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Abstract

Background: Adverse drug reactions (ADRs) are unintended and harmful reactions caused by normal uses of drugs.
Predicting and preventing ADRs in the early stage of the drug development pipeline can help to enhance drug safety
and reduce financial costs.

Methods: In this paper, we developed machine learning models including a deep learning framework which can
simultaneously predict ADRs and identify the molecular substructures associated with those ADRs without defining
the substructures a-priori.

Results: We evaluated the performance of our model with ten different state-of-the-art fingerprint models and
found that neural fingerprints from the deep learning model outperformed all other methods in predicting ADRs. Via
feature analysis on drug structures, we identified important molecular substructures that are associated with specific
ADRs and assessed their associations via statistical analysis.

Conclusions: The deep learning model with feature analysis, substructure identification, and statistical assessment
provides a promising solution for identifying risky components within molecular structures and can potentially help

to improve drug safety evaluation.
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Background

According to the definition by the World Health Organi-
zation (WHO), an adverse drug reaction (ADR) is gen-
erally defined as an unintended and harmful reaction
suspected to be caused by a drug taken under normal
conditions [1]. It has been recognized that ADRs rep-
resent a significant public health problem all over the
world. In the United States, it is estimated that over 2
million serious ADRs occur among hospitalized patients,
which results in over 100,000 deaths each year [2, 3]. Iden-
tifying potential ADRs of drug candidates in the early
stage of the drug development pipeline can improve drug
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safety, reduce risks for the patients and save money for the
pharmaceutical companies.

The information available in the early stages of drug
development is mainly the chemical structure of the drug
candidate. Many existing studies on ADR prediction have
been devoted to analyzing the chemical properties of drug
molecules. Though the mechanisms of ADRs are compli-
cated and may not be well understood, machine learning
techniques are promising solutions to understand and
analyze such complicated problems. In general, the basic
steps of ADR prediction based on structural information
can be broken down into two stages. First, each drug
molecule is represented in a suitable feature vector based
on its chemical structure. Second, a machine learning
algorithm is applied on the resulting feature space to pre-
dict ADRs. So far, most of the existing studies focused on
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the second step, or the method development, to improve
the prediction power [4]. However, how to represent the
drug molecules by a useful set of features and how to
interpret their effects on the final ADR predictions remain
relatively less explored. Note that finding the specific sub-
structures of the drug molecule that is related to an ADR
can be particularly useful for finding the mechanism of
actions of the drug and thus, can be utilized in the early
phase of drug design.

In this paper, we aim to identify and summarize the
chemical substructures of drug compounds that have sig-
nificant associations with ADRs using a machine learning
approach, which can provide insights about the connec-
tion between structural factors and ADRs. In previous
studies [4-8], a set of pre-defined structural features,
or fingerprints, are derived first, and then a predictive
model is built on them. However, such pre-defined chem-
ical fingerprints do not cover all possibilities of chemical
substructures and thus may miss important informa-
tion. Moreover, these chemical fingerprint algorithms are
unsupervised in nature, i.e., they are derived from drug
molecules irrespective of the ADR prediction applica-
tions. Therefore, these fingerprints only contain generic
structural information and may not be optimally asso-
ciated with ADRs. To identify the substructure features
that are not defined a-priori and to improve the pre-
diction power of ADRs simultaneously, we leveraged a
convolutional deep learning framework [9] to integrate
the two stages of ADR predictions, feature creation and
predictive model development, into a single system to
find chemical substructures associated with ADRs. To
make the deep learning framework interpretable enough,
we used attention mechanism [10] for finding the spe-
cific substructures of the drug. Furthermore, we rank
the substructure-ADR association results using statistical
analysis and found literature evidence to validate the drug-
ADR associations. Finally, we group the significant asso-
ciations to further enhance the interpretation of obtained
results.

In brief, the contribution of the paper can be summa-
rized as below:

e We developed a neural fingerprint method in a
simultaneous deep learning framework for ADR
prediction, so that the label information (drug-ADR
association) can be utilized in the feature generation
stage of machine learning process.

e We interpreted the deep learning framework using
the attention framework and analyzed the features to
identify which substructures within the drug
molecules are specifically related to a particular ADR.
Additionally, we used statistical measurements to
evaluate their associations and test whether the
substructures can help to predict ADRs in new drugs.
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e We compared our neural fingerprint method with
ten different types of chemical fingerprints and used
them as features in a predictive model to assess their
performance in ADR prediction based on a dataset
collected from drug labels.

e We also systematically analyze the relationships
among the groups of chemical substructures with the
groups of related ADRs.

In the following sections, we will describe our method,
the results we got, related work, discussion and conclu-
sion.

Methods

Overall workflow

The general workflow of this paper is shown in Fig. 1,
which consists of the following steps: constructing deep
learning fingerprint representations, building predictive
models and interpreting those features for characterizing
substructures associated with ADRs. Each of these steps
are discussed below in detail.

Constructing chemical fingerprints

In this article, we propose a deep learning based frame-
work [11, 12] to learn molecular substructures that are
specific to an ADR. The main challenge in representing
the molecular graphs of drugs into features is how to
represent the varying sizes of each drug molecule into
a fixed-size feature representation [13]. To circumvent
this problem, we propose a convolutional deep learning
based framework similar to [9] so that we can utilize deep
learning to simultaneously construct chemical fingerprint
features and assess their associations with ADRs. Figure 2
represents the detailed architecture of the framework.
Intuitively, the neural fingerprint algorithm explores all
possible substructures of the given drug molecules in
the training data upto a particular size (often referred as
radius in literature). Formally, radius of a substructure
is defined as half of the maximum path length between
any two atoms of that substructure. In our neural finger-
print algorithm, we successively explore substructures of
all radius upto a user-provided input hyper-parameter R.
In particular, we design R hidden layers in the deep learn-
ing framework, each corresponding to a particular radius.
Therefore, our framework can search for all possible sub-
structures upto radius R by successive increment of the
radius of the substructure by one in each layer of neural
network. Afterward, the similar structures are summa-
rized into a final feature representations called fingerprint.
At each step (radius), we use an additional attention
mechanism step to map the contribution of each of the
substructures into the final fingerprint. Finally, the finger-
prints are assessed in terms of how well they can predict
ADRs and then, they are interpreted to infer meaningful
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associations. In the following, we will describe the details
substeps of the framework.

e Raw features representations: We represent each
drug into a 2D or 3D graphical structure. Then a set
of chemical features are extracted for each of the
constituent atoms in the drug. In particular, we used
a popular chemical fingerprint algorithm, ECFP [14]
to derive features such as atom’s element, its degree,
the number of attached hydrogen atoms, and the
implicit valence, an aromaticity indicator and bond
type. We summarize all such information of all atoms
of a given drug i into a matrix X; as the initial input
to the deep learning framework. More formally, given
N total number of drugs and M total number of
ADRs, each drugi € {1,2,--- ,N} is represented by a
matrix Xi € R"*% at each layer (corresponding to a
particular radius) / € {1,2,--- , R}, where n;
represents the number of atoms in drug i and d;
represents the total number of features for each
atom. Let xfj = [xijl,x,jg, <o ,xi/dl] € R% represent
the feature vector of j atom of i drug at layer /,
wherej e {1, - ,n}.

¢ Convolutional feature maps: The purpose of the
convolutional step is to represent a substructure in a
particular layer into a condensed feature vector. In
every iteration (layer) of the algorithm, each j# atom
of i drug in current layer / € {1,2,--- ,R} is
expanded to include the immediate neighbors of each
atom belonging to that substructure. Then, all atomic
features and bonding information of the atoms
belonging to this expanded substructure at layer I are
concatenated into a large feature vector noted as
xf] € R% and transformed into new feature vector
xf»ﬂ € R%+1 of next layer [ + 1 using convolutional

filters. This will represent a substructure denoted by

sva for each atom j referred as center and it’s
neighbors explored so far in this new layer. Note that
each substructure can be obtained by starting the
search from multiple atoms belonging to
substructures and thus may be obtained from
multiple centers. To remove such redundancies we
map each substructure xf]TH into lower dimensions
using a single layer of neural network with d; input
nodes and d;11 output nodes. Therefore, a weight
matrix of Hy € R%*4+1 s defined as a convolutional
filter to transform features to next layer as

xf}+1 =f (xf»jHl + b), where b € R. Here, H; is a

hidden-to-hidden filter matrix in each layer I and five

different types of such filters, H 11 . -Hls are used for
each layer in our case, each corresponds to the

number of bonds each atom can have [9]. Also, fis a

smoothing function to make it insusceptible to minor
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variations in the substructure. This function is
differentiable with respect to the weights H and
therefore, it can be estimated from the data in an
efficient manner.

¢ Attention mechanism for representing multiple
substructures into fixed sized vectors: An
attention layer network is represented on top of the
convolutional features and thus, the network is made
interpretable. Specifically, we pooled the similar
substructures of the convolution feature maps into a
fixed-sized feature vector of size K (hyper-parameter
representing the length of fingerprint) using another
layer of neural network of weights F € R4*K,
Moreover, a softmax function is used on top of this
transformation to make it a differentiable index
function, since that has been shown to have concise
set of fingerprint representations for larger drug
molecules [9]. A simple addition function is used to
summarize the activation scores of each atom that
belongs to a particular molecule in the pooling stage
of the convolutional neural network.

¢ Final pooling to for getting neural fingerprints:
The previous two steps are iterated for each radius of
the molecule upto R times, which is the maximum
radius of the substructure (another hyper-parameter)
using a separate hidden layer to successively explore
all possible substructures upto R hops. In this paper,
we set R = 4. Finally, the fingerprint vectors obtained
from each layer are summarized (pooled) into a final
representation by summing up them into a final
fixed-length fingerprint representation for each drug.

Building predictive models

Once we get a final fingerprint representation for each
drug we use a fully connected neural network to assess
its ability to predict an ADR, as shown in the last step of
Fig. 2. For each ADR, the drugs associated with the ADR
were labeled as positives and the rest of the drugs were
labeled as negatives. We built a predictive model using L2-
norm regularized logistic regression method [15] for each
ADR separately using those fingerprints as features. The
loss function is described below, where Z is the matrix
containing all fingerprints for each drug denoted as z; €
RX and f is a non-linear logistic function along with L2
loss imposed on the weights vector w € RX defined on
top of z;. Furthermore, we also want the neural fingerprint
feature representations z; itself to be sparse to enhance
further model interpretability. Optionally, one or more
hidden layer can be introduced between the neural fin-
gerprints and the ADR outcome variable to enhance the
prediction power.

L(Z,y,w)=)_ Cost (yi.f (zi ¥ w+b))+21 [[W3+22 l|zi13
i
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Here, A1 and Ay are hyper-parameter which have to be
learnt from the data.

Interpreting features for substructure analysis

Extraction and interpretation of the important finger-
prints of the drugs may help to derive useful knowledge
about the ADRs. Given a particular ADR, we back-trace
our learnt deep learning framework to find meaning-
ful substructures that are related to that particular ADR.
First, we find the top predictive fingerprints (top panels
of Fig. 2) for a given ADR based on the learned weights
from the final layer of the neural network. Second, for
each important fingerprint, we investigate each layer to
find the atoms of drugs (s;}) which have the highest activa-
tion for that particular fingerprint using the attentiveness
weights F and H. Finally, we reconstruct the substructures
by starting from that atom as center and expanding the
neighborhood up to that particular layer.

To mathematically evaluate the connections between
substructures and ADRs, we calculated a confusion
matrix for a given substructure A regarding the specific
ADR X from the SIDER database shown in Table 1. In
this table, a is the number of drugs that contain sub-
structure A and cause ADR X; b is the number of drugs
that do not contain substructure A but trigger ADR X; ¢
is the number of drugs that contain substructure A but
have no association towards ADR X; and d is the num-
ber of drugs that do not contain substructure A and have
no association towards ADR X. We can calculate p value
using chi-squared test and odds ratio (OR) to evaluate the
association strength between substructure A and ADR X.

Once we extract all significant substructures that are
associated with the ADRs, we aim to further group them
into higher levels, since many of the ADRs are inher-
ently related. For example, Cai et. al. [16] summarized
all available ADRs into a hierarchical graph by organiz-
ing them from specific to generic categories. Therefore, a
pharmaceutical company may be interested in finding the
substructures that are responsible for a particular group of
ADRs, which will provide an early guideline for avoiding
those related substructures or their continuous spectrum
of representations [17]. To this end, we aim to group
all the significant substructures-ADR relations based on
guilt by association principle. In particular, we represent
all such significant substructure-ADR pairs in a bipar-
tite graph, where substructures are represented in one

Table 1 The confusion matrix to evaluate the association
between substructure A and ADR X

Substructure A+ Substructure A-

ADR X+ a b
ADR X- c d
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layer and ADRs in another layer and edge between them
represents a significant association obtained from the pre-
vious step. consequently, we apply biclustering algorithms
[18] to find the higher level groupings (bi-cliques) of
substructure-ADR pairs.

Evaluation
In this section, we will describe the evaluation criteria for
our proposed neural fingerprint method.

We evaluated our neural fingerprint method based on
meaningful chemical features (often termed as finger-
prints) from drugs that can be extracted in many different
ways. Ten popular chemical fingerprints were used in our
ADR prediction tasks: Shortest-path, PubChem, MACCS,
CDK Standard, CDK Graph, Klekota-Roth (KR), E-State,
CDK Hybridization, CDK Extended, ECFP6 (circular fin-
gerprints). The detailed descriptions about these finger-
prints are available in [19]. Fingerprints contain informa-
tion about certain chemical properties of each molecule,
such as the number of specific atoms, substructures, atom
pairs.

Among the ten fingerprints, the circular fingerprints
[14] are a recent development by extending Morgan algo-
rithms [20], which was originally designed for the graph
alignment problem to resolve molecular isomorphism.
Although circular fingerprints are similar to neural fin-
gerprints in nature, the circular fingerprint requires large
number of pre-defined features and they are not specific
to ADR. We used a R package [21] for extracting all ten dif-
ferent chemical fingerprints as mentioned above. We gen-
erated different chemical fingerprints for each molecule
with default parameters, except that the maximal radius
parameter was set to 4 for both circular fingerprints and
the neural fingerprint method.

We evaluate the performance of our model based on
two criteria: prediction accuracy and evidences from liter-
atures about the substructure-ADR associations.

Since we built one predictive model for each ADR
separately, in order to compare the performance of
that predictive model across all ADRs, we used three
different methods to evaluate the performance: global,
row-wise(drug-wise), and column-wise(ADR-wise). For N
drugs and M ADRs (endpoints) we have two matrices, an
N x M matrix of original binary labels and an N x M matrix
of prediction values. The global evaluation compares all
the N x M original labels versus all the N x M predic-
tion values in one time, while the row-wise and column-
wise evaluations compare the original labels versus the
prediction values by row (drug) and by column (ADR),
respectively.

During our evaluation, we used 10-fold cross-validation
procedure to test our predictive model. We computed sev-
eral standard metrics such as accuracy, precision, recall
(sensitivity), specificity, F1-score, area under the ROC
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curve (AUC) and area under the precision-recall curve
(AUPR) [22] for global and column-wise evaluations. For
row-wise evaluation, since the models were developed
column-wise (by ADRs) as opposed to rows (by drugs),
we only evaluated metrics related to information retrieval
domain such as accuracy, precision, recall (sensitivity),
Fl-score and additional, P@K score. The P@K score is
defined as the precision computed for top K predicted
ADRs of each drug. This measure is very popular in
drug discovery domain [23, 24], since it selectively eval-
uates the top ranking predictions instead of everything.
Typically, each drug can have a large number of ADRs
predicted by the computational model (Fig. 3a), which
poses challenge for the domain experts who are inter-
ested in extensive evaluation of some specific ADRs of
their interests. Therefore, it will be very useful to look
at the top-most ADRSs first and then evaluate successive
ADRs. We used P@10 based on the common practice in
literature [23].

Finally, we searched for optimal values of the hyper-
parameters of our models such as regularization
parameter(A; and A7), maximum radius for substructures
(R), number of neurons in each hidden-layer, and number
of fingerprints (K) with the best Fl-score [22] selected
by cross-validation (CVs). We used batch normalization
to optimize each batch of size 100 using the ADAM
algorithm [25].
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For evaluating the substructures obtained from the
neural fingerprint framework, we used literature vali-
dations. If a substructure is strongly associated with a
specific ADR, we may be able to identify new drugs
that contain the specific substructure to cause the spe-
cific ADR. By analyzing the features, we identified sub-
structures which are positively associated with specific
ADRs. In order to test their ADR prediction capability,
we looked for drugs that contain such substructures but
had not been reported to cause the specific ADRs in the
SIDER database. We used our developed models to pre-
dict such drugs for the ADRs, and also looked for reports
of those same drug-ADR associations in the medical
literature.

Results

In this section, we will first describe the data we used.
Then we show results of our neural fingerprint based
framework both in terms of how it improves the pre-
diction power of ADRs and how to find meaningful
substructures that are associated with the ADRs.

Data preparation

We harvested drug-ADR associations from the Side Effect
Resource (SIDER) database [26], which was generated
by mining the text information from drug labels. We
used SIDER version 4.1 (http://sideeffects.embl.de/) as
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our training set, which contains 1430 drugs and 6123 side-  with 100 neurons for the final level neural network built
effects (Preferred Terms) with 166,128 unique drug-ADR  on top of the fingerprints. We can clearly observe that the
associations. circular fingerprints and neural fingerprints performed
We converted the STITCH IDs of drugs from SIDER  the best among all different methods in terms of all eval-
into PubChem IDs [27] and downloaded their structure uation metrics except sensitivity. In particular, the neural
information from PubChem. SIDER contains both Low-  fingerprints had the best F1 score and AUC in global
est Level Terms (LLT) and Preferred Terms (PT) from evaluation criteria, while neural fingerprints, circular fin-
MedDRA for ADRs [28]. We selected Preferred Terms for  gerprints and hybridization fingerprints performed the
ADRs as our endpoints, because they contain the higher  best when evaluated column-wise (by ADR) as in Fig. 4b.
level summarization of multiple synonymous or verba- In the row-wise evaluation metrics in Fig. 4c, neural fin-
tim lower level terms. We also analyzed the frequency of  gerprints performed the best in terms of P@10 (precision
drugs associated with each ADR and it turned out that at top 10 predictions, where K = 10) with a reasonable F1
the number of drugs associated with ADRs varies a lotas  score.
shown in Fig. 3b. The ADRs with 10 or fewer drugs don’t Table 2 listed the top 10 ADR prediction models using
have enough positive samples and were removed from the  neural fingerprints ranked by AUC. We found that our
analysis, thus, we ended up with 1766 ADRs and 1430 models performed well on a variety of ADRs in terms
drugs from SIDER for ADR prediction and 151,501 total ~of AUC including (1) skin-related ADRs such as der-

drug-ADR associations. matitis perioral, skin striae and acneiform eruption, (2)
metabolic-related ADRs including alkalosis hypokalaemic
Prediction performance and increased insulin requirement, (3) muscle-related

We summarized the prediction performance of eleven dif-  steroid myopathy and (4) eye related cataract subcapsu-
ferent fingerprint algorithms including neural fingerprint  lar. However, it could be possible that the drugs under
on the SIDER dataset in Fig. 4. Figure 4a represents the these categories of ADRs have some common structural
global evaluation of our prediction models on SIDER with  properties so that they are easier to be differentiated by
the representation of 50 fingerprints in the final layer  structure-based models.

for neural fingerprints and an optimum value of sparsity We also analyzed the relationship between the numbers
threshold A1 = 0.0001 and A, = 0.01 and one hidden layer  of features and prediction performance and included the
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Table 2 Top 10 ADR models ranked by AUC

ADR conceptID  ADR name Number of positive drugs ~ Accuracy  Sensitivity ~ Specificity ~ Precision ~ AUC

C0263449 Dermatitis perioral 31 0.945 0.742 0.950 0.247 0.957
C0085570 Alkalosis hypokalaemic 15 0910 0.867 0911 0.094 0.935
C027099%4 Steroid myopathy 16 0.892 1.000 0.890 0.094 0.931
C0235409 Increased insulin requirement 15 0.852 1.000 0.850 0.066 0.927
C0085660 Aseptic necrosis 18 0.908 0.778 0910 0.099 0916
C0877365 Infusion site erythema 11 0.936 0.545 0.939 0.065 0913
C0271738 Secondary adrenocortical insufficiency 25 0.884 0.880 0.884 0.119 0.908
C0175167 Acneiform eruption 35 0.945 0.714 0.951 0.266 0.905
C0235259 Cataract subcapsular 35 0913 0.800 0915 0.192 0.905
C0152459 Skin striae 52 0.977 0.788 0.984 0.651 0.902

The model evaluation metrics during cross-validations are provided

results in Fig. 5. The neural fingerprint method used the
least numbers of features (50 for this study) than other
methods (1024 for most of them) and achieved much bet-
ter performance. Some other methods such as MACCS
and E-State also generate a small number of fingerprints.
It seems that a larger number of fingerprint features do
not necessarily guarantee a better performance in this par-
ticular study of ADR prediction. Based on these results,
we believe the neural fingerprint algorithm has an overall
good performance and would like to use its results for fea-
ture analysis. In the following section, we will describe two
case studies of the associations between chemical sub-
structures and ADRs from the neural fingerprint results.

Case study 1: ADR prediction for aseptic necrosis
The model based on neural fingerprints obtained an F1-
score of 0.176 and an AUC of 0.916 for predicting aseptic

necrosis (C0085660) as an ADR. Through feature analysis,
we identified the top substructures that contributed to the
prediction and highlighted one of them in Fig. 6. We con-
struct the confusion matrix for this substructure as shown
in Table 3 to perform statistical analysis. It turned out
that this substructure is significantly associated with asep-
tic necrosis with a significant chi-square test p-value of
1.20 x 10722 (less than 0.0001) and odds ratio of 141. Our
model predicted 5 drugs with this particular substructure
that are associated with asceptic necrosis, which served as
important features for the model to predict all of them to
cause the ADR of aseptic necrosis. Three out of these five
drugs were labeled in SIDER dataset to cause this ADR,
which are shown in the left panel of Fig. 6 with this partic-
ular substructure highlighted in blue. More importantly,
our model successfully identified the fourth compound,
Clobetasol, as a cause of this ADR. We looked up the
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Fig. 6 Case Study 1: Drugs structures for the training and prediction of aseptic necrosis (UMLS ID: C0085660). The highlighted substructures within
the chemical structures were identified as important features for predicting this ADR

literature and found D. J. Hogan et al. [29] reported a case
study that long-term use of Clobetasol propionate led to
aseptic necrosis of the hips; therefore, our prediction is
validated and we believe the substructure in Fig. 6 have a
positive association with aseptic necrosis.

Case study 2: ADR prediction for back pain

Likewise, we examined our model prediction on back
pain (C0004604). Pain-related ADRs are usually very hard
to predict, and Wang et al. [30] predicts those with AUCs
0.62 in average even by combining chemical structure
with transcriptome data. Our method, by using only
chemical structure information, obtained an F1-score
of 0.520 and an AUC of 0.590. One of the substructures
that contributed to the prediction is highlighted in Fig. 7.
Though the association between this substructure and
back pain is not statistically significant (»p > 0.05) from
the SIDER database, the odds ratio is 3.71 (larger than
1), indicating a positive effect. From Fig. 7, we see that
two compounds with this substructure, ACILIDUH and
AC1L1IV2, were labeled to cause this ADR in SIDER.
The third compound, Dihydroergotamine, also con-
tains the same substructure but wasn't labeled to cause
back pain in SIDER. However, our model successfully
predicted this compound to cause back pain. This was
also reported on drugs.com (https://www.drugs.com/
stx/dihydroergotamine-side-effects.html). These three
molecules are relatively diverse in other parts of their

Table 3 The confusion matrix to evaluate the association
between substructure in Fig. 6 and ADR aseptic necrosis

Drugs have Drugs dont have
substructure substructure
Aseptic necrosis 3 15
No aseptic necrosis 2 1410

structures; however, the highlighted substructure is the
major identical part across them which was given an
important weight by our model. From the results of
our feature analysis, it is possible that this substructure
structure is associated with back pain.

Discussion

In this section, we discuss the grouping of obtained signif-
icant substructures and link our ADR prediction methods
with drug safety signal detection.

Higher-level grouping of the obtained substructures

We also represented the significant substructure-ADR
associations into a bipartite graph and then perform a
biclustering algorithm proposed by Cheng and Church
[31] due to its flexibility to find noise-tolerant coherent
bi-clusters. Figure 8 shows the largest bi-cluster contain-
ing the a group of substructures and ADRs. Each edge
in this graph represents a significant substructure-ADR
associations below p-value < 0.05. Interestingly, all of the
ADRs belong to either skin or other related ADRs. On the
other hand, all the significant structures that are associ-
ated with these ADRs are minor structural variations of
each others, often with a change of Halogen atom while
binding with the Benzine group, which may be useful for
inferring useful domain knowledge.

From the above examples, we believe our models not
only have the capability to predict ADRs, but also could
identify the substructures that potentially play an impor-
tant role in causing a specific or a group of ADRs.
After the identification of important substructures, addi-
tional statistical analysis can provide mathematical assess-
ments of such associations. We believe the structure-
based machine learning model combined with feature
extraction, substructure identification, statistical and bi-
clustering analysis provide a systematic evaluation of the
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Fig. 7 Case Study 2: Drugs structures for the training and prediction of back pain (UMLS ID: C0004604). The highlighted substructures within the
chemical structures were identified as important features for predicting this ADR

associations between chemical structures and ADRs. It
may not only help the researchers to study the structural
triggers and provide clues for underlying mechanisms of
ADRs, but it may also guide the drug developers to modify
the suspicious substructures to possibly prevent the ADRs
from happening.

Complementary approach to drug safety signal detection

Our method uses only chemical fingerprints to pre-
dict ADRs which is often available in pre-clinical stages.
Therefore, it can be used as a complementary approach
to post-marketing drug surveillance models, which is

built on the case reports to drug administration agencies
(US FDA’s Adverse Event Reporting System (FAERS) [32]).
In order to further characterize our method against these
models, we conducted additional experiments on four
popular ADRs (Acute Kidney Injury, Acute Liver Injury,
Acute Myocardial Infarction and GI Bleeding) which usu-
ally are studied in the scenarios of safety signal detection.
We adopted OMOP dataset [33] as the gold standard,
and curated 172 drugs in total which have associations
with these four ADRs, similar to Xiao et al. [34]. OMOP
dataset provides both positive and negative drug-ADR
associations which are well-validated by domain experts
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Fig. 8 Higher Level representation of significant substructure-ADR associations: Our biclustering algorithms on the bipartite graph containing
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in contrast to SIDER dataset which provides only the pos-
itive associations (the negative associations were assumed
for any missing drug-ADR associations).

We compared our NFP method with Circular fin-
gerprint method on the OMOP benchmark dataset. In
addition, we compared two drug safety signal detec-
tion algorithms: Multi-item Gamma Poisson Shrinker
(M@GPS) [35], and Monte-Carlo Expectation Maximiza-
tion (MCEM) [34]. The AUC comparisons on four ADRs
(Acute Kidney Injury, Acute Liver Injury, Acute Myocar-
dial Infarction, and GI Bleeding) and their averages
(ADR-wise evaluation) are summarized in Fig. 9. In addi-
tion, the global evaluation results are also shown for
the two chemical fingerprint methods: NFP+Global and
Circular+Global (the drug-wise evaluation is not feasi-
ble since the number of ADRs are only four here). Our
NFP method significantly outperforms Circular finger-
print method on three ADRs: Acute Kidney Injury, Acute
Liver Injury, and GI Bleeding, and on overall ADR-wise
averages.

Moreover, in Fig. 9, even comparing to MGPS and
MCEM algorithms, our NFP model provided similar per-
formances in terms of AUC. Even, the global NFP model
(AUC = 0.72) slightly outperforms the average of best sig-
nal detection model, MCEM (AUC = 0.71). Note that we
used only chemical structures data which are not as rich
as the FAERS case reports which contain direct infor-
mation about adverse event observations, but still can
achieve reasonable performances in very early stage of
drug design. This further demonstrates that our method
provides a complementary way of ADR prediction to drug
safety signal detection.
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Related work

Existing studies for ADR prediction utilized diverse data
sources, such as biological pathways [36], chemical-
protein interactions [37], and post-market surveillance
data, to predict ADRs [38]. However, many of these data
types are based on either experimental results or post-
market reports which take time and money to generate
or harvest [39]. In order to predict ADRs for a drug
candidate in an early stage of drug development, predic-
tions need to be made using limited available information
such as chemical structures [4, 7]. The existing structure-
based approaches can be summarized into two categories,
similarity-based approaches and machine learning-based
approaches.

The similarity-based approaches predict ADRs by look-
ing for molecules that are structurally similar to the exist-
ing drugs [23, 40, 41]. Though they are relatively simple
to implement, these methods are less effective if the exist-
ing and predicted drugs are diverse in structure. Also, they
treat all the structural features with equal weight and do
not optimize for each specific ADR. Moreover, these mod-
els are harder to interpret for finding chemical structures
responsible for ADRs.

The machine learning-based approaches utilize the
molecular fingerprints [19] such as PubChem fingerprints
[42] and the circular fingerprint [14] to build up models
for ADR prediction using various types of models, such
as Bayesian network [43], decision tree [44], and canon-
ical correlation analysis based approaches [4]. However,
most of the existing machine learning-based approaches
define the fingerprints a-priori from domain knowledge
[4, 6-8] and thus are not able to explore all possible

0.90

0.80

0.70

0.6

o

0.5

AUC
o

0.40

0.30

0.20

0.1

o

Acute Kidney Injury

0.00
Acute Liver Injury

m MGPS MCEM Circular

Acute Myocardial
Infarction

B NFP ® Circular+Global
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chemical substructures. Moreover, they separated the fin-
gerprint generation and the model development phases
into two separate steps. Recently, a deep learning method
emerged to learn a concise set of fingerprints automat-
ically from the given set of drugs without using any
prior knowledge [9]. However, such method was devel-
oped for predicting drug solubility and has not been
applied for ADR prediction. In addition, very few studies
aimed to interpret [8, 43] the obtained models, although
these studies were interested in only one [8] or a very
few pre-selected ADRs [43]. Therefore, how to systemati-
cally extract meaningful chemical substructures from the
obtained figherprints, how to evaluate their associations
with ADRs and how to summarized them into higher level
groupings are not well explored, which are the focuses of
our study.

Conclusion

In this paper, we harvested drug-ADR associations from
the SIDER database, and generated ten different types
of chemical fingerprints from molecular structures. We
developed L2 norm regularized logistic regression mod-
els for all fingerprints to predict ADRs, and also lever-
aged a convolutional deep learning framework to integrate
neural fingerprint generation and model development.
We evaluated the performance of all eleven models and
found that the neural fingerprints achieved the best
overall performance. Based on the outputs from the
neural fingerprints, we extracted the chemical substruc-
tures of the drugs that might be associated with spe-
cific ADRs, evaluated their associations using statistical
analysis and found evidence in two case studies. The
proposed structure-based models can not only obtain
good performance in ADR prediction, but also iden-
tify the potential connections between substructures and
ADRs. This study provides a useful workflow for drug
developers to identify risky substructures and may poten-
tially help to improve the safety evaluation of pipeline
drugs.

This study can be extended in multiple directions in the
future in terms of both features and models. Sometime,
the severity of a particular ADR is available in the SIDER
dataset, which can be taken into account during model
development. At the same time, since ADRs have some
hierarchical structures, it is possible to develop some hier-
archical classifiers to improve prediction performance.
Furthermore, other types of available data sources such as
chemical-protein binding and gene expression data can be
integrated into our models for a data-driven approach for
ADR prediction.
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