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Abstract

Background: Resistance to chemotherapy and molecularly targeted therapies is a major factor in limiting the
effectiveness of cancer treatment. In many cases, resistance can be linked to genetic changes in target proteins, either
pre-existing or evolutionarily selected during treatment. Key to overcoming this challenge is an understanding of the
molecular determinants of drug binding. Using multi-stage pipelines of molecular simulations we can gain insights
into the binding free energy and the residence time of a ligand, which can inform both stratified and personal
treatment regimes and drug development. To support the scalable, adaptive and automated calculation of the
binding free energy on high-performance computing resources, we introduce the High-throughput Binding Affinity
Calculator (HTBAC). HTBAC uses a building block approach in order to attain both workflow flexibility and performance.

Results: We demonstrate close to perfect weak scaling to hundreds of concurrent multi-stage binding affinity
calculation pipelines. This permits a rapid time-to-solution that is essentially invariant of the calculation protocol, size
of candidate ligands and number of ensemble simulations.

Conclusions: As such, HTBAC advances the state of the art of binding affinity calculations and protocols. HTBAC
provides the platform to enable scientists to study a wide range of cancer drugs and candidate ligands in order to
support personalized clinical decision making based on genome sequencing and drug discovery.

Background
In recent years, chemotherapy based on targeted kinase
inhibitors (TKIs) has played an increasingly prominent
role in the treatment of cancer. TKIs have been devel-
oped to selectively inhibit kinases involved in the signaling
pathways that control growth and proliferation, which
often become dysregulated in cancers. This targeting of
specific cancers reduces the risk of damage to healthy
cells and increases treatment success. Currently, 35 FDA-
approved small molecule TKIs are in clinical use, and they
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represent a significant fraction of the $37 billion U.S. mar-
ket for oncology drugs [1, 2]. Imatinib, the first of these of
drugs, is partially credited for doubling survivorship rates
in certain cancers [2, 3].

Unfortunately, the development of resistance to these
drugs limits the amount of time that patients can derive
benefits from their treatment. Resistance to therapeutics
is responsible for more than 90% of deaths in patients
with metastatic cancer [4]. While drug resistance can
emerge via multiple mechanisms, small changes to the
chemical composition of the therapeutic target (known
as mutations) control treatment sensitivity and drive drug
resistance in many patients (see Fig. 1). In some com-
monly targeted kinases such as Abl, these changes account
for as many as 90% of treatment failure [5].

There are two major strategies for countering the threat
to treatment efficacy posed by resistance: tailoring the
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Fig. 1 EGFR Structure. Cartoon representation of the EGFR kinase
bound to the inhibitor AEE788 shown in chemical representation
(based on PDB:2J6M). Two residues implicated in modulating drug
efficacy are highlights; in pink T790 and in orange L858. Mutations to
either of these residues significantly alter the sensitivity to TKIs

drug regimen received by a patient according to the muta-
tions present in their particular cancer, and developing
more advanced therapies that retain potency for known
resistance mutations. In both cases, future developments
require insight into the molecular changes produced by
mutations, as well as ways to predict their impact on
drug binding on a timescale much shorter than is typically
experimentally feasible. This represents a grand challenge
for computational approaches.

The rapidly decreasing cost of next-generation sequenc-
ing has led many cancer centers to begin deep sequencing
of patient tumors to identify the genetic alterations driving
individual cancers. The ultimate goal is to make individ-
ualized therapeutic decisions based upon these data—an
approach termed precision cancer therapy. While several
common (recurrent) mutations have been cataloged for
their ability to induce resistance or for their susceptibil-
ity to particular kinase inhibitors, the vast majority of
clinically observed mutations are rare [6, 7]. Essentially,
this ensures that it will be impossible to make therapeutic
decisions about the majority of individual patient tumors
by using catalog-building alone.

Fortunately, concurrent improvements in computa-
tional power and algorithm design are enabling the use

of molecular simulations to reliably quantify differences
in binding strength. This provides the opportunity to use
advances in molecular simulations to supplement exist-
ing inductive decision support systems with deductive
predictive modeling and drug ranking [8, 9]. Where exist-
ing systems based on statistical inference are inherently
limited in their range of applicability by the existence of
data from previous similar cases, the addition of model-
ing allows evidence based decision making even in the
absence of direct past experience.

The same molecular simulation technologies that can
be employed to investigate the origins of drug resistance
can also be used to design new therapeutics. Creating
simulation protocols which have well defined uncertainty
and produce statistically meaningful results represents
a significant computational challenge. Furthermore, it is
highly likely that differences among investigated systems
will demand different protocols as studies progress. For
example, drug design programmes often require the rapid
screening of thousands of candidate compounds to filter
out the worst binders before using more sensitive methods
to refine the structure. Not all changes induced in protein
shape or behavior are local to the drug binding site and,
in some cases, simulation protocols will need to adjust to
account for complex interactions between drugs and their
targets within individual studies.

Recent work that used molecular simulations to provide
input to machine learning models [10] required simula-
tions of 87 compounds even if they were designed merely
to distinguish the highly active from weak inhibitors of the
ERK2 kinase. If we wish to build on such studies to help
inform later stages of the drug discovery pipeline, in which
much more subtle alterations are involved, it is likely a
much larger number of simulations will be required. This
is before we begin to consider the influence of mutations
or the selectivity of drugs to the more than 500 different
genes in the human kinome [11].

For molecular simulations to make the necessary
impact, the dual challenge of scale (thousands of concur-
rent multi-stage pipelines) and sophistication (adaptive
selection of binding affinity protocols based upon sta-
tistical errors and uncertainty) will need to be tackled.
Tools that facilitate the scalable and automated com-
putation of varied binding free energy calculations on
high-performance computing resources are necessary. To
achieve that goal, we introduce the High-throughput
Binding Affinity Calculator (HTBAC). HTBAC applies
recent advances in workflow system building blocks to
the accurate calculation of binding affinities, executing
hundreds of concurrent calculations on a leadership class
machine [12]. This permits the rapid time-to-solution that
is essentially invariant of the size of candidate ligands as
well as the type and number of protocols concurrently
employed.
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In the next section, we provide details of ensem-
ble molecular dynamics approach and its advantages
over the single trajectory approach. We also intro-
duce the ESMACS and related protocols to compute
binding affinities using ensemble-based approaches. In
“Methods” section, we discuss the computational chal-
lenges associated with the scalable execution of multiple,
and possibly concurrently executing protocols. Also, in
“Methods” section, we introduce RADICAL-Cybertools—
a suite of building blocks to address the computational
challenges—and describe how they are used by HTBAC
to manage the execution of binding affinity calculations
at extreme scales. Experiments to characterize the perfor-
mance overheads of RADICAL-Cybertools and the weak
scaling properties of the HTBAC implementation of the
ESMACS protocol on the Blue Waters supercomputer are
discussed in “Results” section. We conclude with a dis-
cussion of the impact of HTBAC, implication for binding
affinity calculations and near-term future work.

Methods
The strength of drug binding is determined by a ther-
modynamic property known as the binding free energy
(or binding affinity). One promising technology for esti-
mating binding free energies and the influence of pro-
tein composition on them is molecular dynamics (MD)
[13]. Our previous work [14, 15] has demonstrated that
running multiple MD simulations based on the same sys-
tem and varying only in initial velocities offers a highly
efficient method of obtaining accurate and reproducible
estimates of the binding affinity. We term this approach
ensemble molecular dynamics, “ensemble” here referring
to the set of individual (replica) simulations conducted for
the same physical system. In this Section we discuss the
advantages to this approach.

Ensemble molecular dynamics simulations
Atomistically detailed models of the drug and target pro-
tein can be used as the starting point for MD simulations
to study the influence of mutations on drug binding. The
chemistry of the system is encoded in what is known as
a potential [16]. In the parameterization of the models,
each atom is assigned a mass and a charge, with the chem-
ical bonds between them modeled as springs with varying
stiffness. Using Newtonian mechanics the dynamics of the
protein and drug can be followed and, using the princi-
ples of statistical mechanics, estimates of thermodynamic
properties obtained from simulations of single particles.

The potentials used in the simulations are completely
under the control of the user. This allows the user to
manipulate the system in ways which would not be
possible in experiments. A particularly powerful exam-
ple of this are the so called “alchemical” simulations in
which the potential used in the simulation changes, from

representing a particular starting system into one describ-
ing a related target system during execution. This allows
for the calculation of free energy differences between the
two systems, such as those induced by a protein mutation.

MD simulations can reveal how interactions change as
a result of mutations, and account for the molecular basis
of drug efficacy. This understanding can form the basis for
structure-based drug design as well as helping to target
existing therapies based on protein composition. How-
ever, correctly capturing the system behavior poses at least
two major challenges: The approximations made in the
potential must be accurate enough representations of the
real system chemistry; and sufficient sampling of phase
space is also required.

In order for MD simulations to be used as part of clin-
ical decision support systems, it is necessary that results
can be obtained in a timely fashion. Typically, interven-
tions are made on a timescale of a few days or, at most,
a week. The necessity for rapid turn around times places
additional demands on simulation protocols which need
to be optimized to gain results with a short turn around
time. Further to the scientific and practical considerations
outlined above, it is vital that reliable uncertainty esti-
mates are provided alongside all quantitative results for
simulations to provide actionable predictions.

We have developed a number of free energy calcula-
tion protocols based on the use of ensemble molecu-
lar dynamics simulations with the aim of meeting these
requirements [14, 17–19]. Basing these computations on
the direct calculation of ensemble averages facilitates the
determination of statistically meaningful results along
with complete control of errors. The use of the ensemble
approaches however, necessitates the use of middleware
to provide reliable coordination and distribution mecha-
nisms with low performance overheads.

Protocols for binding affinity calculations
We have demonstrated the lack of reproducibility of sin-
gle trajectory approaches in both HIV-1 protease and
MHC systems, with calculations for the same protein-
ligand combination, with identical initial structure and
force field, shown to produce binding affinities varying
by up to 12 kcal mol −1 for small ligands (flexible lig-
ands can vary even more) [14, 20, 21]. Indeed, our work
has revealed how completely unreliable single simulation
based approaches are.

Our work using ensemble simulations have also reliably
produced results in agreement with previously published
experimental findings [14, 15, 18, 19, 21, 22], and correctly
predicted the results of experimental studies performed
by colleagues in collaboration [23]. While the accuracy of
force fields could be a source of error, we know from our
work to date that the very large fluctuations in trajectory-
based calculations account for the lion’s share of the
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variance (hence also uncertainty) of the results. For exam-
ple, our reproduction of ligand simulations from [18] in
a more recent version of the Amber forcefield (ff14 as
opposed to ff99SBildn) produced average values within 0.5
kcal mol −1, less than a 20th of the range observed in the
original ensemble.

We designed two free energy calculation protocols with
the demands of clinical decision support and drug design
applications in mind: ESMACS (enhanced sampling of
molecular dynamics with approximation of continuum
solvent) [18] and TIES (thermodynamic integration with
enhanced sampling) [22]. The former protocol is based on
variants of the molecular mechanics Poisson-Boltzmann
surface area (MMPBSA) end-point method, the lat-
ter on the ‘alchemical’ thermodynamic integration (TI)
approach. A wide variety of free energy methods are avail-
able, ranging from very fast molecular docking methods to
rigorous but expensive absolute binding free energy meth-
ods [24]. The methods examined here - MMPBSA based
approximate absolute and TI based rigorous relative cal-
culations - exist between these two extremes. It should
be noted that there are many methods for analysing the
results of relative free energy computations. Here we use
the simple TI formalism, the relative performance of more
complex schemes, such as those based on Bennett’s accep-
tance ratio, has been seen to be highly system dependent
[25–27].

In both ESMACS and TIES, ensembles of MD simula-
tions are employed to perform averaging and to obtain
tight control of error bounds in our estimates. In addi-
tion, the ability to run replica simulations concurrently
means that, as long as sufficient compute resources are
available, turn around times can be significantly reduced
compared to the generation of single long trajectories. The
common philosophy behind the two protocols entails sim-
ilar middleware requirements: In this work we focus on
the ESMACS protocol but all results are applicable also
to TIES. In [12] we focus on the performance of HTBAC
using the TIES protocol.

Each replica within the ESMACS protocol consists of a
sequence of simulation stages followed by post produc-
tion analysis. Generally, an ESMACS replica will contain
between 3 and 12 equilibration simulation stages followed
by a production MD run, all of which are conducted in the
NAMD package [28]. The first stage is system minimiza-
tion, the following stages involve the gradual release of
positional constraints upon the structure and the heating
to a physiologically realistic temperature. Upon comple-
tion of the MD simulation, free energy computation (via
MMPBSA and potentially normal mode analysis) is per-
formed using AmberTools [29, 30].

The ESMACS protocol is highly customizable. Both the
number of simulation replicas in the ensemble and the
lengths of their runs can be varied to obtain optimal

performance for any given system. Using replicas that only
vary in the initial velocities assigned to the atoms of the
system we have defined a standard protocol which pre-
scribes a 25 replica ensemble, each run consisting of 2
ns of equilibration and 4 ns of production simulation.
Our protocol has produced bootstrap errors of below 1.5
kcal mol−1 (despite replica values varying by more than
10 kcal mol−1) for a varied range of systems including
small molecules bound to kinases and more flexible pep-
tide ligands binding to MHC proteins [18, 20, 21]. In these
systems, the error we obtained more than halves between
ensembles of 5 and 25 replicas but increases in ensemble
size have generally produced only small improvements.
More generally though, there may be cases where it is
important to increase the sampling of phase space either
through expanding the ensemble or by considering mul-
tiple initial configurations. For example, systems such as
kinases where flexible loops impact the binding site inter-
actions may require the use of much greater levels of
simulation to obtain correctly converged results.

The ESMACS protocol can also be extended to account
for adaptation energies involved in altering the confor-
mation of the protein or ligand during binding. Almost
all MMPBSA studies in the literature use the so-called
1-trajectory method, in which the energies of protein-
inhibitor complexes, receptor proteins and ligands are
extracted from the MD trajectories of the complexes
alone. The ESMACS protocol can additionally use sepa-
rate ligand and receptor trajectories to account for adapta-
tion energies, providing further motivation to deploy the
protocol via flexible and scalable middleware.

Benchmark kinase system
A common target of kinase inhibitors is the epidermal
growth factor receptor (EGFR) which regulates impor-
tant cellular processes including proliferation, differenti-
ation and apoptosis. EGFR is frequently over expressed
in a range of cancers, and is associated with disease
progression and treatment. Clinical studies have shown
that EGFR mutations confer tumor sensitivity to tyrosine
kinase inhibitors in patients with non-small-cell lung can-
cer (examples shown in Fig. 1) The tyrosine kinase domain
of EGFR contains 288 residues, the full simulation sys-
tem including solvent and the AEE788 inhibitor contains
approximately 50 thousand atoms. The well established
AMBER ff99SBildn and GAFF force fields [31, 32] were
used to parameterize the system for this work.

Automated binding affinity calculations
The implementation of any physically realistic molecu-
lar simulation has always been an involved and multi-
stage process, often requiring the scientist to overcome a
large manual overhead in the construction, preparation,
and execution protocols necessary to complete a set of
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simulations as well as to invoke various analysis protocols
for determining desired properties post-production.

Several tools have been been developed to automate
MD workflows for the rapid, accurate and reproducible
computation of binding free energies of small molecules
to their target proteins. For example, BAC [17] is a par-
tially automated workflow system which comprises (a)
model building (including incorporation of mutations into
patient specific protein models), (b) running ensembles
of MD simulations using a range of free energy tech-
niques and (c) statistical analysis. In “ESMACS” section,
we decribed how we have enhanced BAC using the
RADICAL-Cybertools to produce (HTBAC).

Computational challenges at scale
High-performance computing (HPC) environments were
designed to primarily support the execution of single sim-
ulations. Current HPC platforms enable the strong and
weak scaling of single tasks (hitherto mostly simulations),
with limited software and systems support for the concur-
rent execution of multiple heterogeneous tasks as part of
a single application (or workflow). As the nature of scien-
tific inquiry and the applications to support that inquiry
evolve, there is a critical need to support the scalable and
concurrent execution of a large number of heterogeneous
tasks.

Sets of tasks with dependencies that determine the
order of their execution are usually referred to as “work-
flows”. Often times, the structure of the task dependencies
is simple and adheres to discernible patterns, even though
the individual tasks and their duration are non-trivially
distinct. Put together, it is a challenge to support the scal-
able execution of workflows on HPC resources due to the
existing software ecosystem and runtime systems typically
found.

Many workflow systems have emerged in response to
the aforementioned problem. Each workflow system has
its strengths and unique capability, however each system
typically introduces its problems and challenges. In spite
of the many successes of workflow systems, there is a
perceived high barrier-to-entry, integration overhead and
limited flexibility.

Interestingly, many commonly used workflow systems
in high-performance and distributed computing emerged
from an era when the software landscape supporting
distributed computing was fragile, missing features and
services. Not surprisingly, initial workflow systems had a
monolithic design that included the end-to-end capabili-
ties needed to execute workflows on heterogeneous and
distributed cyberinfrastructures. Further, these workflow
systems were typically designed by a set of specialists to
support large “big science” projects such as those car-
ried out at the LHC [33] or LIGO [34]. The fact that the
same workflow would be used by thousands of scientists

over many years justified, if not amortized, the large over-
head of integrating application workflows with monolithic
workflow systems. This influenced the design and imple-
mentation of interfaces and programming models.

Executing biomolecular applications on HPC systems
require specific knowledge of resource, data, and execu-
tion management. Several middleware frameworks [35]
have been developed to abstract some of these details
from the user. For example, gSOAP [36] enables web
services for HPC applications while Ninf-G [37] and
OmniRPC [38] support distributed programming via a
client/server architecture. These solutions provide meth-
ods to launch application tasks on remote machines but
leave the details of task scheduling, resource and data
management to the user. On the other hand, domain-
specific workflows provide a customized interface to the
domain scientist, but require users to manage resource
selection and setup the execution environments on the
HPC system.

However as the nature, number and usage of work-
flows has evolved so have the requirements: scale remains
important but only when delivered with the ability to
prototype quickly and flexibly. Furthermore, there are
also new performance requirements that arise from the
need to support concurrent execution of heterogeneous
tasks. For example, when executing multiple homoge-
neous pipelines of heterogeneous tasks, for reasons of
efficient resource utilization there is a need to ensure that
the individual pipelines have similar execution times. The
pipeline-to-pipeline fluctuation must be minimal while
also managing the task-to-task runtime fluctuation across
concurrently executing pipelines.

Thus the flexible execution of heterogeneous ensembles
MD simulations face both system software and middle-
ware challenges: existing system software that is typically
designed to support the execution of single large simu-
lations on the one hand, and workflow systems that are
designed to support specific use cases or ‘locked-in’ end-
to-end executions. In the next sections, we discuss the
design and implementation of the RADICAL-Cybertools,
a set of software building blocks that can be composed to
design, implement and execute domain specific workflows
rapidly and at scale.

RADICAL-Cybertools
We have designed RADICAL-Cybertools (RCT) to be
functionally delineated middleware building blocks and to
address some of the challenges in developing and execut-
ing workflows on HPC platforms. HTBAC uses two RCT
components, mainly the Ensemble Toolkit (EnTK) and
RADICAL-Pilot (RP). EnTK provides the ability to create
and execute ensemble-based workflows/applications with
complex coordination and communication but without
the need for explicit resource management. EnTK uses RP
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as a runtime system which provides resource management
and task execution capabilities.

RCT eschew the concept of a monolithic workflow
systems and uses “building blocks”. RCT provide scal-
able implementations of building blocks in Python that
are used to support dozens of scientific applications
on high-performance and distributed systems [39–43].
In this Section we discuss details of RP, EnTK and
HTBAC, understanding how these components have been
used to support the flexible and scalable execution of
pipelines.

RADICAL-Pilot
The scalable execution of applications with large ensem-
bles of tasks is challenging. Traditionally, two methods
are used to execute multiple tasks on a resource: each
task is scheduled as an individual job, or message-passing
interface (MPI) capabilities are used to execute multiple
tasks as part of a single job. The former method suffers
from unpredictable queue time: each task independently
awaits in the resource’s queue to be scheduled. The latter
method relies on the fault tolerance of MPI, and is suit-
able to execute tasks that are homogeneous and have no
interdependencies.

The Pilot abstraction [44] solves these issues: The pilot
abstraction: (i) uses a placeholder job without any tasks
assigned to it, so as to acquire resources via the local
resource management system (LRMS); and, (ii) decou-
ples the initial resource acquisition from task-to-resource
assignment. Once the pilot (container-job) is scheduled
via the LRMS, it can pull computational tasks for exe-
cution. This functionality allows all the computational
tasks to be executed directly on the resources, without
being queued via the LRMS. The pilot abstraction thus
supports the requirements of task-level parallelism and
high-throughput as needed by science drivers, without
affecting or circumventing the queue policies of HPC
resources.

RADICAL-Pilot is an implementation of the pilot
abstraction, engineered to support scalable and effi-
cient launching of heterogeneous tasks across different
platforms.

Ensemble Toolkit
An ensemble-based application is a workflow, i.e. tasks
with dependencies that determine the order of their
execution. Subsets of these tasks can be workloads,
i.e., tasks whose dependencies have been satisfied at
a particular time and may be executed concurrently.
Ensemble-based application vary in the type of coupling
between tasks, the frequency and volume of infor-
mation exchanged between these tasks, and the exe-
cutable of each task. This type of applications requires
specific coordination, orchestration and execution pro-
tocols, posing both domain-specific and engineering
challenges.

Ensemble Toolkit (EnTK), the topmost layer of RCT,
simplifies the process of creating and executing ensemble-
based applications with complex coordination and com-
munication requirements. EnTK decouples the description
of ensemble-based applications from their execution by
separating three orders of concern: specification of task
and resource requirements; resource selection and acqui-
sition; and task execution management. Domain scien-
tists retain full control of the implementation of their
algorithms, programming ensemble-based applications by
describing what, when and where should be executed.
EnTK uses a runtime system, like RADICAL-Pilot, to
acquire the resources needed by applications to manage
task execution.

EnTK enables the creation of ensemble-based appli-
cations by exposing an application programming inter-
face (API) with four components: Application Manager,
Pipeline, Stage and Task. Users describe ensembles in
terms of pipelines, stages and tasks, and pass this descrip-
tion to an instance of Application Manager, specifying
what resource to use for executing the application (see
Fig. 2).

The Task component is used to encapsulate an exe-
cutable and its software environment and data dependen-
cies. The Stage component contains a set of tasks without
mutual dependencies and that can therefore be executed
concurrently. The Pipeline component is used to describe
a sequence of stages, i.e., sets of tasks that need to be
executed sequentially, not concurrently.

Fig. 2 EnTK Overview. Ensemble Toolkit overview showing how the abstract workflow execution system is mapped to specific components
exposed to the users and components internal to the toolkit
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The use of the Task, Stage, and Pipeline components,
implemented as set and list data structures, avoids the
need to express explicitly relationship among tasks. These
relationships are insured by design, depending on the for-
mal properties of the lists and sets used to partition tasks
into stages and group stages into pipelines. Further, EnTK
enables an explicit definition of pre and post conditions on
the execution of tasks, enabling a fine grained adaptivity,
both a local and global level. Conveniently, this does not
require the codification of a directed acyclic graph (DAG),
a process that imposes a rigid representation model on the
domain scientists [45].

The Application Manager component of EnTK enables
users to specify target resources for the execution of the
ensemble-based application. This includes properties like
walltime, number of nodes and credentials for resource
access. Users can also define execution setup parameters
such as the number of processes or messaging queues that
should be used by EnTK. This allows to size and tune the
performance of EnTK, depending on the number of tasks,
stages and pipelines, but also on the resources available to
the toolkit.

The Application Manager along with the WF Proces-
sor is responsible for the transformation of the application
workflow into workloads, i.e., set of tasks, that can be
submitted to the indicated resources for execution. Inter-
nally, the Resource Manager and Execution Manager
components enable the acquisition of resources and the
management of execution of these workloads (see Fig. 2).

ESMACS
HTBAC captures the workflow logic of binding affin-
ity calculation protocols using existing RCT tools. Ini-
tially, we designed HTBAC to implement a single binding
affinity protocol, using the EnTK programming model to
express the application logic. Here, we exclusively focus
on ESMACS to capture the workflow logic and isolate the
performance of a single protocol instance, by describing
the ESMACS protocol directly with the user-facing API
of EnTK. HTBAC has been extended as a Python library
that enables the selection of multiple protocol instances
of ESMACS and TIES [12]. To this end, we establish a
distinction between HTBAC, the Python library, and the
ESMACS implementation using EnTK.

A simulation pipeline is a defined sequence of simula-
tion stages for a given physical system. In the ESMACS
protocol, these simulation pipelines are replicated, where
replicas differ only by their parameter configurations,
namely initial velocities, which are randomly generated
and assigned by NAMD at the start of execution. A sim-
ulation pipeline in the ESMACS protocol has 7 stages:
the first, second and last stages perform staging of the
input/output data, the middle stages indicate simula-
tion tasks. A task is appended to a stage and stages are

appended to a pipeline to maintain temporal order during
execution.

Each simulation pipeline replica maps to an indepen-
dent EnTK pipeline. Each pipeline consists of a sequence
of stages, and each stage consists of a single task that
performs unique functions, including pre-processing and
molecular dynamics simulations. Figure 3 shows how
pipelines, stages and tasks are organized for a single
ESMACS protocol instance. A task is composed of a set of
attributes that define parameters like the location of input
files, the number of simulations and the MD engine(s)
used to launch those simulations.

Figure 4 shows how the ESMACS protocol integrates
with EnTK. EnTK converts the set of pipelines into a
set of tasks called compute unit descriptions and sub-
mits them to RP. In addition, EnTK provides methods
for the user to specify a resource request including wall-
time, cores, queue, and user credentials. EnTK converts
this resource request into a pilot that RP submits to a HPC
machine. Once the pilot becomes active, it pulls compute
unit descriptions in bulk from a database, executing them
on the pilot resources.

Results
Before embarking on a computational campaign that will
consume 150M core hours on the NCSA Blue Waters
machine, we studied the scalability of HTBAC so as to
determine optimal workflow sizing and resource utiliza-
tion for the ESMACS protocol. The goal is twofold: (1)
understanding the invariance of HTBAC execution time
for a single protocol instance over the number of workflow
pipelines executed; and (2) studying how the performance
of EnTK and RP varies in relation to the size of workflow.

Experiment design
We designed two experiments to measure weak scalability
properties using the ESMACS protocol when executing
an increasing number of concurrent pipelines. Accord-
ing to the use case described in “ESMACS” section, each
pipeline consists of seven stages, each stage with a single
task. EnTK manages the queuing of the tasks in accor-
dance with the order and concurrency mandated by stages
and pipelines: For each pipeline, each stage is executed
sequentially while pipelines are executed concurrently.

Experiment 1 measures the baseline behavior of EnTK
and RP with the workflow of the ESMACS protocol and
a null workload (/bin/sleep 0). The goal is to isolate the
overheads of EnTK and RP from the specifics of the
executables of the workflow and the overheads of the
resources. The null workload does not require data stag-
ing, I/O on both memory and disk, or communication
over network.

Experiment 2 replicates the design of Experiment 1
but it executes the workflow of the ESMACS protocol
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Fig. 3 ESMACS Implementation using EnTK. ESMACS protocol implemented as an ensemble application, encoded using the EnTK API. A protocol
represents a physical system and is encoded as a set of independent pipelines. Each pipeline maps to a single replica. ESMACS consists of 25
replicas. Stages within a pipeline are executed sequentially. Each stage contain a single task performing unique functions, as required by the
protocol. Stages S3–S6 contain molecular dynamics simulation tasks executed with NAMD

with the actual simulation and data for the EGFR kinase
workload. The comparison between the two experiments
enables performance analysis of EnTK and RP to under-
stand whether and how the size of the executed workflow
affects its overheads. Further, Experiment 2 shows also
whether HTBAC execution time is sensitive to the num-
ber of concurrent pipelines executed.

Both experiments measure the weak scalability proper-
ties of a single ESMACS protocol instance, executed with
RCT. This means that the ratio between the number of
pipelines and cores is kept constant by design. While an
investigation of strong scalability would contribute to a
better understanding of the behavior of a single ESMACS
protocol instance, it is of limited interest for the current
use case. The driving goal of this study is to increase
throughput by a means of concurrency of pipelines, not
in the number of sequential executions per core. This
is a driving motivation to target large HPC machines
instead of so-called high-throughput computing (HTC)
infrastructures.

Experiment setup
We perform both Experiment 1 and 2 on NCSA’s
Blue Waters—a 13.3 petaFLOPS Cray, with 32 Interlago
cores/50 GB RAM per node, Cray Gemini, Lustre shared
file system. Currently, we exclusively use CPUs on Blue
Waters as GPUs are not required by our use case.

We perform our experiments from a virtual machine,
which maintains a stable network connection. This helps
to simulate the conditions in which the experimental cam-
paign will be performed by the research group at UCL,
where users run experiments from local machines.

To this end, we perform our experiments from a virtual
machine. This helps to simulate the conditions in which
the experimental campaign will be performed from a local
machine. To allow this, RCT support gsissh for authen-
tication and authorization. The virtual machine serves as
the client from which the user provides the description
of the experiments including the physical systems, and
resource requirements. Once the experiment is submit-
ted, RCT establish a gsissh connection from the virtual
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Fig. 4 ESMACS-EnTK-RP Integration. Integration between ESMACS and EnTK. Numbers indicate the temporal sequence of execution. The database
(DB) of RADICAL-Pilot (RP) can be deployed on any host reachable from the resources. RP pushes compute units (CU) to DB and pulls them for
execution

machine to the remote resource i.e. Blue Waters and
maintain a tunnel for the duration of the experiment.

Table 1 shows the setup for Experiment 1 and 2. The
ESMACS protocol is executed with up to 25 concurrent
but independent pipelines and therefore their concur-
rent execution does not entail communication overhead.
While we show that EnTK can support concurrent execu-
tion of 128 pipelines, ESMACS only requires 25 concur-
rent pipelines. We demonstrate scales beyond 25 pipelines
to address the resource requirements of more computa-
tionally demanding free energy protocols. Furthermore,
the EGFR kinase studies can benefit from greater concur-
rency because potential HTBAC users may wish to extend
their protocols beyond the current scale of ESMACS
by executing more than one workload in a single run.
Consistently, our experiments push the boundaries of cur-
rent scale by executing 8, 16, 32, 64 and 128 concurrent
pipelines.

EnTK uses RP to acquire resources via a single pilot.
The size of the pilot is contingent upon characterization
of performance, in this case, weak scalability. Accordingly,

we request the maximum number of cores required by
the workload as the number of cores in a pilot. We use
between 64 and 1024 cores in Experiment 2 as the NAMD
executable used in stages 3, 4, 5, and 6 requires 8 cores.
Stages 1, 2 and 7 require instead 1 core. The null work-
load of Experiment 1 requires only 1 core per stage but we
request the same number of cores as for Experiment 2 to
be able to compare the overheads of both EnTK and RP
across experiments.

All experiments use EnTK version 0.4.7 and RP version
0.42. The MD engine used is NAMD-MPI. The equilibra-
tion tasks of stage 4 and 6 are assigned 5000 timesteps
while the task of stage 5 requires 55000 timesteps. We
ran two trials of both the null and MD workload at each
pipeline configurations.

Results
First we characterize the overhead of EnTK and RP in the
null workload, where we isolate the overhead introduced
by the two systems (Fig. 5). We see a (slightly) superlinear
increase of EnTK overhead, between 0.1 and 1.8 s. This

Table 1 Experiment 1 executes the 7 stages of the ESMACS protocol with a null workload; Experiment 2 uses the actual MD workload
of the ESMACS protocol

Experiment ID Protocol Workload # Trials # Pipelines # Stages # Tasks # Cores per pilot

1 ESMACS Null workload 2 8, 16, 32, 64, 128 7 7 64, 128, 256, 512, 1024

2 ESMACS EGFR kinase Workload 2 8, 16, 32, 64, 128 7 7 64, 128, 256, 512, 1024

ESMACS protocol with EGFR kinase workload: (1) Untar configuration files; (2) Preprep; (3) Minimize with decreasing restraints; (4) Equilibration: NVT simulation at 50K, with
restraints; (5) Equilibration: NPT simulation at 300K, with decreasing restraints; (6) Equilibration: NPT at 300k, no constraints; (7) Tarball output files



Dakka et al. BMC Bioinformatics 2018, 19(Suppl 18):482 Page 42 of 110

Fig. 5 Null Workload Overheads. Overheads of Ensemble Toolkit (EnTK) and RADICAL-Pilot (RP) when executing HTBAC using a null workload. We
plot the baseline EnTK/RP overheads without the application workload across two trials per pipeline configuration

overhead depends on the number of tasks that need to
be translated in-memory from a Python object to a CU
description. As such, it is expected to grow proportion-
ally to the number of tasks, barring some competition of
resources.

RP overhead is also, on average, superlinear but with
a much greater variance. This variance is due to mainly
two factors: Network latency and filesystem latency on
the HPC resource. EnTK submits CU descriptions to
the MongoDB used by RP, and the RP pilot pulls these
descriptions from the same database. As described in
“Experiment setup” section, this pull operation occurs
over a wide area network, introducing varying amounts

of latency. Further, RP writes and reads the CU descrip-
tions multiple times to and from the shared filesystem of
the HPC machine. Together, these two factors introduce
delays in the scheduling of the CUs.

When the workload includes the EGFR kinase, we see
(Fig. 6) that the RP overhead becomes on average less than
10% of the average total execution time (TTX), defined
as TTX = TTC − Tq where TTC is time-to-completion
and Tq is time spent queuing on the HPC machine. We
further break down TTX into the time-to-completion
per stage, where stages 1,2, and 7 perform file move-
ments, while stages 3,4,5, and 6 execute NAMD tasks. At
this level, we notice that the time-to-completion of the

Fig. 6 Weak Scaling ESMACS Protocol. similar EnTK/RP overhead behavior as with the null workload with higher values as the number of pipelines
increases. We show a breakdown of TTX of each stage (Stage 1–7). Across pipeline configurations, TTX and RP overheads (accounting for the error
bars) show weak scaling performance
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NAMD stages are essentially invariant across pipelines
of different size while file movement stages exhibit lin-
early increasing behavior. In addition, when accounting
for variance, RP overheads also show linear weak scaling
behavior. As expected, EnTK overhead remains super-
linear and comparable to the one measured in Experi-
ment 1. This is because in both experiments EnTK over-
head depends on the number of tasks translated to CU
descriptions.

Discussion
We designed experiments in Table 1 to characterize the
overheads of the ESMACS protocol with null and NAMD
workloads, respectively. Experiments 1 and 2 show how
the overheads of both EnTK and RP tend to be invariant
across type of workload executed. Their scaling behav-
ior and, to some approximation, their absolute values are
comparable between Figs. 5 and 6. This is relevant because
it shows that the physical systems used to coordinate
and execute the ESMACS protocol add a constant and
comparatively not relevant overhead to the execution of
NAMD.

Conclusion
It is necessary to move beyond the prevailing paradigm of
running individual MD simulations, which provide irre-
producible results and cannot provide meaningful error
bars [22]. Further, the ability to flexibly scale and adapt
ensemble-based protocols to the systems of interest is
vital to produce reliable and accurate results on timescales
which make it viable to influence real world decision mak-
ing. To meet these goals, we are designing and developing
the high-throughput binding affinity calculator (HTBAC).

HTBAC employs the RADICAL-Cybertools to build
ensemble-based applications for executing protocols like
ESMACS at scale. We show how the implementation of
the ESMACS protocol scales almost perfectly to hundreds
of concurrent pipelines of binding affinity calculations on
Blue Waters. This permits a time-to-solution that is essen-
tially invariant of the size of candidate ligands, as well as
the type and number of protocols concurrently employed.

The use of software implementing well-defined abstrac-
tions like that of “building blocks”, future proofs users of
HTBAC to evolving hardware platforms, while providing
immediate benefits of scale and support for a range of dif-
ferent application workflows. Thus, HTBAC represents an
important advance towards the use of molecular dynamics
based free energy calculations to the point where they can
produce actionable results both in the clinic and industrial
drug discovery.

In the short term, the development of HTBAC will allow
a significant increase in the size of study. Much of the lit-
erature on MD-based free calculations is limited to a few
tens of systems, usually of similar drugs bound to the same

protein target. By facilitating the investigation of much
larger set of systems, HTBAC contributes to solve the
grand challenge in drug design and precision medicine:
understanding the influences on binding strength for hun-
dreds or thousands of drug-protein variant combinations.
While contributing to reach this ambitious goal, we reveal
the limits of existing simulation technology and of the
potentials used to approximate the chemistry of the real
systems.
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