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Abstract

Background: Real-time analysis of patient data during medical procedures can provide vital diagnostic feedback
that significantly improves chances of success. With sensors becoming increasingly fast, frameworks such as Deep
Neural Networks are required to perform calculations within the strict timing constraints for real-time operation.
However, traditional computing platforms responsible for running these algorithms incur a large overhead due to
communication protocols, memory accesses, and static (often generic) architectures. In this work, we implement a
low-latency Multi-Layer Perceptron (MLP) processor using Field Programmable Gate Arrays (FPGAs). Unlike CPUs and
Graphics Processing Units (GPUs), our FPGA-based design can directly interface sensors, storage devices, display
devices and even actuators, thus reducing the delays of data movement between ports and compute pipelines.
Moreover, the compute pipelines themselves are tailored specifically to the application, improving resource utilization
and reducing idle cycles. We demonstrate the effectiveness of our approach using mass-spectrometry data sets for
real-time cancer detection.

Results: We demonstrate that correct parameter sizing, based on the application, can reduce latency by 20% on
average. Furthermore, we show that in an application with tightly coupled data-path and latency constraints, having a
large amount of computing resources can actually reduce performance. Using mass-spectrometry benchmarks, we
show that our proposed FPGA design outperforms both CPU and GPU implementations, with an average speedup of
144x and 21x, respectively.

Conclusion: In our work, we demonstrate the importance of application-specific optimizations in order to minimize
latency and maximize resource utilization for MLP inference. By directly interfacing and processing sensor data with
ultra-low latency, FPGAs can perform real-time analysis during procedures and provide diagnostic feedback that can
be critical to achieving higher percentages of successful patient outcomes.
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Background

Machine learning (ML) plays an integral part in solv-
ing many key scientific problems. It has been applied to
such varied domains as finding cancer treatments [1],
weather simulations [2], and design of new nanocatalysts
[3]. Machine learning methods have been used in medical
applications for many years [4]. First of all, machine learn-
ing can be used in monitoring patients’ vital signs. Muller,
et al. introduced a Brain-Computer Interface (BCI) [5]
based technique that can extract appropriate features
from continuous EEG signal [6]. The proposed system col-
lects a number of trials from patients while they are asked
to perform fixed tasks. Using the collected datasets as
training data, the system infers the typical EEG patterns in
real-time. In [7], Shoeb and Guttag presented a machine
learning algorithm to recognize epileptic seizure from the
scaled EEG signal. Machine learning is also widely used
in medical image retrieval, enhancement, processing and
mapping as introduced in [8—12]. Zacharaki, et al. per-
formed a study on distinguishing different types of brain
tumors based on Support Vector Machine Recursive Fea-
ture Elimination (SVM-RFE) algorithm [13]. Pereira et al.
introduced an approach to use machine learning algo-
rithms to decode variables of interest from fMRI data
[14]. Apart from that, machine learning is also an effec-
tive supplement in diagnosing diseases [15, 16]. Ozcift,
et al. constructed Rotation Forest (RF) ensemble clas-
sifiers for multiple machine learning algorithms in a
computer-aided diagnosis (CADx) system that is used
for diagnosing diseases like diabetes and Parkinson [17].
Li and Zhou proposed a semi-supervised learning algo-
rithm, Co-Forest, that uses undiagnosed samples along
with only a small amount of diagnosed ones as train-
ing datasets for CAD systems targeting breast cancer
diagnosis [18].

Multi-Layer Perceptrons (MLPs) are an important sub-
set of ML that not only optimize existing applications
and practices but also widen that pool by enabling
designs to meet more stringent requirements of relia-
bility, performance, complexity, and portability that are
not possible from traditional approaches. MLPs consist
of multiple layers of firing neurons, with each layer using
responses of previous neurons as stimulus. Use of MLPs
is divided into two stages: training and inference. Training
is an iterative process that determines neuron connec-
tion strengths in a given MLP. We assign initial values
to connection strengths and then apply training cases
as inputs to the model. The correct results of train-
ing cases are known beforehand, which we refer to as
expected values. Corresponding measured outputs of the
model are compared with these expected values, and
connection strengths are then updated by a (static or
dynamic) factor in order to minimize the error between
the two sets of results. This process is repeated until

Page 20 of 110

measured results converge to values that reduce errors
to within acceptable bounds. Training is typically an
offline operation and thus does not impact analysis time-
frames. Inference, on the other hand, is performed in
real-time and refers to the process of performing classi-
fication (or regression) on a set of test input cases using
the trained model. In our work, we focus on improv-
ing inference latency in order to achieve small analysis
timeframes.

Traditional processors running inference algorithms
cannot meet the required timing constraints in most
cases due to the large overhead of communication pro-
tocols, memory accesses, and static (often generic) archi-
tectures. Data must first be moved from sensors to CPU
buffers, typically by using serial ports, thus limiting the
bandwidth. For CPU-based implementations, processing
individual test cases results in a large number of cache
misses. This is because MLPs have virtually no data
reuse for the same test case, and batch processing is not
possible due to latency bounds. Moreover, meaningful
model sizes tend to be larger than the higher cache lev-
els (closer to the CPU) and hence entire models cannot
fit in the L1 or L2 cache. For GPU implementations, fur-
ther memory transactions are required to move data to
and from the device memory over the PCle bus, which
increases the overhead. Low data reuse and batch-less
processing also hurt GPU performance since the compu-
tations may not be sufficiently parallel to fully utilize the
thousands of available cores. For cores that are assigned
work, a significant number of cycles are likely to be idle
as threads wait for off-chip data to be accessed. ASIC
based designs have typically managed to fill this gap by
providing massive amounts of resources and specialized
pipelines that are tailored for Deep Neural Networks
(DNNs); one example is the Google TPU [19]. However,
as the number of diverse applications and their associated
models grows, these ASICs effectively address a domain,
rather than a particular application, and hence are unable
utilize application-specific optimizations at the level
needed.

Reconfigurable architectures, such as FPGAs, are
becoming increasingly popular since their logic can be
configured to construct application-specific architectures
[20-25]. For MLPs in particular, arbitrary sized mod-
els can be easily implemented, scaled, and even trans-
ferred to newer generation technologies by recompiling
the design. Like GPUs, FPGAs are Commercial-Off-The-
Shelf (COTS), which means users can buy the device,
generate logic for their desired model, and ensure that
the resulting compute pipelines are optimal not only for
MLPs, but also for their specific MLP application. More-
over, since the underlying computation structure does not
change, complex HDL codes do not have to be written.
Instead, simple scripts can be used to create the required
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architecture. As FPGA on-chip memory grows, reaching
several megabytes in the current generation, users can
move all model parameters to the on-chip SRAM and
remove idle cycles caused by fetching weights from off-
chip DRAM. Moreover, FPGAs offer support for most
common serial and parallel protocols and can thus fur-
ther minimize the latency of memory and I/O transactions
by supplying data directly (from sensors) to compute
pipelines. All these features result in a transition of the
computation from memory bound to compute bound.

Improving latency (and hence performance) of
compute-bound MLP inference requires all pipelines to
operate both stall free and at high bandwidth. The former
is achieved by ensuring modules in the design source/sink
data at rates that are constrained by the latter. Since mod-
ules in MLP architectures are tightly coupled and operate
within the same clock domain, constraints can occur even
for indirect connectivity. Therefore, by selecting higher
interface bandwidths for particular ports, the complexity
(and hence latency) of potentially multiple modules can
become significantly large. This increase in complexity
can outweigh the benefits of higher module throughput
and thus increase the overall latency of the computation.

FPGA-based MLP implementations have received sig-
nificantly less attention than other DNNs such as Con-
volutional Neural Networks. The most prominent design
is Microsoft’s FPGA-based inference architecture, Brain-
wave [26], targeting low compute-to-data ratio DNN
applications such as MLPs, Long Short-Term Memories
(LSTMs), and Gated Recurrent Units (GRUs). The mem-
ory bandwidth bound is alleviated by using on-chip block
RAM for weight matrix storage. For an 8-bit integer
implementation on Stratix V FPGAs, Brainwave achieves
2.0 TOps/s, while on Stratix 10 FPGAs, they claim to have
31 TOps/s performance running at 500 MHz. In [27, 28],
the authors proposed FPGA-based MLP architectures,
but their work serves as a proof-of-concept and is also
constrained by off-chip memory bandwidth. Sharma et al.
presented an automated DNN design generation frame-
work, DNNWeaver [29], which also depends on DRAM
access speed for performance. Moreover, the DNN Weaver
compute units are constrained to Digital Signal Proces-
sor (DSP)-only implementations and logic cells are not
used for ALUs. Gomperts et al. introduce a general pur-
pose architecture for MLP based on FPGAs [30]. Their
design generates individual processing elements for each
layer, which is not feasible for large neural networks where
resources on a single FPGA may not even be sufficient to
compute a single layer in parallel.

With regard to stand-alone operation with a direct
interface to sensors, FPGAs have shown support for var-
ious forms of connectivity without host support. Apart
from General Purpose I/O pins [31, 32] that can imple-
ment virtually any communication protocol, they also
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offer direct chip-chip connectivity through Multi-Gigabit
Transceivers (MGTs) and network connectivity through
dedicated Ethernet controllers. MGTs are serial links
that provide low-latency, high-bandwidth, and low-energy
interfaces [33—38] and enable communication at rates of
100 Gbps per MGT. Current high-end FPGAs can have
close to 100 MGTs. These MGTs can be used to connect
multiple FPGAs together and perform computations for
models that are too large for a single device. Large multi-
FPGA clusters have long been a staple of computational
finance and certain other industries. George et al. [39] pre-
sented an academic example of a 64 FPGA cluster with
direct FPGA-to-FPGA links in a 3D torus network. Simi-
larly, Microsoft’s original Catapult System [40, 41] consists
of 1632 nodes with FPGAs directly interconnected via
MGTs in a series of 6 x 8 tori.

In our work, we explore the application-aware optimiza-
tion space for compute-bound MLP inference processors
using our proposed FPGA-based architecture. By identi-
fying modules in the critical path and their interconnec-
tivity, we determine and optimize parameters for a given
application in order to minimize the latency of the entire
model evaluation and meet real-time constraints. This
strategy enables our design to be feasible for applications
such as real-time medical diagnosis.

Methods

Aim

In this study, we have designed and implemented a real-
time Multi-Layer Perceptron inference processor for med-
ical diagnosis using FPGAs. Our focus is on achieving
ultra-low analysis latency to meet real-time constraints.
The proposed system consists of a modular approach with
standardized interfaces that enables hardware of individ-
ual functions to be easily modified based on changes to the
inference model, design practices, or resource availability.
We demonstrate that the ability to be application spe-
cific enables FPGA-based designs to choose architecture
parameters that minimize latency and maximize utiliza-
tion of computing resources. Using mass spectrometry
benchmarks for cancer detection, we show that FPGAs
can outperform traditional computing technologies such
as CPUs and GPUs for real-time MLP applications.

Hardware specifications

We have tested our designs on the Intel Arria 10
FPGA (AX115H3F34E2SGE3), which has 427,200 Adap-
tive Logic Modules (ALMs), 1518 DSP blocks, 53 megabits
of on-chip memory, and a maximum of 624 user General
Purpose Inputs/Outputs (GPIOs) [42]. The GPU used is a
Tesla P100 which has 3594 CUDA cores and a 12 gigabyte
High Bandwidth Memory (HBM2) with a peak bandwidth
of 549 GB/s. For the baseline, we use an eight-core 2.6
GHz Intel Xeon E5-2650v2 CPU.
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Software specifications

FPGA designs are implemented by using Altera OpenCL
16.0.2 [43] to ensure that standard optimizations are
applied and the impact of varying design parameters on
latency can be fairly determined. Resource usage is mea-
sured by using the Quartus Prime Pro 16.0 compiler. GPU
reference designs are compiled by using TensorFlow [44]
rl.4, python 3.6.2, cuDNN 6.0 and CUDA 8.0. CPU code
is also compiled by using TensorFlow rl.4. Both GPU
and CPU designs use single-precision floating point, while
the FPGA implementation uses fixed-point arithmetic,
with arbitrary variable sizes that are optimized for each
computation stage.

Benchmarks

We demonstrate the effectiveness of the FPGA-based
MLP inference processor by evaluating models for detect-
ing cancer using protein profiles. The two datasets used
are obtained from [45] and use Surface-Enhanced Laser
Desorption and lonization (SELDI) protein mass spec-
trometry to generate data for ion intensities at 15154
mass/charge values. The first is Ovarian-8-7-02 (Ovar-
ian), which contains 91 normal and 162 cancer cases. The
second is Prostate Cancer Studies (JNCI), which contains
69 cancer and 63 normal cases. Cancer and normal data
for both benchmarks are further divided into training and
test sets, as shown in Table 1. For both benchmarks, we
propose a model with two hidden layers, with the out-
put determining whether the patient is normal or has
cancer. We train the proposed models in single-precision
floating point using Tensorflow and find that prediction
accuracy for both benchmarks is > 90%. For the FPGA
implementation, we convert trained parameters to 8 bits
for weights and 32 bits for biases. This conversion is
achieved by scaling them, based on a given layer’s maxi-
mum and minimum values, in order to utilize the entire
integer range.

Multi layer perceptrons

In this section, we provide an overview of Multi-Layer
Perceptron based neural networks using both logical and
computational models. Multi-Layer Perceptron models
are typically composed of an input layer containing feature

Table 1 Proposed MLP models for mass spectrometry
benchmarks

Model Dimensions Training  Test Accuracy Fq Score
cases cases
Ovarian 15154 x 512 160 92 98.9% 0.99
X 512 x 2
INCI 15154 x 64 100 32 90.6% 0.92
X512 x 2

The boldface represent the sizes of input and output layers of the Multi Layer
Perceptron
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values measured using sensors, an output layer contain-
ing the diagnosis result, and, potentially, multiple hid-
den layers that perform the required computations on
the input data. Each layer consists of one or more neu-
rons, depending on the model. MLPs are fully connected
as illustrated in Fig. la: a neuron in any given layer is
connected to the outputs of all neurons in the previous
layer.

Ia Logical Model

Itﬁompu_t_el‘ml_______l
| BTEEETE |
| 7 I
I §= XE+§ I
| 58
I I
I I

U |

Fig. 1 MLP models for (a) logical configuration and (b) compute. MLP
models can have many layers, with each layer composed of
potentially multiple neurons. Each neuron is connected to all neurons
in the layer before it. The weights assigned to input connections of a
single neuron are stored as a row vector, and every neuron has its
own associated row vector. Combining row vectors of neurons in a
layer forms the weight matrix for that particular layer. A non-linear
function is applied to the weighted sum of a given neuron’s inputs,

and the result forms the output of the neuron
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Inputs to the hidden and output layer neurons are scaled
and accumulated by using weights (connection strengths)
that are determined during training. A non-linear func-
tion, called the activation function, is applied to the result,
which then becomes the neuron output. Figure 1b shows
this operation represented as a Matrix Vector Multiplica-
tion (MVM). Each layer has a unique weight matrix, which
contains connection strengths, and a bias vector. Layer
inputs are the result vector from the previous layer, or the
input vector if it is the first hidden layer. A given row from
the X x Y weight matrix for a given layer represents the
connection strengths of Y neurons in the previous layer
assigned to one of the X neurons in the current layer. The
activation function is applied to individual elements of the
output vector. During the training process, all data are
floating point. Classification can be performed by using
integer arithmetic without loss of accuracy.

MLP Inference architecture

In this section, we present the MLP inference architec-
ture illustrated in Fig. 2. We use a modular approach to
component design that enables parameters to be varied
in order to implement the optimal dimensions for a given
application. Compute and control planes are segregated,
enabling additions, deletions, and updates to be easily per-
formed. Individual components within each plane also
have well-defined boundaries and interfaces to ensure that
design changes can be performed at very high granular-
ity, with minimal effort, and without necessitating changes
to other logic beyond required parameter updates. Lay-
ers are processed sequentially, with modules performing
all computations for a given layer before evaluating the
next one.

Control

v
ACTIVATION SCALAR

& QUANTIZE PRODUCT

—

A

ACCUMULATE [«

\ 4

v

BUFFER [« MAX SEARCH

LEADING 1

Weights &
Bias
Ly X

Output J
Viector Input Vector

Fig. 2 The architecture of the proposed low latency MLP inference
system. The modular-centric approach and well-defined
boundaries/interfaces enable updates, additions, and deletions to be
performed easily and with minimum changes to adjacent

components
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Compute

Scalar product

For this module, users can specify both the number of
Scalar Product evaluations and their size. Computations
are performed by using 8-bit variables, while results are
accumulated into 32-bit outputs. To minimize latency, we
use tree-based structures, rather than systolic arrays, for
implementing the Scalar Product modules. This approach
ensures that we can scale well to larger input vectors.
Typical FPGA implementations focus primarily on DSP-
based resources for this stage. However, we provide users
with the capability of selecting arbitrary numbers of
DSP and ALM-based multipliers at the granularity of a
Multiply-Add module as shown in Fig. 3. Based on board
resources, users can specify the number of available DSPs
while the remaining computing entities are synthesized
with ALMs.

Accumulate

If the size of a Scalar Product module is smaller than the
input vector, multiple iterations are required to accumu-
late partial sums and obtain a final value. Moreover, a
bias value must be added to the sum. The Accumulate
module performs all of these functions by using dedicated
Accumulate Registers. It receives triggers from the con-
trol plane on whether to accumulate or to re-initialize the
registers for a new operation cycle.

Activation & requantization

The Activation & Quantization module reads data from
the buffer, performs 32-bit ReLU activation (RELU (x) =
max(x,0)), and then quantizes data back to 8 bits for the
next layer. Quantization is performed by using truncation

Weights
az dg as dg ds az az dg

BRAM

DSP/ALM

ALM

Fig. 3 Scalar product module design using both DSP and ALM
multipliers. Each scalar product slice is composed of DSP or ALM
multipliers and an adder tree with logarithmic complexity to
minimize latency. For DSP-based slices, two multipliers and one adder
are implemented in DSP blocks while the remaining adder tree is
always implemented by using ALMs
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because of the high costs of division hardware. Because of
the nature of the operation (compression), the difference
in results is small in this particular context. Moreover,
ReLU activation ensures that the Most Significant Bit
(MSB) of our 8-bit result is always 0. Therefore the effec-
tive compression target is 7 bits, which further reduces the
difference between division and truncation results.

Max search

Being able to perform quantization requires knowledge
of the upper and lower data limits. Because of the ReLU
activation, we are guaranteed a lower limit of 0. Search-
ing for the upper limit must be done without stalling
the data stream. Consequently, we use the Max Search
module to perform local maxima searches on data as it
becomes available and update an associated register if
a local maximum exceeds the current global maximum.
This approach ensures that latency is based on the dimen-
sions of the accumulator outputs and not the full input
vector. Employing a tree-based search further reduces the
delay.

Leading 1

Once the maximum value for a given output has been
determined, we use the Leading 1 module to find the most
significant non-zero bit and use this position to perform
truncations for quantization. The output is constrained to
be between 6 and 30 (on a scale of 0-31) since the for-
mer means all values are already within 8 bits while the
latter represents the largest possible positive numbers. As
with Scalar Product and Max Search, the evaluation is
performed with logarithmic complexity.

Buffer

The Buffer module stores result vectors for both the
current and the previous layer (input to current layer).
While the Buffer is used purely as a memory resource,
it is included in our compute plane because of its tight
coupling with the Accumulate and Activation & Quantize
modules. It is implemented by using registers in order
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to meet throughput demands for architecture-specific
source and sink sizes. A two-bank architecture, Fig. 4,
comprising of separate input and output memory banks
is used. The output memory bank stores results from the
previous layer and supplies this data to the Activation
& Requantization module. On the other hand, the input
memory bank stores results of ongoing computations by
sinking data from the Accumulate Registers. A single-
cycle data transfer, from the input bank to the output one,
is triggered once all neuron outputs have been computed
and the system is processing the global maximum. This
ensures that data are ready to be supplied when the next
layer is picked up for processing.

Critical path

Of the compute plane modules discussed above, all but
the Buffer lie in the critical path. We divide these mod-
ules into two categories; the Variable Critical Path (VCP)
and the Persistent Critical Path (PCP). The Variable Crit-
ical Path is entirely the Scalar Product module. It is equal
to the number of calls needed for the Scalar Product mod-
ule to perform all multiplication operations. Since it is
based on the relative dimensions of the weight matrix and
Scalar Product module, it will vary for each layer. Once
the last set of results has been produced, modules that
need to evaluate this last result before a new layer can be
processed are referred to as the Persistent Critical Path. It
corresponds to a fixed number of cycles independent of
layer dimensions. Applicable modules include Accumula-
tor (with register), Max Search (with register), Leading 1,
and Activation & Quantize.

Design parameters

Because of the tight coupling of our system design and
the latency requirement, certain modules should be able
to sink stall-free the entire throughput of their preced-
ing component, as well as source the required throughput
to their subsequent one. A chain of such modules where
this throughput cannot be modified specifies a design

Register 0
Register 1

storing results of current layer computations

: Transfer ]
. Enable
Register X Register X

Fig. 4 Structure of the Buffer Module. The two-stage design enables us to hold values of a previous layer (input vector to Scalar Product) while also

Register 0

Data
Out

Register 1
E -
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parameter. In the proposed architecture, two such chains
exist.

The first chain connects the Buffer and Scalar Prod-
uct modules. It constrains i) the output size of the Buffer,
ii) the size of the Activation & Quantize module, and
iii) the length of a vector input to the Scalar Product
module. We refer to this parameter as M. The value
of M determines the number of columns being pro-
cessed in the weight matrix. The second chain connects
the Scalar Product to the Max Search module. It con-
strains i) the number of Scalar Product units, ii) the
number of parallel accumulators needed to add partial
sums, and iii) the number of elements over which to
perform a maximum value search. We refer to this param-
eter as N. The value of N determines the number of
rows being processed in the weight matrix. A third chain,
between Max Search and Leading 1 modules, always
has a throughput of one 32-bit element per cycle and
hence does not have a variable design parameter. In our
work, we explore the impact of varying M and N on
performance.

Latency model

We present an average-latency model for the proposed
architecture. We assume standard design practices for
implementing the three predominant types of entities:
multipliers, pipeline stages, and trees. Equation 1 gives a
generic model for latency that can be used to describe
combinations of the above. A is a multiplicative fac-
tor representing the number of pipeline stages per tree
layer. B refers to the number of variables reduced by
the tree while the logarithm computes its correspond-
ing depth. C is a constant latency offset representing
the minimum cycles taken by any module to perform
its assigned computation. D represents multiple module
calls and is applicable only to modules in the Variable
Critical Path, i.e., the Scalar Product multiplication
stage.

module; = D; (Ai[log,(B)] + C;) cycles (1)

Based on the general model above, we determine the
total system latency for a given application. The motiva-
tion here is to determine the values for M and N that
minimize the overall latency, rather than that of a partic-
ular layer. As shown in Eq. 2, the total latency is a linear
combination of all latencies across all K layers of the appli-
cation. We assume that the Accumulate and Activation
& Quantize operations occur in a single cycle (as there
are no data dependencies between vector elements and
simple computation stages). Max Value Search and Lead-
ing 1 are both modeled as trees, but the latter one has
constant latency due to a fixed input size (32 bits). We sep-
arate the Scalar Product module into multiplication and
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accumulation stages. The former is modeled as a single-
stage pipeline that processes MxN blocks of a weight
matrix per cycle. On the other hand, the accumulation
stage is absorbed into the Persistent Critical Path and has
logarithmic latency based on M.

K
Lytal =Z{[”’Nﬂw * P?\TSI—‘ + [loga (M)] + (loga (1) + D)+1+ [logy (N)] + 1
i=1

K-1
+log2(32)} + ) {loga(m) +1}
i=1

2)

By comparing the effective latencies of Variable (VCP)
(Eq. 3) and Persistent (PCP) (Eq. 4) Critical Paths, we
demonstrate the substantial impact of design parame-
ters on performance. For larger values of M and N,
the latency of VCP decreases, and fewer iterations are
needed to perform all required multiplications for a
given layer. However, this also causes the latency of
PCP to increase and hence can potentially decrease per-
formance despite there being more compute resources.
On the other hand, having small values of M and N
can still increase overall latency since a greater num-
ber of cycles are spent computing scalar products. These
complex interactions highlight the need for reconfig-
urable architectures that can be tuned for a particular
application.

K
Lycpotar = Y _[rowsi/N1 * [cols;/M] (3)

i=1

Lpcpota = K([log(M)] + [log(N)T +8) — 1 (4)

Control

Using the modules and their functions outlined previ-
ously, Fig. 5 gives an overview of the algorithm for per-
forming inference on a given test vector. The control unit
is responsible for generating event triggers to coordinate
the flow of data between different modules (green). These
triggers are based on system states (blue) and include
start/end indicators, variable updates (e.g., resets, incre-
ments, swap), read/write signals, and data source selection
(e.g., the buffer module, external on-chip memory).

A detailed implementation of the control unit is shown
in Fig. 6. For given values of M and N and applica-
tion model dimensions, we can determine how long each
layer will take, at which cycle individual triggers will be
given, and the computation being performed by each
module at any given time. All these can be coordinated
based on a single global counter (Main Counter). By hav-
ing an instruction-free implementation, the overhead of
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Fig. 5 Algorithm: An overview of the algorithm used to determine the event triggers needed to control the flow of data in the inference processor
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Fig. 6 Control Unit: Execution of the entire application model can be done based on a single global counter without any feedback from modules or
user-supplied run-time instructions. Values of the latency tags for each layer are hard-coded into the system and selected based on the layer
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Table 2 Latency tags for defining trigger ranges

Tag Value

Latency_0 L_QAM) + L_MM(M,N) + BLOCKS[i] + L_AC(N) + 1 +
LLMX(N)+1+L_LO

Latency_1 MBLOCKS[I]

Latency_4 L_QA(M) + L_MM(M,N)

Latency_5 MBLOCKSIi] -1

Latency_6 L_QAM) + L_MM(M,N) + L_AC(N) + 1 + L_MX(N)

Latency_7 L_QAM) + L_LMM(M,N) + BLOCKSIi] + L_AC(N) + 1 +
L_MX(N)

Latency_8 MBLOCKS-1

Latency_9 MBLOCKS-1

Latency_10 L_QAM) + L_MM(M,N) + BLOCKS[i] + L_AC(N) + 1 +
L_MX(N)+1+L_LO-1

Latency_11 L_QAM) + L_LMM(M,N) + L_AC(N) + 1

Latency_12 L_QA(M) + L_MM(M,N) + BLOCKSIi] + L_AC(N) + 1

Latency_13 L_QAM) + L_MM(M,N) + BLOCKSIi] + L_AC(N) + 1

fetching and decoding instructions is avoided, and end-
to-end data flow for the entire application can be made
stall free.

To define ranges and trigger points for setting and reset-
ting values of control signals and state machine counters,
we use latency tags. Each tag is based on the latency of an
individual module in the corresponding data path. Table 2
lists these tags and their values. QA, MM, AC, MX, and
LO refer to latencies of the Activation & Quantization,
Scalar Product, Accumulate, Max Value Search, and
Leading 1 modules, respectively. Constants represent
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latencies of registers at the output of the Accumulate and
Max Value Search Modules. MBLOCKS and NBLOCKS
refer to the number of blocks the weight matrix of a layer
can be divided into in each dimension, while BLOCKS is
the product of these, that is, the number of cycles needed
for the entire weight matrix of a layer to be processed.
Tags 2 and 3 are reserved for external connectivity in
future work.

Results

Measured latency

Figure 7 shows the latency of the Scalar Product module.
Data points for (M <« 8:256 , N < 8), (M < 8 , N «
8:256), (M <« 16, N < 16), (M <« 32, N « 32) and (M
< 64, N < 64) are measured values while the remaining
points are estimated based on observed trends. As illus-
trated by the graph, larger M values correspond to higher
latency, while the latency due to N is mostly constant (due
to simple design replication).

Figure 8 illustrates the latency of modules in the Per-
sistent Critical Path (except for Scalar Product accumu-
lation). As was demonstrated with our system model
previously, most modules have latency offsets based on
pipeline depth and thus have nearly invariant laten-
cies with respect to their associated parameter. With
regard to Max Value Search, however, we get very
large latencies despite it being a tree-based implemen-
tation. This is because of the resource overhead of a
signed comparator as compared with a simple adder
(~2x more ALMs per comparator based on synthesis
results).

Latency/Cycles

(tree replication)

M 8

Latency of Scalar Product Module - Patially Estimated

Fig. 7 Latency comparison of various M and N for Scalar Product module. Latency increases with larger M (more tree stages) but is invariant in N
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Latencies of Non Sclar Product Modules

25
20 _~ :
- = Accumulate (N)
_— —— Act-Quant (M)
§ 7 = Max Search (N)
g 1Br ~ e Buffer T
= / = |_gading 1
> lf
o |
G |
= 10T f g
— f
f
{
5F 4
el
0 /. A . A
0 50 100 150 200 250 300

Parameter Size

Fig. 8 Latency of critical path modules based on their constraining parameter

Figure 9 shows the total latency of our system for a
single iteration of all modules. We observe that having
larger values of M, instead of N, reduces latency by 20% on

average.

Resource usage
We have tested our designs on the Altera Arria-10AX115

FPGA. Table 3 gives the post-fit resource usage of the

processor. We compile the design with M = 256 and
N = 8. These values minimize overall inference latency
based on the dimensions of benchmark models, Eq. 2, and
latency results from Fig. 9. From the resource usage, we
see that the design occupies less than half the chip. There-
fore, based on Eq. 2, either a larger value of M can be
used to further reduce latency, or a second (independent)
inference processor can be included.

w I
(&)} (=]
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N
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W
o
yi Vi

N
o

)
&

M

Total Latency for BLOCKS=1
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Fig. 9 Total latency of the system for a single iteration. Having a larger value of M results in significantly lower latency than larger values of N
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Table 3 FPGA implementation details

M N ALM DSP Frequency
256 8 57008/427200 (13%) 512/1518 (34%) 295 MHz
Performance

We compare the performance of the FPGA implemen-
tation with an eight-core 2.6 GHz Intel Xeon E5-2650v2
CPU and an NVidia Tesla P100 GPU. Execution time for
a single input test case is measured by performing infer-
ence for batch sizes shown in Table 1 and then taking
the average. From the results (Fig. 10), we see that the
FPGA outperforms the CPU and high-end GPU for both
benchmarks, despite only using half the chip resources.
FPGA execution time is 56x and 372x faster than CPU and
4x and 112x faster than GPU for the Ovarian and JNCI
benchmarks, respectively.

Discussion
The hurdle to performing real-time analysis on patient
data is meeting timing constraints. This is difficult to
do on traditional, fixed-logic platforms because of a
large number of sources of overhead. Meeting timing
constraints with fixed-logic platforms may continue to
become less feasible. With technological advancements
and greater integration of sensors into medical proce-
dures, both the data throughput of individual sensors
and their overall number can be expected to increase.
Our results highlight the importance of application-
specific optimizations for minimizing the latency of MLP
inference and meeting significantly stricter performance
requirements.

When constructing modules, several factors must be
considered when determining parameter sizing, such as
the impact on VCP and PCP. For PCP, when standard
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optimizations were applied using OpenCL-based archi-
tecture generation, the size and complexity of basic com-
ponents, along with the nature of the overall computation,
had a significant impact on the module latency. This
is nearly invariant of the application itself and depends
more on the design strategies for implementing individ-
ual modules. The VCP, on the other hand, is significantly
more application-specific since it depends on the ratio of
parameter values to nearly every layer size in the model.
Thus, while there is an initial bias toward increasing the
size of M over N, all latency contributions must be consid-
ered on a per-application basis to determine the optimal
architecture.

An important observed trend in the performance results
emphasizes the impact of batch-less execution on tradi-
tional accelerators. As the size of the model decreases,
from Ovarian to JNCI, the FPGA execution time is also
reduced since fewer computations are required for the
smaller first hidden layer in JNCI. However, the GPU per-
formance for the same transition shows a decrease. The
reason is that GPUs depend heavily on batch processing
of multiple test vectors in order to get good utilization of
the thousands of computing cores. As a result, the lower
number of test vectors for JNCI results in worse GPU per-
formance despite there being fewer overall computations.
Overall, we expect the CPU and GPU performance values
to be even lower if batch-less test sets are run (as opposed
to computing the average).

Conclusion

We show the importance of application-specific opti-
mizations in order to minimize latency and maximize
resource utilization for MLP inference. By directly inter-
facing with and processing sensor data during procedures,
FPGAs can perform real-time analysis and provide diag-
nostic feedback that can be critical to achieving higher

1000

100

1 I I I
Ovarian

[y
]

Execution Time (us)

respectively

Performance Comparison for Batch-Less Mass
Spectrometry Data Classification

mCPU mGPU mFPGA
Fig. 10 Performance Comparison between CPU, GPU, and FPGA. FPGA outperforms both the CPU and GPU with average speedups of 144x and 21,

II-
INC
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percentages of successful patient outcomes. We propose
a modular architecture that enables modifications to be
easily performed based on the application model, design
updates, and resource availability as the design is migrated
to different FPGAs. We demonstrate that correct param-
eter sizing, based on the application, can reduce latency
by 20% on average. Further, we show that in an appli-
cation with tightly coupled data-path and latency con-
straints, having a large amount of computing resources
can actually reduce performance. Moreover, since the
FPGA does not require batch processing of inputs, it
can operate with ultra-low latency in order to meet real-
time constraints. Using mass-spectrometry benchmarks,
our proposed FPGA design outperforms both CPU and
GPU implementations with average speedups of 144x and
21x,respectively.
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