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Abstract

Background: Histopathology images of tumor biopsies present unique challenges for applying machine learning to
the diagnosis and treatment of cancer. The pathology slides are high resolution, often exceeding 1GB, have
non-uniform dimensions, and often contain multiple tissue slices of varying sizes surrounded by large empty regions.
The locations of abnormal or cancerous cells, which may constitute a small portion of any given tissue sample, are not
annotated. Cancer image datasets are also extremely imbalanced, with most slides being associated with relatively
common cancers. Since deep representations trained on natural photographs are unlikely to be optimal for classifying
pathology slide images, which have different spectral ranges and spatial structure, we here describe an approach for
learning features and inferring representations of cancer pathology slides based on sparse coding.

Results: We show that conventional transfer learning using a state-of-the-art deep learning architecture pre-trained
on ImageNet (RESNET) and fine tuned for a binary tumor/no-tumor classification task achieved between 85% and 86%
accuracy. However, when all layers up to the last convolutional layer in RESNET are replaced with a single feature map
inferred via a sparse coding using a dictionary optimized for sparse reconstruction of unlabeled pathology slides,
classification performance improves to over 93%, corresponding to a 54% error reduction.

Conclusions: We conclude that a feature dictionary optimized for biomedical imagery may in general support better
classification performance than does conventional transfer learning using a dictionary pre-trained on natural images.

Keywords: Cancer pathology slides, TCGA, Sparse coding, Locally Competitive Algorithm, Unsupervised learning,
Transfer learning, Deep learning

Introduction reveal tumor characteristics that would complement the

Images of tumor biopsies have a long history in oncology,
and remain an important component of cancer diagnosis
and treatment; they also provide promising opportuni-
ties for the application of machine learning to human
health. Identifying the genetic signatures of cancer is an
active area of research (reviewed in [1]); we examined
a dataset [2] where genomic/transcriptomic data is aug-
mented by high-magnification images of tissue samples.
We hypothesize that the tissue images themselves might
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information available in the associated gene expression
data.

Medical imagery has been a target of artificial intel-
ligence since the 1970s, and the majority of current
approaches are based on “Deep Learning” using convo-
lutional neural networks (reviewed in [3, 4]). Automated
feature discovery has become increasingly common, and
some have argued that “general purpose” image fea-
ture dictionaries (trained on ImageNet, for instance) may
achieve high performance on specialized classification
tasks [5—7]. Despite such reports of effective classification
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using features trained from conventional photographic
databases, ie., “transfer learning, it remains unclear
whether such features are truly optimal for the special-
ized task of tumor discrimination from cancer pathology
slides, for which the low-level image statistics are likely to
be very different.

Histological examination of tumor biopsies is a task
currently performed by highly trained human patholo-
gists, who assess the type and grade (progression stage)
of tumors based on the appearance of thin tissue slices,
typically stained with eosin and hematoxylin, in an opti-
cal microscope. In order to use machine learning to
perform some of the tasks of a trained pathologist, we
must first find representations of the pathology slides
that display the most relevant information for charac-
terizing tumors. Deep learning is an effective technique
for learning representations, which yields good perfor-
mance on a variety of classification tasks [8, 9]. However,
conventional deep learning approaches are problematical
here due to the large, non-uniform image sizes, limited
amount of training examples and imbalanced nature of
the image data, and the sometime necessity for labeling
(e.g. annotations that distinguish normal from cancerous
tissue within an image); much of the substantial body of
work in this area has been focused on segmentation within
an image [10] or limited to a small number of tumor
types [7, 11-14].

Sparse coding has been shown to support near state-of-
the-art performance on image labeling tasks using only a
linear support vector machine (SVM) classifier [15, 16].
We hypothesize that sparse representations can similarly
enable relatively shallow classifiers to achieve outstanding
performance on the task of classifying pathology slides.
While there have been some efforts to use sparse cod-
ing for classification of cancer pathology slides [10] to
our knowledge no one has used dictionaries optimized
for the sparse coding of cancer pathology slides in a
transfer learning framework that exploits modern deep
learning techniques. Our methodology comprises three
steps:

1. Learn a dictionary via unsupervised optimization of
sparse reconstruction using images drawn from a
large training set;

2. Infer a sparse subset of nonzero feature activation
coefficients for each image;

3. Classify the resulting sparse representations using a
shallow neural network, or Multi-layer Perceptron
(MLP).

Our methodology represents a form of transfer learn-
ing that covers many different tumor types and addresses
the central histological classification problem: “Does the
image on the slide contain cancerous tissue, or not?”
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Methods

Image data

Image files for histologically stained micrographs of
tumor slices were retrieved from the National Cancer
Institute’s Genetic Data Commons (https://portal.gdc.
cancer.gov/legacy-archive/search/f; as of September 2018,
SVS images are available and can be viewed at https://
portal.gdc.cancer.gov). Metadata for each image including
ICD-10-CM codes [17] for both cancer type (morphol-
ogy) and sample/biopsy anatomical location (topography)
were retrieved from http://portal.gdc.cancer.gov. From
18,592 images associated with The Cancer Genome Atlas
(TCGA) project, we selected a matched tumor/normal tis-
sue subset, containing images from 691 distinct patients,
with 1,375 distinct samples and 1,914 distinct histology
image files. In each case, at least one image was avail-
able of normal tissue, and at least one image of tumor
tissue from the same patient (derived from contempora-
neous tissue-matched biopsies or distinct portions of the
same biopsy). The final dataset included different slices
from the same tumor, different tumor types from the same
organ (e.g. breast, thyroid), and both similar and disparate
tumor types from different tissues (Table 1; Additional
file 1).

Image sectioning

Because individual slide images had large amounts of
empty space, frequently presented multiple tissue slices
on the same slide, and were of non-uniform size, we pre-
processed each slide to extract several high-resolution
samples. Regions of interest (ROIs) were selected by opti-
cal density. Starting with tiled SVS format image files, a
variety of operations were performed using the openslide
library [18], Octave [19], and custom Perl code. First,
the lowest resolution available was extracted as a PNG
format file; from this reference image, we extracted a num-
ber of non-overlapping square tiles of the desired size
(2048 x 2048 pixels). Briefly, each image was binarized
(using Otsu’s method [20] as applied in the “graythresh”
function in Octave), and the white/non-white density was
computed for each possible overlapping window using
a fast Fourier transform (applying the fftconv2 func-
tion of the SPORCO library in Octave) [21]; the darkest
non-overlapping sub-images were extracted sequentially.
This simplistic heuristic ensured selection of non-empty
regions, and favored densely staining regions. ROI coor-
dinates defined on low-resolution images were used to
extract the corresponding regions from the highest res-
olution images. These sub-images were scaled to yield
the equivalent of 2048 x 2048 pixels at 20X magnifica-
tion at full resolution. Figure 1 shows an example with
16 successive sub-samplings to illustrate the robustness
of the procedure; for the work presented here, how-
ever, only the first four ROIs were used. Discrimination
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Table 1 Matched tumor/non-tumor tissue images

Tissue of origin Tumor type Count
Adrenal gland Pheochromocytoma and 6
Paraganglioma
Bile duct Cholangiocarcinoma 18
Bladder Bladder Urothelial Carcinoma 45
Breast Breast Invasive Carcinoma 429
Colon Colon Adenocarcinoma 130
Colon Rectum Adenocarcinoma 27
Cervix Cervical Squamous Cell Carcinoma 6
and Endocervical Adenocarcinoma
Stomach Stomach Adenocarcinoma 68
Head and neck Head and Neck Squamous Cell 116
Carcinoma
Lung Lung Adenocarcinoma 179
Lung Lung Squamous Cell Carcinoma 115
Liver Liver Hepatocellular Carcinoma 118
Esophagus Esophageal Carcinoma 16
Pancreas Pancreatic Adenocarcinoma 8
Prostate Prostate Adenocarcinoma 124
Kidney Kidney Chromophobe 69
Kidney Kidney Renal Clear Cell Carcinoma 214
Kidney Kidney Renal Papillary Cell 78
Carcinoma
Sarcoma Sarcoma 4
Melanoma (skin) Skin Cutaneous Melanoma 2
Thyroid Thyroid Carcinoma 114
Thymus Thymoma 4
Uterus Uterine Corpus Endometrial 54

Carcinoma

For each tumor from a given patient, at least one slide image was labeled as
cancerous (“primary tumor”) and at least one image as “normal” (adjacent samples
or clean margin)

between matched tumor/non-tumor ROIs is non-trivial
to the untrained eye (Fig. 2). Note that our method does
not ensure that each ROI labeled as tumor contains cancer
tissue, introducing some amount of noise in our training
data.

Sparse coding

Finding sparse representations of images is an important
problem in computer vision, with applications including
denoising, upsampling, compression [22, 23] and object
detection [15, 16]. Moreover, sparse coding explains many
of the response properties of simple cells in the mam-
malian primary visual cortex [24]. Given an overcomplete
basis, sparse coding algorithms seek to identify the min-
imal set of generators that most accurately reconstruct
each input image. In neural terms, each neuron is a
generator that adds its associated feature vector to the
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reconstructed image with an amplitude equal to its acti-
vation. For any particular input image, the optimal sparse
representation is given by the vector of neural activations
that minimizes both image reconstruction error and the
number of neurons with non-zero activity. Formally, find-
ing a sparse representation involves finding the minimum
of the following cost function:

£(7.4.7) = min [; 7 -s«a|'+212],. @

In Eq. (1), T is an image unrolled into a vector, and ¢
is a dictionary of feature kernels that are convolved with
the feature maps @ that constitute a sparse representa-
tion of the image. The factor X is a tradeoff parameter;
larger A values encourage greater sparsity (fewer non-zero
coefficients) at the cost of greater reconstruction error.

Both the feature maps @ and the dictionary of fea-
ture kernels ¢ can be determined by a variety of stan-
dard methods. Here, we solved for the feature maps
using a convolutional generalization, previously described
[16, 25], of the Locally Competitive Algorithm (LCA)
[26], where the feature kernels themselves are adapted
according to a local Hebbian learning rule that reduces
reconstruction error given a sparse representation. Dictio-
nary learning was thus performed via Stochastic Gradient
Descent (SGD). Unsupervised dictionary learning used
the entire data set. This was not perceived to be problem-
atic as the learned features were clearly generic, and both
tumor and non-tumor images were promiscuously inter-
mingled. Both dictionary learning and sparse coding was
performed using PetaVision [27], an open source neural
simulation toolbox that uses MPI, OpenMP and CUDA
libraries to enable multi-node, multi-core and/or GPU
accelerated high-performance implementations of sparse
solvers derived from LCA.

Computing resources

All training was done on the Darwin cluster located at
Los Alamos National Lab. Nodes used for both training
and evaluation runs were typically configured with dual
Intel Xeon CPUs with 40 virtual cores and single Nvidia
graphic processors. Four nodes were used simultaneously:
the GPUs were used to carry out non-sparse convolu-
tions, while the CPUs were used for the sparse convo-
lutions. This hybrid model, implemented using openmpi,
OpenMP, and cuDNN, effectively utilized both CPU and
GPU cores.

Classification

After learning dictionaries, we inferred a sparse represen-
tation for each of 7,776 randomly ordered ROIs, 4,462
of which were drawn from slides labeled as containing
tumor tissue. Although we drew 4 ROIs from each slide,



Fischer et al. BMC Bioinformatics 2018, 19(Suppl 18):489

Page 120f 110

EIRE
T

Hpg e

here

Fig. 1 Preprocessing of TCGA pathology slides. Full-extent low-resolution images were used to determine image coordinates; full-resolution image
slices were used to generate sparse representations. Top: initial image; center: fast Fourier transform versus all-white, to determine optically dark
regions of the image; bottom: non-overlapping image slices representing a succession of darkest remaining portions of the image. Full resolution
regions of interest (ROIs; colored boxes) were extracted from the SVS file; the four darkest ROIs from each image were used for the analyses reported

we treated the (non-overlapping) ROIs as distinct sam-
ples. The feature maps for each ROI were average-pooled,
producing a 512-element reduced representation of each
ROL. The pooled representation for each ROI was used to
train a linear support vector machine (SVM) [28] as well
as an MLP to discriminate between ROIs derived from
tumor and non-tumor slide images.

Results

Learned dictionary of convolutional feature kernels

We trained a convolutional dictionary for sparse recon-
struction of 2048 x 2048 pixel full-resolution image slices
(ROIs) extracted from TCGA images (Fig. 1). Each feature

kernel was replicated with a stride of 4 pixels in both the
vertical and horizontal directions, resulting in a feature
map of size 512 x 512. The sparsity of the feature map
is shown in Fig. 3. The set of 512 learned feature kernels
can be visualized as RGB color image patches 32 x 32 in
extent (Fig. 4). The learned dictionary is clearly special-
ized for pathology images. Although some feature kernels
appear rather generic, representing short edge segments,
typically with a slight curvature, many feature kernels
resemble specific cytological structures. In particular,
since the two different stains bind differentially to distinct
cellular components (i.e., nucleic acid/chromatin vs pro-
tein/extracellular matrix), we expect feature kernels that
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Fig. 2 Sample region-of-interest (ROI) images. Each group of 8 small images contains ROIs derived from contemporaneous normal and tumor tissue
samples from a single patient; within each group, the top row of 4 represents normal tissue; the bottom row, tumor tissue. Groups represent the
following tumor types (left to right): row 1, adrenal, bile duct, bladder, stomach; row 2, breast, breast, colon, colon; row 3, lung, liver, pancreas,
thyroid; row 4, prostate, prostate, kidney, kidney. Some sample pairs show overt tumor signatures (e.g., tissue disorganization, densely packed nuclei
associated with rapid proliferation), but other samples lack such obvious features

Fig. 3 Distribution of feature coefficients. Histogram giving the percentage of non-zero activation coefficients for each of the 512 512 x 512 feature
maps, averaged over a large set of ROIs
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Fig. 4 Feature dictionary. Dictionary of 512 convolutional feature kernels learned from the complete set of tumor and non-tumor image ROIs

combine spectral and structural elements to encode spe-
cific subcellular components. We hypothesize that some
of the specialized feature kernels could be discriminative
for tumor related pathologies.

Image reconstructions

We evaluated the effectiveness of the image abstraction by
reconstructing ROI images based on the feature dictionar-
ies and the image-specific sparse coefficients. A sample of
such reconstructions is shown in Fig. 5: although there are
perceptible differences in color values, the reconstruction
of fine structure is remarkably accurate.

Discrimination between tumor/non-tumor
To test the hypothesis that sparse representations
obtained using convolutional dictionaries optimized for

the parsimonious representation of tumor images can be
useful for classification, we used a linear support vec-
tor machine (SVM) [28] to perform binary discrimination
of tumor versus non-tumor on each ROL Input to the
classifier consisted of the sparse feature maps, pooled
to a 512-element vector corresponding to the average
coefficient for each feature (average-pooling). By using a
relatively simple linear SVM classifier, we were able to
directly test the discriminative power of the sparse repre-
sentations themselves without the confound of additional
nonlinearities. The classification accuracy we achieved
(84.23%, with chance performance of 56% due to the slight
preponderance of tumor slices in the dataset) shows that
our unsupervised sparse representations captured some
aspects of tumorous versus non-tumorous tissue — ie.,
some generic features such as (possibly) a preponderance
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images; bottom: reconstructions

Fig. 5 Image reconstructions. Samples of reconstructed images based on convolutional feature kernels and weights (coefficients). Top: original

of proliferating nuclei. We also tried max-pooling and his-
togramming activation coefficients but obtained poorer
classification results (data not shown).

Transfer learning based on sparse coding

As a control, we employed a state-of-the-art deep learn-
ing architecture for image classification, Residual Net-
work (RESNET), to examine performance of conven-
tional transfer learning on our dataset. We started with
RESNET-152 from Keras libraries built in TensorFlow
using previously learned weights [29, 30], obtained from
about a million training images [31]. We retrained the
final all-to-all layers from scratch on the same TCGA
ROI images as used above. The convolutional layers were
fine-tuned as well. The first all-to-all layer consisted
of 1,000 fully-connected elements followed by a drop-
out and a softmax layer. Thus, we began with convolu-
tional features optimized for classifying natural images
but used the available training data to adapt an exist-
ing RESNET architecture for classifying cancer pathology
slides. Training/test subsets were approximately in the
ratio of 5/1, respectively. We obtained a classification
score of 85.48% =+ 0.36% on holdout test data, slightly
higher than our score obtained by feeding sparse coeffi-
cients into a linear SVM classifier (84.32%).

Next, we employed an analogous transfer learning
approach using our sparse coding feature map fed directly
into the all-to-all layers at the top of the RESNET
architecture. These all-to-all layers consisted of a fully-
connected 512-element table, a drop-out layer, and a
softmax classification layer. Again, training/test subsets
were approximately in the ratio of 5/1. For the transfer

learning approach based on sparse coding, we obtained
a classification accuracy of 93.32% =+ 0.21%, approxi-
mately 54% error reduction from the conventional transfer
learning approach. Classification performance of the 3
approaches is shown in Table 2.

Discussion

Our results suggest that optimizing a dictionary for a
sparse coding directly on raw unlabeled histological data
and using that dictionary to infer sparse representa-
tions on each image can support substantially better
performance than transfer learning based on features
optimized for natural images [5]. An approach based on
sparse coding yields features specialized for the parsimo-
nious reconstruction of histology slides, without requiring
either extensive hand-labeling or segmentation of images,
and yet achieves respectable classification accuracy. The
fact that features learned in an unsupervised manner can
nonetheless support accurate classification might at first
seem surprising. State-of-the-art deep neural networks,
trained in a fully supervised manner so as to yield a
maximally discriminative set of features, approach human
levels of performance on a variety of benchmark image
classification tasks. Features trained in an unsupervised

Table 2 Summary of classification performances

Approach Classification score
Sparse coding, SYM 84.23%
RESNET-152 85.48 £0.36%

Sparse coding, MLP 9332 +021%
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manner for sparse reconstruction, on the other hand, are
not required to be discriminative per se (e.g. between
cancerous and non-cancerous tissue), but are required
to enable parsimonious descriptions of the data. In the
case of histology slides, it is not unreasonable that fea-
tures optimized for sparse reconstruction might naturally
correspond to physiologically meaningful entities, such
as cell membrane, cytoplasm, nuclear material and other
subcellular structures, as such features likely enable the
most parsimonious explanation of the data. Occasionally,
such physiologically-meaningful features will be naturally
discriminative between cancerous and non-cancerous tis-
sue even though such discrimination was not explicitly
optimized for. While deep learning approaches would
likely have produced superior results given enough labeled
training examples, such labeled datasets can only be pre-
pared by highly trained pathologists and are currently
unavailable. Instead, we started with a deep neural net-
work optimized for the classification of natural images,
which are clearly very different from pathology slides,
and would be unlikely to contain features correspond-
ing to subcellular components. Absent sufficient labeled
training data, our results indicate that a hybrid approach
based on unsupervised sparse coding followed by a rel-
atively shallow but non-linear fully-supervised classifier
supports the best classification performance. Finally, we
attempted no systematic search of meta-parameters to
optimize the classification performance supported by our
hybrid approach based on sparse coding followed by
an MLP with a single hidden layer. Thus, it is likely
that our reported classification performance could be
improved by optimizing various meta-parameters such as
the patch size, number of dictionary elements and overall
sparsity [32].

Conclusions

The results reported here provide a proof-of-concept for
discrimination between cancer and non-cancer by sparse
coding of histopathological images fed into a shallow
three-layer neural net (MLP). High classification accuracy
was achieved even though features were learned without
labeling (i.e. with no reference to the presence or absence
of tumor within any given ROI). These results indicate
that a subset of sparse feature kernels generated by unsu-
pervised training can be discriminative between tumor
and non-tumor.

Although some researchers have used transfer learning
to compensate for a limited number of training exam-
ples, it is unclear whether features optimized for natural
images will support high levels of classification perfor-
mance on cancer pathology slides, even after fine tuning
on the target data. Here, we report that sparse feature
encoding on unlabeled target data substantially improves
performance.
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Additional file

Additional file 1: Tab-delimited file

1. tcga_hist_file_name (original name of image file as downloaded from
Genomic Data Commons)

. tcga_project_code

. tumor_type (TCGA project tumor type)

jocd_topo_code (I0CD topographical code for tumor sample)*

. iocd_morph_code (IOCD morphological code for tumor sample)*

. patient_id (TCGA patient ID)

. sample_id (TCGA sample ID)

. sample_type (Primary Tumor, Solid Tissue Normal, or Metastatic)

W NV~ W

* normal samples are taken from the vicinity of tumor samples and are
labelled with the same I0CD codes. (TXT 294 kb)
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