative samples for the
prediction task.

Existing side-effect prediction methods are essentially
based on the assumption that similar drugs are inclined
to share the same side-effects [15, 20], which have gen-
erated remarkable performance. Thus, it is rational to
determine potential negative samples based on the inverse
proposition that dissimilar drugs are less likely to share
the same side-effects. Based on this hypothesis, we pro-
posed a novel method to select highly-reliable negative
samples based on the comprehensive drug similarity from
the set of unlabeled drugs. The comprehensive drug simi-
larity measurement integrates the chemical space of drug
chemical structures, biological space of drug target pro-
teins and other space of drug substituents, and therapeutic
classification into a unified framework to capture drug
features from different perspectives. Candidate negative
drugs which have lower similarity scores with validated
positive drugs were preferentially selected to form the
negative drug sample set. We highlight our contributions
as follows:
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• Development of a drug similarity integration
framework which integrates drug chemical structure
similarity, drug target protein similarity, drug
substituent similarity, and drug therapeutic similarity
into a unified comprehensive similarity.

• Selection of reliable negative drug samples for each
side-effect from the candidate negative drugs (i.e.,
unlabeled drugs) based on their comprehensive
similarities with validated positive drugs.

• Investigation on the impact of the imbalance between
negative samples and positive samples in the training
set by comparing against a self-built balanced
training set.

• Use of machine learning methods to predict potential
drug side-effects based on validated positive drug
samples and the selected reliable negative drug
samples, and compare the results with the existing
predictive methods.

• Extensive comparison experiments demonstrate that
side-effect prediction using reliable negative drug
samples selected based on the proposed drug
similarity integration framework can achieve the best
performance.

Materials
Drug side-effect profiles
The side-effect data set was downloaded from SIDER
(version 4.1), a comprehensive drug side-effect database
[22]. In this work, we focus on side-effects of drugs
which are grouped as “Small Molecules” in the Drug-
Bank database [23, 24]. Our basic idea lies in predicting
drug side-effects according to drug similarities. Therefore,
those drugs whose similarity information are not available
were removed. Correlated with drugs in SIDER, we finally
obtained a data set of 917 drugs, 500 side-effect terms, and
78,855 drug side-effect pairs (DSPs). Details of the dataset
are described in both Table 1 and Fig. 1. All the above data
and the source codes are included in Additional file 1.

Drug similarities
Chemical structure similarity
Chemical structures of drug molecules were downloaded
from DrugBank (stored in SMILES files) [23, 24]. The
molecular fingerprints were retrieved from these SMILES

Table 1 The drug side-effect dataset

Field Value

Drug group Small molecules

Number of drugs 917

Number of side-effects 500

Number of DSPs 78,855

Average side-effects per drug 86.0

Average drugs per side-effect 157.7

files using an open source tool called Chemical Develop-
ment Kit (CDK) [25]. The chemical structure similarity
score between two drugs is calculated according to the
Tanimoto 2D score between their molecular fingerprints.
For a drug d, it can be represented by its hybridization fin-
gerprint f d

(
f d
i ∈ {0, 1}, i ∈ {1...1024}

)
. Then the chemical

similarity score between drug dj and drug dk is given by:

Schem
(
dj, dk

) = Tanimoto
(

f j, f k
)

=
∑1024

l=1

(
f j
l ∧ f k

l

)

∑1024
l=1

(
f j
l ∨ f k

l

) ,

(1)

where ∧ and ∨ are bit-wise “and” and “or” operators
respectively; f j

l and f k
l are the lth bit of fingerprints of drug

dj and drug dk respectively.

Drug target protein similarity
The similarity of two proteins is calculated based on the
overlapping rate of their associated Gene Ontology (GO)
terms. Suppose GOm and GOn are the GO term sets for
protein pm and protein pn respectively, the similarity score
between pm and pn is defined as

Sgo (pm, pn) = GOm ∩ GOn

GOm ∪ GOn , (2)

where ∩ and ∪ are “intersection” and “union” operators
respectively. The GO terms of target proteins were down-
loaded from the EMBL-EBI website [26, 27]. Drugs are
expected to interact with proteins which have similar cel-
lular components, or share similar molecular functions,
or go through similar biological processes. Therefore, all
the three types of ontologies were utilized in the simi-
larity definition. Then the drug target protein similarity
between each pair of drugs was calculated by integrat-
ing protein similarities of their target proteins. The target
protein similarity score between drug dj and drug dk is
calculated as follows:

Star
(
dj, dk

) =
∑Nj

m=1
∑Nk

n=1 Sgo (pm, pn)

Nj ∗ Nk
, (3)

where Nj and Nk are the total number of proteins in the
interacted protein sets of drug dj and drug dk respectively.

Drug substituent similarity
Substituents are atoms which replace hydrogen atoms on
the parent chain of hydrocarbon. Its subsets, functional
groups, are responsible for the characteristic chemical
reactions of molecules. Therefore, it’s reasonable to mea-
sure similarity between drugs via their substituents. The
drug substituent similarity between drug dj and drug dk is
calculated via Jaccard score which is given by:
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Fig. 1 Characteristics of side-effects and their associated drugs. The left panel (a) is the index-plot of the number of associated drugs for each
side-effect and the right panel (b) is the histogram of the associated drug number for the side-effects

Ssub
(
dj, dk

) = SUBj ∩ SUBk
SUBj ∪ SUBk

, (4)

where SUBj and SUBk are the substituent sets of drug dj
and dk respectively; ∩ and ∪ are intersection and union
operators respectively.

Drug therapeutic similarity
The Anatomical Therapeutic Chemical (ATC) codes of
drugs are assigned according to their therapeutic, phar-
macological and chemical properties [28]. The ATC codes
have been demonstrated to be useful in predicting the
drug poly-pharmacological profiles [29]. Hence, we take
the ATC codes as one part of the drug similarity measure-
ment. The ATC codes used in this work were extracted
from the DrugBank database. There are 5 levels in the
ATC code. First, we calculate the drug therapeutic similar-
ity at each level separately. The lth level drug therapeutic
similarity Sl between the drug dj and dk is defined as:

Sl
(
dj, dk

) = ATCl
(
dj

) ∩ ATCl (dk)

ATCl
(
dj

) ∪ ATCl (dk)
, (5)

where ATCl(dj) denotes the lth level ATC code for drug dj;
∩ and ∪ are intersection and union operator respectively.
The average value of the five-level similarity scores is used
as the therapeutic similarity of a drug pair:

Sthera
(
dj, dk

) =
∑n

l=1 Sl
(
dj, dk

)

n
, (6)

where n = 5, is the total number of ATC code levels.

Methods
The outputs of side-effect prediction are discrete side-
effect labels, thus we modelled the side-effect predic-
tion as a classification problem instead of a regression
problem. Specifically, we transformed the side-effect-
prediction problem into a set of independent binary
classification problems, where each drug causes or does
not cause a given side-effect. For each side-effect, we
built a classifier using its validated positive drugs and
selected reliable negative drugs. In this section, the
framework to integrate drug similarity is introduced
first. Then, processes to select reliable negative samples
based on integrated drug similarities are detailed. And
finally, we present the way to build classifiers for side-
effects.

Drug similarity integration framework
We integrate the above four measurements of drug simi-
larities into a single comprehensive similarity using three
consensus similarity inference methods: maximum, mean
and geometric mean.
(1) Maximum

Smax
(
dj, dk

) = max
{

Schem
(
dj, dk

)
, Star

(
dj, dk

)
,

Ssub
(
dj, dk

)
, Sthera

(
dj, dk

)}
,

(7)

(2) Mean
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Smean
(
dj, dk

) = [
Schem

(
dj, dk

) + Star
(
dj, dk

)

+ Ssub
(
dj, dk

) + Sthera
(
dj, dk

)]
/4,

(8)

(3) Geometric Mean

SGM
(
dj, dk

) =
4
√

Schem
(
dj, dk

)∗Star
(
dj, dk

) ∗ Ssub
(
dj, dk

) ∗ Sthera
(
dj, dk

)
,

(9)

where Schem
(
dj, dk

)
, Star

(
dj, dk

)
, Ssub

(
dj, dk

)
and

Sthera
(
dj, dk

)
are chemical similarity, target protein

similarity, drug substituent similarity and drug thera-
peutic similarity between drug dj and dk respectively;
Smax

(
dj, dk

)
, Smean

(
dj, dk

)
and SGM

(
dj, dk

)
are the three

combined comprehensive similarities for the drug pair
drug dj and dk .

Negative sample selection based on comprehensive drug
similarities for side-effect predictions
Most existing prediction methods assume that similar
drugs tend to share the same side-effects. We adopt not
only this assumption, but also its inverse proposition to
make predictions. Particularly, we adopt its inverse propo-
sition, i.e., dissimilar drugs are less likely to share the same
side-effects, to select highly-reliable negative samples.
Figure 2 illustrates the flow diagram of the proposed
method to select negative samples for predictions.

Starting with the preprocessing procedure, side-effects
and drugs which do not meet the requirements are
removed (see “Materials” section). Then we compute the
comprehensive similarity between every two drugs from
the 917 drugs. Following that, we build the positive drug
set and the negative drug set for each side-effect. Here
we take the side-effect se as an example to describe the
process.

• Build the positive drug set and the candidate negative
drug set for se. Specifically, the positive drug set and
the candidate negative drug set are formed by drugs
which are known and unknown to cause se in the
prior knowledge respectively.

• Calculate the accumulative similarity score for each
drug in the candidate negative drug set using the
comprehensive drug similarity.
Example. The accumulative similarity score of a
candidate negative drug dc,i equals the sum of
similarities between dc,i and each drug in the positive
drug set.

Scoredc,i =
N∑

j=1
Scom

(
dc,i, dp,j

)
, (10)

where Scom ∈ {Smax, Smean, SGM}, is the
comprehensive similarity; dp,j is the jth drug in the
positive drug set (1 ≤ j ≤ N); N is the total drug
number in the positive drug set.

• Rank all drugs in the candidate negative drug set in
an ascending order of their accumulative similarity
scores, and those with lower scores are preferably
selected to form the negative drug set. The threshold
score depends on the number of negative drugs
should be selected.

After we get the validated positive drug set and selected
negative drug set for all side-effects, we vectorize each
drug as a 917-dimensional feature vector using comprehen-
sive drug similarities. For example, drug di is represented
as di = {

Scom (di, d1) , ..., Scom
(
di, dj

)
, ..., Scom (di, d917)

}T ,
where each element encodes the comprehensive drug sim-
ilarity between di and each drug from the whole drug
set. Finally, we construct one classifier for each side-
effect, optimize related parameters via cross-validations,
and finally use the optimized classifier to predict potential
drug-side-effect associations. The inputs are vectors of the
validated positive drug samples and the selected negative
drug samples.

Results and discussions
The prediction results under different similarity mea-
surements and different similarity integration methods
are presented. The prediction performances on balanced
and imbalanced training sets in terms of positive and
negative samples are also compared through a series of
experiments. Finally, we demonstrate the excellent pre-
diction performances of approaches achieved by using
the highly-reliable negative samples selected based on the
inverse similarity hypothesis and the similarity integration
framework.

Performance evaluation metrics
To evaluate the performance of side-effect prediction,
5-fold cross-validation was performed in the following
way: (1) positive and negative samples (drugs) are com-
bined to form a gold standard set; (2) drugs in the gold
standard set are split into five roughly equal-sized subsets;
(3) each subset is used as the test set, and the remaining
four subsets are taken as the training set in turn to test
and train the predictive models; (4) the final performance
is evaluated on all results over 5-folds. Precision, recall,
F1-score and their macro values are used as performance
indicators:

Precision = TP
TP + FP

, (11)

Recall = TP
TP + FN

, (12)



Zheng et al. BMC Bioinformatics 2019, 19(Suppl 13):554 Page 96 of 242

Fig. 2 Flow diagram of drug side-effect prediction with the proposed negative sample selection method using the comprehensive drug similarity

F1-score = 2 ∗ Precision ∗ Recall
Precision + Recall

, (13)

Macro_X =
∑n

i=1 Xi
n

, (14)

where TP and FP are the correctly and falsely predicted
positive drug number, FN is the falsely predicted negative
drug number and X ∈ {Precision, Recall, F1-score}.

Evaluation on drug similarity integration framework
To demonstrate advantages of the proposed drug simi-
larity integration framework, we report prediction per-
formances under different similarity measurements and
different similarity integration methods. We tested eight
situations derived from the four similarity measurements
and three similarity integration methods: (1) Chem, (2)
Tar, (3) ChemTarMax, (4) ChemTarMean, (5) Chem-
TarGM, (6) ComMax, (7) ComMean and (8) ComGM,
where Chem, Tar, ChemTar and Com denote the four
similarity measurements, namely the chemical, target
and chemical-target and comprehensive similarity respec-
tively; Max, Mean and GM denote the three similarity
integration approaches, namely maximum, mean and geo-
metric mean respectively. A typical classifier, K-Nearest
Neighbors (KNN), was employed to perform these tasks.

The k parameter of KNN was set as 50 based on 5-fold
cross validation optimization. In addition, all drugs known
and unknown to cause the side-effect were directly used
as positive and negative samples for prediction. Detailed
results of the eight situations are illustrated in Fig. 3.

Fig. 3 Boxplots of the F1-scores for different similarity measurements
and different similarity integration methods using the KNN classifier
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It can be seen that for situations based on chemical-
target similarity as well as the comprehensive similarity,
the integration method “Mean” and “Maximum” perform
much better than “Geometric Mean”, and “Maximum”
outperform “Mean” a bit (detailed in Fig. 4a, b and c.
Note that Fig. 4 shows differences of F1-scores,

not F1-scores as defined). Therefore, we leveraged
“Maximum” as the integration method in the subse-
quent experiments. As for performances of different
similarity measurements, chemical-target based sit-
uations achieved better performance than chemical-
structure based situations and target-protein based

Fig. 4 Differences among similarity measurements and similarity integration methods. In each panel, the x-axis denotes the index of each side-effect
and the y-axis denotes the F1-score difference between two methods. For instance, Fig. 4a describes the differences between “ComMean” and
“ComGM” using the F1-score of each side-effect from ComMean minus that from ComGM (i.e. difference= F1-score(ComMean)−F1-score(ComGM)).
Thus we can identify which method performs better by comparing the area under the curve above zero (i.e., area A) with the area above the curve
under zero (i.e., area B). Panel (a) shows the F1-score difference between “ComMean” and “ComGM”; Panel (b), (c) and (d) illustrate the F1-score
difference between “ComMax” and “ComGM/ComMean/ChemTarMax” respectively; Panel (e) and (f) shows the F1-score difference between
“ChemTarMax” and “Chem/Tar” respectively
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situations (see Fig. 4e and f). Situations based on the
proposed comprehensive similarity outperformed the
chemical-target based situation (see Fig. 4d), produc-
ing the best results. Examples of side-effects with
low F1-scores are “unspecified visual loss (C3665346)”,
“hyperphosphataemia (C0085681)”, “corneal opacity
(C0010038)”, “red blood cell sedimentation rate increased
(C0151632)”, and “exacerbation of asthma (C0349790)”.
Examples of high F1-score side-effects are “pseudomem-
branous colitis (C1257843)”, “nausea (C0027497)”, “febrile
neutropenia (C0746883)”, “headache (C0018681)”, and
“vomiting (C0042963)”. Please refer to the specific
F1-scores of each situation in Additional file 2: Table S3.

Evaluation on balanced and imbalanced training set
It can be seen from Fig. 1 that the number of drugs
with which a side-effect is associated varies a lot. It
means the labeled drugs and unlabeled drugs for most
side-effects are imbalanced. In fact, 479 (95.8%) side-
effects have more unlabeled drugs than labeled drugs.
If all labeled and unlabeled drugs were directly taken as
the positive and negative samples respectively to perform
the side-effect prediction, the imbalance between them
would become a problem which is challenged in the field
of machine learning [30]. We investigated the impact of
imbalance between positive samples and negative sam-
ples on side-effect prediction performance, before report-
ing results of the proposed negative sample selection
method.

To simply compare with the original imbalanced train-
ing set, we developed a balanced training set in the
following way: (1) the smaller number ns, between the
labeled drug number and the unlabeled drug number was
obtained; (2) ns labeled drugs were selected to form the
positive drug sample set; (3) ns unlabeled drugs were
selected to form the negative drug sample set. More
efficient classifiers, including Extreme Learning Machine
(ELM), Support Vector Machine (SVM) and Radial Basis
Function (RBF) networks were employed in this task.
Their key parameters are optimized as follows: KNN
(k = 50), ELM (active function=sigmoid, hidden neuron
number=150), SVM (kernel type=radial basis function,
gamma=0.07), RBF (spread=500) (same settings here-
inafter). We tested eight situations: (1) KNNComBal, (2)
KNNComUnbal, (3) ELMComBal, (4) ELMComUnbal,
(5) SVMComBal, (6) SVMComUnbal, (7) RBFComBal
and (8) RBFComUnbal. Since the best prediction perfor-
mance obtained among the three drug similarity integra-
tion methods was via “Maximum”, we used it again as
the integration method for the eight situations. These sit-
uations are named according to the classifier involved,
similarity measurements, and balance or not. Situations
ending with “Bal” are based on the self-built balanced
training set and those ending with “Unbal” are based on

the original imbalanced training set. For example, SVM-
ComBal refers to the situation which is performed by SVM
based on the self-built balanced training dataset using the
comprehensive similarity.

To avoid bias, situations based on the self-built bal-
anced training set were repeated 5 times. Each time,
the ns positive drugs and the ns negative drugs were
selected randomly. Average values of the performance
evaluation metrics were used for comparison. The scat-
ter plots of prediction results are shown in Fig. 5. From
Fig. 5, we can see that most dots are located at the upper
side of the reference line for all the classifiers. It reveals
that situations based on the balanced training set out-
perform those on the imbalanced training set for most
side-effects.

In Fig. 5b and c, a few dots (i.e., side-effects) are con-
centrated in the left side of the chart and are close
to the y-axis, where F1-scores of the imbalanced situ-
ations are close to 0. It is caused by the large degree
of imbalance between the positive and negative sam-
ples in the training set. Moreover, ELM and SVM are
sensitive to the imbalanced training set. We examined
the ratios of positive and negative samples in the imbal-
anced training sets of these side-effects. For most low
F1-score side-effects, the number of negative samples in
the training set is several times more than positive sam-
ples. For example, in terms of side-effects with F1-score
≤ 0.1 using ELMComUnBal, the negative samples are
10.75 times that of positive samples on average. A large
degree of imbalance led to the bias of the classification
decision boundary against the positive samples, there-
fore very few samples were predicted as positive drugs. It
means the true positive rate is low, resulting in a low F1-
score.

In Fig. 5b, c and d, a majority of side-effects for
which the imbalanced situations outperformed the bal-
anced ones, have relatively high F1-scores. Analogously,
we investigated the numbers of positive and negative sam-
ples for these side-effects. It was found that most of these
side-effects have more positive samples in the training
set. Taking results from SVMComUnBal as an example,
21 out of 23 side-effects which own higher F1-scores
than SVMComBal, have more positive samples in the
training set.

With the above analyses, it is suggestive that the
ratios of positive and negative samples in the train-
ing set can influence the prediction performance a
lot. Using imbalanced training sets, classifiers are easy
to fall into bias. Therefore, situations with balanced
training sets can perform better than those situations
with imbalanced training sets on most side-effects.
This observation can also be confirmed by prediction
results using the similarity ChemTar (Additional file 3:
Figure S1).
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Fig. 5 Scatter plots of F1-scores for different classifiers using the comprehensive similarity on balanced and imbalanced training sets. The x-axis
denotes F1-scores of results based on imbalanced training sets, and the y-axis for balanced training sets. The line “y = x” on which F1-scores are
equal, is the reference line to better visualize the results. Panel (a), (b), (c) and (d) show the scatter plots of F1-scores on balanced and imbalanced
training sets using KNN, ELM, SVM and RBF respectively

Performance improvement brought by the selection of
highly-reliable negative samples
From analyses presented in the previous sections, it has
been understood that different similarity measurements,
different similarity integration methods, and the balance
ratios between positive and negative samples have heavy
influence on the prediction performance. It is confirmed
that approaches based on self-built balanced training sets
achieved better performance than those based on orig-
inal imbalanced training sets. With the best options of
similarity measurements, integration methods and bal-
ance strategy, we evaluated the performance of side-
effect prediction when negative samples are selected by
the proposed method. As a comparison, we randomly
selected negative samples for each side-effect from its
unlabeled drugs. We treat this method as the “Baseline”.
We tested the following situations: (1) KNNComNegative,

(2) KNNComRandom, (3) ELMComNegative, (4) ELM-
ComRandom, (5) SVMComNegative, (6) SVMComRan-
dom, (7) RBFComNegative and (8) RBFComRandom,
where situations ending with “Negative” stand for
the negative samples selected by the proposed nega-
tive sample selection method, while those ended with
“Random” denote the negative samples selected randomly.
To avoid bias, situations based on randomly selected neg-
ative samples were repeated 5 times. Note that all the
above situations are based on the comprehensive simi-
larity, the similarity integration method “Maximum”, and
the proposed strategy to build balanced training sets (see
Evaluation on balanced and imbalanced training set).
Related results are illustrated in Fig. 6. As shown in
all sub-graphs of Fig. 6, a majority of dots are located
at the upper side of each reference line. This suggests
that performances of all classifiers were significantly



Zheng et al. BMC Bioinformatics 2019, 19(Suppl 13):554 Page 100 of 242

Fig. 6 Comparison results using the proposed negative sample selection method and random sample selection method. The x-axis denotes
F1-scores of results based on negative samples selected randomly, and the y-axis denotes F1-scores of results based on negative samples selected
by the proposed method. The line “y = x” on which F1-scores are equal, is used as the reference line. Panel (a), (b), (c) and (d) show the scatter plots
of F1-scores using the proposed negative sample selection method and random sample selection method achieved by KNN, ELM, SVM and RBF
respectively

improved owing to the proposed negative sample selec-
tion method.

We further investigated the improvement on macro-
averaging values of the three performance measurement
indices (See Table 2). They were calculated as the average
values of all side-effects using equation (14). The high-
est performance of each classifier was highlighted via bold
numbers. Situations using the proposed negative sample
selection method based on the comprehensive similar-
ity (ComNegative) achieved significantly higher perfor-
mance than those using randomly selected negative sam-
ples based on comprehensive similarity (ComRandom) or
chemical-target similarity (ChemTarRandom, see Addi-
tional file 3: Figure S2). For example, for KNN, ELM, SVM,
and RBF, the macro-averaging F1-score improvement

over “ComRandom” is 18.1%, 18.8%, 24.3%, 21.6% respec-
tively, over “ChemTarRandom” is 21.9%, 20.2%, 29.2%,
25.1% respectively.

Both the results from Fig. 6 and Table 2 confirm
the performance improvement brought by the selected
highly-reliable negative samples. The proposed method
is based on the assumption that drugs dissimilar to any
drugs known to cause a given side-effect are less likely
to cause the side-effect. Drugs that locate far from all
positive samples in the chemobiological space are used
as negative samples, which really contributed to improve
the prediction performance for different classifiers. The
selected high-reliable samples help to learn an optimal
classification decision boundary, better differentiating
positive samples and negative samples.
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Table 2 Macro-averaging F1-score/precision/recall of four
typical classifiers based on negative samples selected by the
proposed negative sample selection method and randomly
selected negative samples

Method Classifier Macro_F1 Macro_P Macro_R

ComNegative KNN 0.800 0.728 0.772
ComRandom KNN 0.619 0.598 0.651
ChemTarRandom KNN 0.581 0.553 0.626
ComNegative ELM 0.774 0.761 0.604
ComRandom ELM 0.586 0.572 0.601
ChemTarRandom ELM 0.572 0.561 0.585
ComNegative SVM 0.898 0.938 0.861
ComRandom SVM 0.655 0.670 0.642
ChemTarRandom SVM 0.606 0.622 0.598
ComNegative RBF 0.822 0.828 0.818
ComRandom RBF 0.606 0.592 0.622
ChemTarRandom RBF 0.571 0.561 0.583

The best performance for each classifier is showed in boldface

Comparison with other methods
To demonstrate the superior performance of the pro-
posed method, we compared it with several state-of-the-
art methods on a widely-used bench-marking dataset
(i.e., Liu’s dataset) [15, 20, 31, 32]. There are 832 drugs
and 1385 side-effects in this dataset. Since the ATC codes
and substituents of some drugs are not available, we used
drug chemical substructures and drug targets as features,
and “Max" as the similarity integration method to mea-
sure drug similarities. We compared the performance of
our method with the state-of-the-art methods reported
in [20]. As our method is binary-classification based, we
just report metrics which are designed for binary classifi-
cation. The results are listed in Table 3 and the best per-
formance of a given metric is highlighted in bold values.
Table 3 shows that our method outperformed all other
methods in terms of AUC-PR (area under the precision-
recall curve). In addition, our method achieved compa-
rable average precision and AUC-ROC (area under the
receiver operating characteristic curve) with the best per-
formance (0.5439 vs 0.5476 in average precision, 0.9086
vs 0.9091 in AUC-ROC). The results further confirm the
predictive power of the proposed method.

Table 3 Performance of the proposed method and
state-of-the-art-methods using 5-fold cross-validation on Liu’s
data set

Method Average precision AUC-ROC AUC-PR

Our method 0.5439 0.9086 0.5424

Liu’s method [31] 0.2610 0.8850 0.2514

FS-MLKNN [32] 0.5134 0.9034 0.4802

LNSM-SMI [32] 0.5476 0.8986 0.5053

LNSM-CMI [32] 0.5329 0.9091 0.4909

KG-SIM-PROP [44] 0.4895 0.8860 0.4295

The best performance for each evaluation metric is showed in boldface

Drugs that have the predicted side-effect “drug eruption
(c0221242)”: a case study
This section presents a list of drugs which are predicted
to have the side-effect “drug eruption” by the proposed
method. Drug eruption is a side-effect on skin [33]. Most
drug-induced eruptions are mild and they can disappear
after stop taking the drugs. However, serious drug erup-
tions sometimes are associated with organ injuries like
kidney and liver damage. It has been estimated that every
2-3 in 100 hospitalized patients have been suffering a drug
eruption, and serious drug eruptions occur in around 1
in 1000 patients [34]. Consequently, to predict potential
drugs which could possibly lead to drug eruptions is of
great interests.

We performed the prediction using KNN (k = 50)
with validated positive samples and reliable negative sam-
ples selected by the proposed negative sample selection
method. Like other data mining results, it is unrealistic to
expect every predicted drug is of value to domain experts
[35]. Therefore, we shortlist the 50 top-ranked drugs in
terms of their prediction scores in Fig. 7. The circle in
the center of the figure is the side-effect “drug eruption”
and the other circles are the top 50 drugs. Among the
top 50 drugs, the larger the prediction score is, the larger
its circle is. Besides, the labels on the edges show the
ranking positions and evidence types of the predicted
associations. The symbols “#” and “$” denote that the cor-
responding associations can be validated by records from
the side-effect database SIDER (colored green) and related
literature (colored red) respectively. The symbol “?” means
the predicted associations cannot be validated to the best
of our knowledge (colored orange). Overall, 49 of the top
50 predicted associations can be verified by the SIDER and
other literature (SIDER: 45, other literature: 4).

Drugs including allopurinol (DB00437), hydralazine
(DB01275), sulfanilamide (DB00259), tiludronate (DB01133)
and kanamycin (DB01172) are newly predicted (i.e., not
stored in SIDER) to be associated with “drug eruption”.
4 of the above 5 novel associations can be confirmed by
the literature work. Allopurinol is a medication used to
decrease high blood uric acid levels [36]. In 2012, Kim
et al. [37] studied its relationship with fixed drug erup-
tions using a lymphocyte transformation test. Fixed drug
eruption is a distinct type of drug eruption which occurs
in the same skin area each time when the patients take the
drug [33, 38]. They finally confirmed that allopurinol is
one of the causative drugs that induced fixed drug erup-
tion [37]. Hydralazine, a well-known antihypertensive
drug, has been in vogue for the last three decades. It was
reported to induce fixed drug eruption in literature [39].
Sulfanilamide, a sulfonamide antibacterial, was widely
used by the Allies in World War II to reduce infection
rates. It contributed a lot to reducing the mortality rates.
Early in 1939, Loveman et al. [40] reported fixed drug
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Fig. 7 The top 50 drugs which are predicted to have the side-effect “drug eruption”. Labels on the edges illustrate the rank of predicted associations
and the confirmation types

eruptions and stomatitis due to sulfanilamide. Tilu-
dronate is a bisphosphonate used for treatment of Paget’s
disease of bone. Its association with drug eruption can
be found in the 22nd edition of Litt’s Drug Eruption and
Reaction Manual [41].

To further demonstrate the capacity of the proposed
method in predicting new DSPs, we also investigated
those drugs which are ranked from top-51 to top-60.
Among them, triclosan, nitric oxide, carbimazole, propy-
lthiouracil, neomycin and dapsone are newly predicted
drugs to cause “drug eruptions” and require further val-
idation. Such newly predicted associations may provide
interesting information for domain experts. In summary,
the above successful prediction instances further demon-
strate that our method has the capacity to predict both
existing and novel drug-side-effect associations.

Conclusions
In this work, we proposed an improved drug side-effect
prediction method by selecting highly-reliable negative
samples using a inverse similarity hypothesis and a new
drug similarity integration framework. This framework

captures drug similarity information from several aspects,
including drug chemical structures, target proteins, drug
substituents, and drug therapeutic data. Unlabeled drugs
were preferably selected as negative samples according to
their dissimilarities to labeled drugs. We adopted both
the hypothesis of existing prediction methods, that sim-
ilar drugs are more likely to share the same side-effects,
and its inverse proposition. Thus, predictions using our
highly-reliable negative samples rely on the validated pos-
itive samples as well as the selected negative samples. The
originality of the proposed method lies in the negative
samples selection, and in the prediction of a huge quantity
of potential drug side-effect associations at a time. In
the cross validation experiments, all results show that the
prediction performance improved significantly using our
method. The case study about drug eruption indicates that
our method is capable to predict both existing and novel
drug-side-effect associations.

Our method is useful in various areas and able to guide
the drug development at different stages. For instance, at
the early stage of drug candidate selection, our method
can help to decide whether the drug molecules should
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be dropped or kept for further study. Our method can
also help to find new indications of drugs, a process
called drug reposition which could reduce both the time
and financial cost of drug development largely [42, 43].
In addition, warnings about the potential side-effects of
certain marketed drugs can be given to the public on time.

In this work, chemical structures, target proteins, drug
substituents, and drug therapeutic information were inte-
grated in a unified framework to predict side-effects. It
should be pointed out that more drug data, e.g., drug
chemical formulas, can be integrated into this frame-
work. One limitation of the proposed method is its high
dependence on the availability of drug chemical struc-
tures, target proteins, drug substituents, and drug thera-
peutic data, which are not always available and complete
for many drugs. Consequently, the development of meth-
ods to enrich drug features from heterogeneous data
sources is our future work. As addressed in Muñoz’s work
[20], knowledge graphs which provide easy and automated
integration of multiple diverse data sets in a uniform
representation will be an ideal choice. In addition, mod-
eling the side-effect prediction as a multi-label learning
problem and making full use of off-the-shelf algorithms
provide opportunities for us to further improve side-effect
predicting.
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